期刊文献+
共找到844篇文章
< 1 2 43 >
每页显示 20 50 100
Effect of Increase in Price of Oil on Behavior of Private Car Owners in Beijing 被引量:2
1
作者 Yi Ru Zhang Shiqiu 《Chinese Journal of Population,Resources and Environment》 2010年第1期55-61,共7页
In order to understand the short-term response of private car owners to changes in the price of oil,a survey was conducted in Beijing after the gasoline price in China rose in June 2008.It showed that private car driv... In order to understand the short-term response of private car owners to changes in the price of oil,a survey was conducted in Beijing after the gasoline price in China rose in June 2008.It showed that private car drivers in Beijing reduced their trips in the one month period following the price adjustment.Certain trip characteristics and drivers' demographics significantly influenced price elasticity in the short term,including the purpose of the trip,the distance covered and the income of the car driver. 展开更多
关键词 price elasticity private car travel behavior
在线阅读 下载PDF
Short-Term Electricity Price Forecasting Using a Combination of Neural Networks and Fuzzy Inference
2
作者 Evans Nyasha Chogumaira Takashi Hiyama 《Energy and Power Engineering》 2011年第1期9-16,共8页
This paper presents an artificial neural network, ANN, based approach for estimating short-term wholesale electricity prices using past price and demand data. The objective is to utilize the piecewise continuous na-tu... This paper presents an artificial neural network, ANN, based approach for estimating short-term wholesale electricity prices using past price and demand data. The objective is to utilize the piecewise continuous na-ture of electricity prices on the time domain by clustering the input data into time ranges where the variation trends are maintained. Due to the imprecise nature of cluster boundaries a fuzzy inference technique is em-ployed to handle data that lies at the intersections. As a necessary step in forecasting prices the anticipated electricity demand at the target time is estimated first using a separate ANN. The Australian New-South Wales electricity market data was used to test the system. The developed system shows considerable im-provement in performance compared with approaches that regard price data as a single continuous time se-ries, achieving MAPE of less than 2% for hours with steady prices and 8% for the clusters covering time pe-riods with price spikes. 展开更多
关键词 ELECTRICITY price Forecasting short-term Load Forecasting ELECTRICITY MARKETS Artificial NEURAL Networks Fuzzy LOGIC
在线阅读 下载PDF
Short-Term and Long-Term Price Forecasting Models for the Future Exchange of Mongolian Natural Sea Buckthorn Market
3
作者 Yalalt Dandar Liu Chang 《Agricultural Sciences》 2022年第3期467-490,共24页
