An improved method is proposed for the extraction of the symmetry energy coefficient relative to the temperature,a_(sym)/T,in the heavy-ion reactions near the Fermi energy region,based on the modified Fisher Model.Thi...An improved method is proposed for the extraction of the symmetry energy coefficient relative to the temperature,a_(sym)/T,in the heavy-ion reactions near the Fermi energy region,based on the modified Fisher Model.This method is applied to the primary fragments of antisymmetrized molecular dynamics(AMD)simulations for ^(46)Fe+^(46)Fe,^(40)Ca+^(40)Ca and ^(48)Ca+^(48)Ca at 35 MeV/nucleon,in order to make direct comparison to the results from the K(N,Z)method of Ono et al.In our improved method,the extracted values of a_(sym)/T increase as the size of isotopes increases whereas,in the K(N,Z)method,the results show rather constant behavior.This increase in our result is attributed to the surface contribution of the symmetry energy in finite nuclei.In order to evaluate the surface contribution,the relation a_(sym)/T=[a_(sym)^((V))(1-k_(S/V) A^(-1/3))]/T is applied and k_(S/V)=1.20~1.25 was extracted.This value is smaller than those extracted from the mass table,reflecting the weakened surface contribution at higher temperature regime.Δμ/T,the difference of the neutron-proton chemical potentials relative to the temperature,is also extracted in this method at the same time.The average values of the extractedΔμ/T,Δμ/T show a linear dependence on the proton-neutron a_(sym)metry parameter of the system,δ_(sys),andΔμ/T=(15.1±0.2)δ_(sys)-(0.5±0.1)is obtained.展开更多
Styrene-butadiene-styrene(SBS)modified asphalt(SA)has long found effective applications in road construction materials.When combined with fillers,SBS-modified asphalt has demonstrated promising resistance to fatigue c...Styrene-butadiene-styrene(SBS)modified asphalt(SA)has long found effective applications in road construction materials.When combined with fillers,SBS-modified asphalt has demonstrated promising resistance to fatigue cracking caused by temperature fluctuations and aging.In this study,molybdenum disulfide(MoS_(2))and polyphosphoric acid(PPA)were ground in naphthenic oil(NO)and subjected to mechanical activation to create PPAmodified MoS_(2),referred to as OMS-PPA.By blending various ratios of OMS-PPA with SBS-modified asphalt,composite-modified asphalts were successfully developed to enhance their overall properties.To assess the mechanical characteristics and stability of these modified asphalts,various methods were employed,including penetration factor,flow activation energy,fluorescence microscopy,and dynamic shear rheology.Additionally,the short-term aging performance was evaluated using Fourier transform infrared(FTIR)spectroscopy and nanoindentation tests.The results revealed a 3.7%decrease in the penetration-temperature coefficient for SAOMS compared to SA,while 1-SA-OMS-PPA showed an even greater reduction of 7.1%.Furthermore,after short-term aging,carboxyl group generation in SA increased by 5.93%,while SA-OMS exhibited a smaller rise of 1.36%,and 1-SA-OMS-PPA saw an increase of just 0.93%.The study also highlighted significant improvements in the hardness of these materials.The hardness change ratio for SA-OMS decreased by 43.08%,while the ratio for 1-SA-OMS-PPA saw a notable reduction of 65.16% compared to unmodified SA.These findings suggest that OMS-PPA contributed to improvements in temperature sensitivity,particle dispersibility,and resistance to shortterm aging in asphalts.The results hold significant promise for the future development of advanced asphalt-based materials with potential high-value applications in flexible pavements for highways.展开更多
The global shift toward next-generation energy systems is propelled by the urgent need to combat climate change and the dwindling supply of fossil fuels.This review explores the intricate challenges and opportunities ...The global shift toward next-generation energy systems is propelled by the urgent need to combat climate change and the dwindling supply of fossil fuels.This review explores the intricate challenges and opportunities for transitioning to sustainable renewable energy sources such as solar,wind,and hydrogen.This transition economically challenges traditional energy sectors while fostering new industries,promoting job growth,and sustainable economic development.The transition to renewable energy demands social equity,ensuring universal access to affordable energy,and considering community impact.The environmental benefits include a significant reduction in greenhouse gas emissions and a lesser ecological footprint.This study highlights the rapid growth of the global wind power market,which is projected to increase from$112.23 billion in 2022 to$278.43 billion by 2030,with a compound annual growth rate of 13.67%.In addition,the demand for hydrogen is expected to increase,significantly impacting the market with potential cost reductions and making it a critical renewable energy source owing to its affordability and zero emissions.By 2028,renewables are predicted to account for 42%of global electricity generation,with significant contributions from wind and solar photovoltaic(PV)technology,particularly in China,the European Union,the United States,and India.These developments signify a global commitment to diversifying energy sources,reducing emissions,and moving toward cleaner and more sustainable energy solutions.This review offers stakeholders the insights required to smoothly transition to sustainable energy,setting the stage for a resilient future.展开更多