Sea buckthorn market floated uncertainly within a narrow range. The market situation provided upward pressure on prices, and producer and consumer interest were poor, coupled with weak prices in the regional markets. ... Sea buckthorn market floated uncertainly within a narrow range. The market situation provided upward pressure on prices, and producer and consumer interest were poor, coupled with weak prices in the regional markets. The objectives of the study are: 1) to estimate the relationship between wild Sea buckthorn (SB) price and Supply, Demand, while some other factors of crude oil price and exchange rate by using simultaneous Supply-Demand and Price system equation and Vector Error Correction Method (VECM);2) to forecast the short-term and long-term SB price;3) to compare and evaluate the price forecasting models. Firstly, the data was analyzed by Ferris and Engle-Granger’s procedure;secondly, both price forecasting methodologies were tested by Pindyck-Rubinfeld and Makridakis’s procedure. The result shows that the VECM model is more efficient using yearly data;a short-term price forecast decreases, and a long-term price forecast is predicted to increase the Mongolian Sea buckthorn market. 展开更多
关键词 short-term and Long-Term price Forecasting Models Simultaneous System Equation VECM Sea Buckthorn Mongolia
在线阅读 下载PDF
DRG低倍率病例特征、形成原因和政策优化
4
作者 潘雪冬 彭美华 +5 位作者 钟艳红 杨松 顾强 李希 李悦 肖远会 《卫生经济研究》 北大核心 2025年第2期59-63,共5页
目的:分析低倍率病例特征,探究低倍率病例形成原因,提出规范医疗行为、优化支付政策的建议。方法:以M市为研究场域,获取159 065例低倍率病例信息,采用特征价格模型,分析低倍率病例的基本特征以及对医疗费用的影响。结果:疾病特征、费用... 目的:分析低倍率病例特征,探究低倍率病例形成原因,提出规范医疗行为、优化支付政策的建议。方法:以M市为研究场域,获取159 065例低倍率病例信息,采用特征价格模型,分析低倍率病例的基本特征以及对医疗费用的影响。结果:疾病特征、费用特征、个体特征、分布特征、行为特征均对低倍率病例的医疗费用产生显著正向影响;低标准入院、不规范医疗行为、诊断和编码升级、分组与支付缺陷是低倍率病例的主要形成原因。结论:为减少不合理低倍率病例,应优化监管规则、完善考核机制、强化院内质控、完善分组与支付机制。 展开更多
关键词 低倍率病例 医疗行为 特征价格模型
在线阅读 下载PDF
市场整合能提升农产品期货市场价格发现能力吗?——基于市场流动性和投资者交易行为视角
5
作者 栾昕 鞠荣华 《财贸研究》 北大核心 2025年第1期71-83,共13页
基于市场流动性和投资者交易行为视角,探究中国农产品现货市场整合对期货市场价格发现能力的影响及其作用机制。研究发现,农产品现货市场整合与期货市场价格发现能力之间存在长期稳定关系,现货市场整合程度的提高有助于期货市场价格发... 基于市场流动性和投资者交易行为视角,探究中国农产品现货市场整合对期货市场价格发现能力的影响及其作用机制。研究发现,农产品现货市场整合与期货市场价格发现能力之间存在长期稳定关系,现货市场整合程度的提高有助于期货市场价格发现能力的提升。在交易成本低和标准化程度高的农产品市场中,市场整合程度对期货市场价格发现能力的边际影响更大。作用机制检验结果表明,市场整合程度通过提高期货市场流动性提升了期货市场价格发现能力。调节效应分析结果显示,市场整合程度对期货市场价格发现能力的正向影响随投机交易行为的减少而增加,随套期保值交易行为的增加而增加。 展开更多
关键词 市场整合 价格发现能力 市场流动性 投资者交易行为 统一大市场
在线阅读 下载PDF
基于心理账户理论的车-站-网协同优化策略
6
作者 王楚迪 王琪玮 +4 位作者 马少华 颜宁 董雁楠 李相俊 李洋 《沈阳工业大学学报》 北大核心 2025年第1期37-44,共8页
【目的】随着电动汽车数量大幅度增长,交通运输正逐步向电气化转型。电动汽车负荷兼具有交通和电力双重属性,导致充电负荷具有更为复杂的时空随机性,使得充电负荷的变化规律更难以挖掘。而电动汽车负荷大规模无序接入电网,无疑会导致电... 【目的】随着电动汽车数量大幅度增长,交通运输正逐步向电气化转型。电动汽车负荷兼具有交通和电力双重属性,导致充电负荷具有更为复杂的时空随机性,使得充电负荷的变化规律更难以挖掘。而电动汽车负荷大规模无序接入电网,无疑会导致电压波动过大,影响电力系统的稳定性,给配电网调度带来隐患。挖掘电动汽车用户的出行规律,并制定有效的充电引导策略势在必行。【方法】针对区域负荷分布失衡问题,提出了一种基于心理账户理论的车-站-网协同优化策略,充分考虑了用户的有限理性心理,从用户侧调控电动汽车用户的充电行为。研究立足于行为经济学,综合分析影响电动汽车用户充电决策行为的各种因素,构建单属性价值函数。在此基础上根据心理账户理论整合多维属性对属性赋权,从而构建考虑用户有限理性心理的充电决策模型。【结果】考虑电压波动指标和用户充电成本的非合作博弈电价机制,通过价格引导用户有序充电,从而在优化电网电能质量的同时降低用户充电成本,并保障充电站运营商的基本利益。仿真结果验证了所提出协同策略的有效性和优越性。【结论】提出了一种车-站-网耦合作用下有限理性充电引导策略,通过构建电网和充电用户之间的非合作博弈模型制定各充电站的实时充电价格,引导用户的充电决策行为,从而改变快充负荷的时空分布,对提高充电站运营商的效率、减少用户的等待时间、提高配电网的电能质量具有显著作用,对于平抑负荷波动、维护电网稳定和经济运行具有重要意义。本文创新点在于构建了基于心理账户的多属性有限理性充电决策模型,模拟用户有限理性心理及学习过程,将行为决策理论与电力系统、交通学深度融合,可以更高效地引导电动汽车用户有序充电,助力电网安全、稳定运行。 展开更多
关键词 电动汽车 充电引导 协同优化 非合作博弈 实时电价 行为经济学 心理账户 有限理性 路-电耦合
在线阅读 下载PDF
利率定价行为再审视:基于存款保险介入监管的视角
7
作者 陈荣 《经济研究参考》 2025年第2期89-112,共24页
随着利率市场化改革的深化,我国信贷市场出现高息揽储等非理性利率定价行为。商业银行利率定价行为与存款保险基金安全、保护金融消费者权益密切相关。加强对商业银行利率定价行为的监测与管理是存款保险管理机构的重要职责。首先,本文... 随着利率市场化改革的深化,我国信贷市场出现高息揽储等非理性利率定价行为。商业银行利率定价行为与存款保险基金安全、保护金融消费者权益密切相关。加强对商业银行利率定价行为的监测与管理是存款保险管理机构的重要职责。首先,本文从行为经济学理论出发,分析我国存款保险管理机构介入商业银行利率定价行为监管的必要性和主要特征。其次,结合演化博弈理论和Matlab软件数值模拟分析发现,商业银行利率定价行为、存款保险管理机构监管策略选择取决于各种策略的净收益。再次,运用系统动力学方法和Matlab软件进行数值仿真分析发现,商业银行非理性利率定价增量净收益越低、存款保险风险差别费率和风险识别率越高,商业银行会趋向于选择理性利率定价;随着外部问责压力增大,存款保险管理机构将会提高对商业银行非理性利率定价行为的监管强度。最后,结合研究结论就存款保险管理机构加强对商业银行利率定价行为监管提出相关政策建议。 展开更多
关键词 存款保险 演化博弈 利率定价行为
在线阅读 下载PDF
基于仿冒行为的时尚服饰定价策略研究
8
作者 孙琳琳 《纺织报告》 2025年第1期32-34,共3页
时尚服饰品牌商的定价策略受消费行为与竞争行为的影响,仿冒服饰与品牌服饰间的竞争是基于相同品牌偏好的竞争。文章构建基于价格敏感度与仿冒行为的定价模型,分析品牌商利润最大化下的最优销售定价。研究发现:消费者的价格敏感度对最... 时尚服饰品牌商的定价策略受消费行为与竞争行为的影响,仿冒服饰与品牌服饰间的竞争是基于相同品牌偏好的竞争。文章构建基于价格敏感度与仿冒行为的定价模型,分析品牌商利润最大化下的最优销售定价。研究发现:消费者的价格敏感度对最优定价、最大利润存在负向影响,仿冒者的优惠力度对最优定价、最大利润存在正向影响。 展开更多
关键词 定价策略 仿冒行为 时尚服饰
在线阅读 下载PDF
Analysis and modeling of parking behavior 被引量:4
9
作者 安实 王健 潘海燕 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2001年第2期120-124,共5页
Analyzes the spatial structure of parking behavior and establishes a basic parking behavior model to represent the parking problem in downtown, and establishes a parking pricing model to analyze the parking equilibriu... Analyzes the spatial structure of parking behavior and establishes a basic parking behavior model to represent the parking problem in downtown, and establishes a parking pricing model to analyze the parking equilibrium with a positive parking fee and uses a paired combinatorial logit model to analyze the effect of trip integrative cost on parking behavior and concludes from empirical results that the parking behavior model performs well. 展开更多
关键词 parking behavior parking pricing paired combinatorial logit
在线阅读 下载PDF
Prediction Model of Weekly Retail Price for Eggs Based on Chaotic Neural Network 被引量:3
10
作者 LI Zhe-min CUI Li-guo +4 位作者 XU Shi-wei WENG Ling-yun DONG Xiao-xia LI Gan-qiong YU Hai-peng 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2013年第12期2292-2299,共8页
This paper establishes a short-term prediction model of weekly retail prices for eggs based on chaotic neural network with the weekly retail prices of eggs from January 2008 to December 2012 in China.In the process of... This paper establishes a short-term prediction model of weekly retail prices for eggs based on chaotic neural network with the weekly retail prices of eggs from January 2008 to December 2012 in China.In the process of determining the structure of the chaotic neural network,the number of input layer nodes of the network is calculated by reconstructing phase space and computing its saturated embedding dimension,and then the number of hidden layer nodes is estimated by trial and error.Finally,this model is applied to predict the retail prices of eggs and compared with ARIMA.The result shows that the chaotic neural network has better nonlinear fitting ability and higher precision in the prediction of weekly retail price of eggs.The empirical result also shows that the chaotic neural network can be widely used in the field of short-term prediction of agricultural prices. 展开更多