The 28 nm process has a high cost-performance ratio and has gradually become the standard for the field of radiation-hardened devices.However,owing to the minimum physical gate length of only 35 nm,the physical area o...The 28 nm process has a high cost-performance ratio and has gradually become the standard for the field of radiation-hardened devices.However,owing to the minimum physical gate length of only 35 nm,the physical area of a standard 6T SRAM unit is approximately 0.16μm^(2),resulting in a significant enhancement of multi-cell charge-sharing effects.Multiple-cell upsets(MCUs)have become the primary physical mechanism behind single-event upsets(SEUs)in advanced nanometer node devices.The range of ionization track effects increases with higher ion energies,and spacecraft in orbit primarily experience SEUs caused by high-energy ions.However,ground accelerator experiments have mainly obtained low-energy ion irradiation data.Therefore,the impact of ion energy on the SEU cross section,charge collection mechanisms,and MCU patterns and quantities in advanced nanometer devices remains unclear.In this study,based on the experimental platform of the Heavy Ion Research Facility in Lanzhou,low-and high-energy heavy-ion beams were used to study the SEUs of 28 nm SRAM devices.The influence of ion energy on the charge collection processes of small-sensitive-volume devices,MCU patterns,and upset cross sections was obtained,and the applicable range of the inverse cosine law was clarified.The findings of this study are an important guide for the accurate evaluation of SEUs in advanced nanometer devices and for the development of radiation-hardening techniques.展开更多
Cells undergo metabolic reprogramming to adapt to changes in nutrient availability, cellular activity, and transitions in cell states. The balance between glycolysis and mitochondrial respiration is crucial for energy...Cells undergo metabolic reprogramming to adapt to changes in nutrient availability, cellular activity, and transitions in cell states. The balance between glycolysis and mitochondrial respiration is crucial for energy production, and metabolic reprogramming stipulates a shift in such balance to optimize both bioenergetic efficiency and anabolic requirements. Failure in switching bioenergetic dependence can lead to maladaptation and pathogenesis. While cellular degradation is known to recycle precursor molecules for anabolism, its potential role in regulating energy production remains less explored. The bioenergetic switch between glycolysis and mitochondrial respiration involves transcription factors and organelle homeostasis, which are both regulated by the cellular degradation pathways. A growing body of studies has demonstrated that both stem cells and differentiated cells exhibit bioenergetic switch upon perturbations of autophagic activity or endolysosomal processes. Here, we highlighted the current understanding of the interplay between degradation processes, specifically autophagy and endolysosomes, transcription factors, endolysosomal signaling, and mitochondrial homeostasis in shaping cellular bioenergetics. This review aims to summarize the relationship between degradation processes and bioenergetics, providing a foundation for future research to unveil deeper mechanistic insights into bioenergetic regulation.展开更多
Polymeric microwave actuators combining tissue-like softness with programmablemicrowave-responsive deformation hold great promise for mobile intelligentdevices and bionic soft robots. However, their application is cha...Polymeric microwave actuators combining tissue-like softness with programmablemicrowave-responsive deformation hold great promise for mobile intelligentdevices and bionic soft robots. However, their application is challenged by restricted electromagneticsensitivity and intricate sensing coupling. In this study, a sensitized polymericmicrowave actuator is fabricated by hybridizing a liquid crystal polymer with Ti3C2Tx(MXene). Compared to the initial counterpart, the hybrid polymer exhibits unique spacechargepolarization and interfacial polarization, resulting in significant improvements of230% in the dielectric loss factor and 830% in the apparent efficiency of electromagneticenergy harvest. The sensitized microwave actuation demonstrates as the shortenedresponse time of nearly 10 s, which is merely 13% of that for the initial shape memory polymer. Moreover, the ultra-low content of MXene (upto 0.15 wt%) benefits for maintaining the actuation potential of the hybrid polymer. An innovative self-powered sensing prototype that combinesdriving and piezoelectric polymers is developed, which generates real-time electric potential feedback (open-circuit potential of ~ 3 mV) duringactuation. The polarization-dominant energy conversion mechanism observed in the MXene-polymer hybrid structure furnishes a new approachfor developing efficient electromagnetic dissipative structures and shows potential for advancing polymeric electromagnetic intelligent devices.展开更多