关键词 chaos theory chaotic neural network neural network technology short-term prediction weekly retail price of eggs
在线阅读 下载PDF
Behavior recognition based on the fusion of 3D-BN-VGG and LSTM network 被引量:4
11
作者 Wu Jin Min Yu +2 位作者 Shi Qianwen Zhang Weihua Zhao Bo 《High Technology Letters》 EI CAS 2020年第4期372-382,共11页
In order to effectively solve the problems of low accuracy,large amount of computation and complex logic of deep learning algorithms in behavior recognition,a kind of behavior recognition based on the fusion of 3 dime... In order to effectively solve the problems of low accuracy,large amount of computation and complex logic of deep learning algorithms in behavior recognition,a kind of behavior recognition based on the fusion of 3 dimensional batch normalization visual geometry group(3D-BN-VGG)and long short-term memory(LSTM)network is designed.In this network,3D convolutional layer is used to extract the spatial domain features and time domain features of video sequence at the same time,multiple small convolution kernels are stacked to replace large convolution kernels,thus the depth of neural network is deepened and the number of network parameters is reduced.In addition,the latest batch normalization algorithm is added to the 3-dimensional convolutional network to improve the training speed.Then the output of the full connection layer is sent to LSTM network as the feature vectors to extract the sequence information.This method,which directly uses the output of the whole base level without passing through the full connection layer,reduces the parameters of the whole fusion network to 15324485,nearly twice as much as those of 3D-BN-VGG.Finally,it reveals that the proposed network achieves 96.5%and 74.9%accuracy in the UCF-101 and HMDB-51 respectively,and the algorithm has a calculation speed of 1066 fps and an acceleration ratio of 1,which has a significant predominance in velocity. 展开更多
关键词 behavior recognition deep learning 3 dimensional batch normalization visual geometry group(3D-BN-VGG) long short-term memory(LSTM)network
在线阅读 下载PDF
Behavior recognition algorithm based on the improved R3D and LSTM network fusion 被引量:1
12
作者 Wu Jin An Yiyuan +1 位作者 Dai Wei Zhao Bo 《High Technology Letters》 EI CAS 2021年第4期381-387,共7页
Because behavior recognition is based on video frame sequences,this paper proposes a behavior recognition algorithm that combines 3D residual convolutional neural network(R3D)and long short-term memory(LSTM).First,the... Because behavior recognition is based on video frame sequences,this paper proposes a behavior recognition algorithm that combines 3D residual convolutional neural network(R3D)and long short-term memory(LSTM).First,the residual module is extended to three dimensions,which can extract features in the time and space domain at the same time.Second,by changing the size of the pooling layer window the integrity of the time domain features is preserved,at the same time,in order to overcome the difficulty of network training and over-fitting problems,the batch normalization(BN)layer and the dropout layer are added.After that,because the global average pooling layer(GAP)is affected by the size of the feature map,the network cannot be further deepened,so the convolution layer and maxpool layer are added to the R3D network.Finally,because LSTM has the ability to memorize information and can extract more abstract timing features,the LSTM network is introduced into the R3D network.Experimental results show that the R3D+LSTM network achieves 91%recognition rate on the UCF-101 dataset. 展开更多
关键词 behavior recognition three-dimensional residual convolutional neural network(R3D) long short-term memory(LSTM) DROPOUT batch normalization(BN)
在线阅读 下载PDF
Forecast on Price of Agricultural Futures in China Based on ARIMA Model 被引量:6
13
作者 Chunyang WANG 《Asian Agricultural Research》 2016年第11期9-12,16,共5页
The forecast on price of agricultural futures is studied in this paper. We use the ARIMA model to estimate the price trends of agricultural futures,which can help the investors to optimize their investing plans. The s... The forecast on price of agricultural futures is studied in this paper. We use the ARIMA model to estimate the price trends of agricultural futures,which can help the investors to optimize their investing plans. The soybean future contracts are taken as an example to simulate the forecast based on the auto-regression coefficient(p),differential times(d) and moving average coefficient(q). The results show that ARIMA model is better to simulate and forecast the trend of closing prices of soybean futures contract,and it is applicable to forecasting the price of agricultural futures. 展开更多
关键词 price of agricultural futures ARIMA model short-term forecast of price
在线阅读 下载PDF
Comparison of ARIMA and ANN Models Used in Electricity Price Forecasting for Power Market
14
作者 Gao Gao Kwoklun Lo Fulin Fan 《Energy and Power Engineering》 2017年第4期120-126,共7页
In power market, electricity price forecasting provides significant information which can help the electricity market participants to prepare corresponding bidding strategies to maximize their profits. This paper intr... In power market, electricity price forecasting provides significant information which can help the electricity market participants to prepare corresponding bidding strategies to maximize their profits. This paper introduces the models of autoregressive integrated moving average (ARIMA) and artificial neural network (ANN) which are applied to the price forecasts for up to 3 steps 8 weeks ahead in the UK electricity market. The half hourly data of historical prices are obtained from UK Reference Price Data from March 22nd to July 14th 2010 and the predictions are derived from a sliding training window with a length of 8 weeks. The ARIMA with various AR and MA orders and the ANN with different numbers of delays and neurons have been established and compared in terms of the root mean square errors (RMSEs) of price forecasts. The experimental results illustrate that the ARIMA (4,1,2) model gives greater improvement over persistence than the ANN (20 neurons, 4 delays) model. 展开更多
关键词 ELECTRICITY MARKETS ELECTRICITY priceS ARIMA MODELS ANN MODELS short-term Forecasting
在线阅读 下载PDF
市场情绪与基金投资策略:迎合还是修正? 被引量:1
15
作者 王健 易尚昆 +1 位作者 蒋忠中 秦绪伟 《管理科学学报》 CSSCI CSCD 北大核心 2024年第3期112-132,共21页
基金投资策略选择是学术界、监管者和市场参与者共同关注的焦点.本文根据行为资产定价理论将基金投资策略量化为组合收益的市场情绪敏感度,首次在微观层面对其按照市场状态分类界定为迎合情绪策略与修正情绪策略,通过理论模型和实证检... 基金投资策略选择是学术界、监管者和市场参与者共同关注的焦点.本文根据行为资产定价理论将基金投资策略量化为组合收益的市场情绪敏感度,首次在微观层面对其按照市场状态分类界定为迎合情绪策略与修正情绪策略,通过理论模型和实证检验探究基金的投资策略选择对其流量、风险和经理努力程度产生的系统影响,从行为委托代理视角剖析基金业绩的影响机制.研究发现:基金采取迎合策略时,对投资者特别是个体投资者更有吸引力,但会对投资者利益造成隐性侵害,表现为基金未来的风险增大、收益降低,且基金经理在无需付出更多努力的情况下可获得更高报酬.进一步分析表明,基金经理为取悦投资者的消极放任行为是其业绩表现不佳的重要原因;基金采取修正策略时,产生的系列影响则完全相反.本研究为中小投资者的投资实践、基金治理与监管,及解释基金市场异象提供了新的思路与启示. 展开更多
关键词 市场情绪 基金投资策略 行为资产定价 行为委托代理
在线阅读 下载PDF
A phenomenological memristor model for synaptic memory and learning behaviors
16
作者 邵楠 张盛兵 邵舒渊 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第11期526-536,共11页
Properties that are similar to the memory and learning functions in biological systems have been observed and reported in the experimental studies of memristors fabricated by different materials. These properties incl... Properties that are similar to the memory and learning functions in biological systems have been observed and reported in the experimental studies of memristors fabricated by different materials. These properties include the forgetting effect, the transition from short-term memory(STM) to long-term memory(LTM), learning-experience behavior, etc. The mathematical model of this kind of memristor would be very important for its theoretical analysis and application design.In our analysis of the existing memristor model with these properties, we find that some behaviors of the model are inconsistent with the reported experimental observations. A phenomenological memristor model is proposed for this kind of memristor. The model design is based on the forgetting effect and STM-to-LTM transition since these behaviors are two typical properties of these memristors. Further analyses of this model show that this model can also be used directly or modified to describe other experimentally observed behaviors. Simulations show that the proposed model can give a better description of the reported memory and learning behaviors of this kind of memristor than the existing model. 展开更多
关键词 memristor model forgetting effect transition from short-term memory(STM) to long-term memory(LTM) learning-experience behavior
在线阅读 下载PDF
China futures price forecasting based on online search and information transfer
17
作者 Jingyi Liang Guozhu Jia 《Data Science and Management》 2022年第4期187-198,共12页
The synchronicity effect between the financial market and online response for time-series forecasting is an important task with wide applications.This study combines data from the about:blank index(BDI),Google trends(GT),an... The synchronicity effect between the financial market and online response for time-series forecasting is an important task with wide applications.This study combines data from the about:blank index(BDI),Google trends(GT),and transfer entropy(TE)to forecast a wide range of futures prices with a focus on China.A forecasting model based on a hybrid gray wolf optimizer(GWO),convolutional neural network(CNN),and long short-term memory(LSTM)is developed.First,about:blank and Google dual-platform search data were selected and constructed as Internetbased consumer price index(ICPI)using principal component analysis.Second,TE is used to quantify the information between online behavior and futures markets.Finally,the effective Internet-based consumer price index(ICPI)and TE are introduced into the GWO-CNN-LSTM model to forecast the daily prices of corn,soybean,polyvinyl chloride(PVC),egg,and rebar futures.The results show that the GWO-CNN-LSTM model has a significant improvement in predicting future prices.Internet-based CPI built on about:blank and Google platforms has a high degree of real-time performance and reduces the platform and language bias of the search data.Our proposed framework can provide predictive decision support for government leaders,market investors,and production activities. 展开更多
关键词 Futures price forecasting about:blank index Google trends Transfer entropy Consumer price index Gray wolf optimizer Convolutional neural network Long short-term memory
在线阅读 下载PDF
价格补贴、征税与劝诫政策调节下的绿色消费行为影响机制研究 被引量:2
18
作者 程文亮 《资源开发与市场》 CAS 2024年第9期1373-1381,共9页
研究价格补贴、征税与劝诫3种不同政策工具在绿色素养、价值感知与绿色消费行为意愿之间的影响机制,对采取有效政策工具促进绿色消费行为具有重要价值。从理论与实证出发,探讨了绿色素养、价值感知与绿色消费行为意愿之间的关系,引入了... 研究价格补贴、征税与劝诫3种不同政策工具在绿色素养、价值感知与绿色消费行为意愿之间的影响机制,对采取有效政策工具促进绿色消费行为具有重要价值。从理论与实证出发,探讨了绿色素养、价值感知与绿色消费行为意愿之间的关系,引入了价格补贴、征税与劝诫多种政策工具导向作为情景调节变量,并分析了其在上述关系之中的调节效应。结果表明:①消费者的绿色素养越高,越能正向促进绿色消费行为意愿;②绿色价值感知利得与绿色价值感知利失起并行中介作用,且消费者的绿色素养更能通过绿色价值感知利得正向促进绿色消费行为意愿;③3种政策导向工具都能正向调节绿色素养对绿色价值利得感知之间的关系。在对绿色素养对绿色价值利失感知之间的影响关系中,价格补贴性政策能够显著调节这一影响机制,征税型政策与劝诫型政策导向对这一影响机制调节效应不显著。同时,调节效应图分析显示,不同高低分组的价格补贴政策、征税与劝诫型政策导向对绿色素养对绿色消费行为意愿的调节也有一定的异质性。 展开更多
关键词 绿色消费行为意愿 价格补贴 绿色素养 绿色价值感知 调节效应 政策工具
在线阅读 下载PDF
基于出行选择的旅客联程运输服务定价
19
作者 张慧 王兵 +1 位作者 杨飞宇 蒋葛夫 《铁道学报》 EI CAS CSCD 北大核心 2024年第11期12-20,共9页
在多模式运输竞争条件下,将旅客联程运输看作一个由多个任意运输方式联合提供服务的独立运营商参与市场竞争,并通过设立旅客满意度参数量化联程运输特有属性对旅客出行选择的影响,构建同时考虑旅客出行选择和运营商收益的“一票制”联... 在多模式运输竞争条件下,将旅客联程运输看作一个由多个任意运输方式联合提供服务的独立运营商参与市场竞争,并通过设立旅客满意度参数量化联程运输特有属性对旅客出行选择的影响,构建同时考虑旅客出行选择和运营商收益的“一票制”联运双层定价模型。针对下层模型中旅客出行选择参数标定需要大量数据,而联程运输处于初步发展阶段,存在缺乏相关数据的现实矛盾,通过运用层次分析法对相关因素的重要性程度进行标定。针对双层模型求解NP难问题,采用灵敏度分析法对模型求解过程进行简化。并以空铁联运为例对算法的有效性进行验证,结果表明:该定价模型可提升通道内总客流量,促进旅客出行,比补贴式定价有更强的可操作性和可持续性。 展开更多
关键词 旅客联程运输 出行选择 双层模型 一票制 定价
在线阅读 下载PDF
基金抱团与股价崩盘——基于行为金融的视角证据
20
作者 罗党论 庄炘璇 江梓赫 《财贸研究》 CSSCI 北大核心 2024年第10期94-110,共17页
近年来,公募基金抱团现象相当普遍,引起了市场的广泛关注。这种基金抱团现象对资本市场的稳定性会产生怎样的影响?本文以2003—2019年我国A股市场的上市公司为例,研究了公募基金经理的抱团行为对股价崩盘风险的影响。文章发现:(1)基金... 近年来,公募基金抱团现象相当普遍,引起了市场的广泛关注。这种基金抱团现象对资本市场的稳定性会产生怎样的影响?本文以2003—2019年我国A股市场的上市公司为例,研究了公募基金经理的抱团行为对股价崩盘风险的影响。文章发现:(1)基金抱团持股比例的增加会显著提高所在公司的股价崩盘风险;(2)从行为金融角度,基金经理曝光度、分析师关注度与投资者情绪这三个因素都会进一步加剧由基金抱团引起的股价崩盘风险。本文的研究结论对公募基金行业的发展与监管具有一定的启示意义。 展开更多
关键词 基金抱团 股价崩盘风险 行为金融
在线阅读 下载PDF
上一页 1 2 43 下一页 到第
使用帮助 返回顶部