A hydrogen energy storage system(HESS)is one of the many risingmodern green innovations,using excess energy to generate hydrogen and storing it for various purposes.With that,there have been many discussions about com...A hydrogen energy storage system(HESS)is one of the many risingmodern green innovations,using excess energy to generate hydrogen and storing it for various purposes.With that,there have been many discussions about commercializing HESS and improving it further.However,the design and sizing process can be overwhelming to comprehend with various sources to examine,and understanding optimal design methodologies is crucial to optimize a HESS design.With that,this review aims to collect and analyse a wide range of HESS studies to summarise recent studies.Two different collections of studies are studied,one was sourced by the main author for preliminary readings,and another was obtained via VOSViewer.The findings from the Web of Science platform were also examined for amore comprehensive understanding.Major findings include the People’sRepublic of China has been active in HESS research,as most works and active organizations originate from this country.HESS has been mainly researched to support power generation and balance load demands,with financial analysis being the common scope of analysis.MATLAB is a common tool used for HESS design,modelling,and optimization as it can handle complex calculations.Artificial neural network(ANN)has the potential to be used to model the HESS,but additional review is required as a formof future work.From a commercialization perspective,pressurized hydrogen tanks are ideal for hydrogen storage in a HESS,but other methods can be considered after additional research and development.From this review,it can be implied that modelling works will be the way forward for HESS research,but extensive collaborations and additional review are needed.Overall,this review summarized various takeaways that future research works on HESS can use.展开更多
High temperature piezoelectric energy harvester(HTPEH)is an important solution to replace chemical battery to achieve independent power supply of HT wireless sensors.However,simultaneously excellent performances,inclu...High temperature piezoelectric energy harvester(HTPEH)is an important solution to replace chemical battery to achieve independent power supply of HT wireless sensors.However,simultaneously excellent performances,including high figure of merit(FOM),insulation resistivity(ρ)and depolarization temperature(Td)are indispensable but hard to achieve in lead-free piezoceramics,especially operating at 250°C has not been reported before.Herein,well-balanced performances are achieved in BiFeO3–BaTiO3 ceramics via innovative defect engineering with respect to delicate manganese doping.Due to the synergistic effect of enhancing electrostrictive coefficient by polarization configuration optimization,regulating iron ion oxidation state by high valence manganese ion and stabilizing domain orientation by defect dipole,comprehensive excellent electrical performances(Td=340°C,ρ250°C>10^(7)Ωcm and FOM_(250°C)=4905×10^(–15)m^(2)N^(−1))are realized at the solid solubility limit of manganese ions.The HT-PEHs assembled using the rationally designed piezoceramic can allow for fast charging of commercial electrolytic capacitor at 250°C with high energy conversion efficiency(η=11.43%).These characteristics demonstrate that defect engineering tailored BF-BT can satisfy high-end HT-PEHs requirements,paving a new way in developing selfpowered wireless sensors working in HT environments.展开更多
Load forecasting is of great significance to the development of new power systems.With the advancement of smart grids,the integration and distribution of distributed renewable energy sources and power electronics devi...Load forecasting is of great significance to the development of new power systems.With the advancement of smart grids,the integration and distribution of distributed renewable energy sources and power electronics devices have made power load data increasingly complex and volatile.This places higher demands on the prediction and analysis of power loads.In order to improve the prediction accuracy of short-term power load,a CNN-BiLSTMTPA short-term power prediction model based on the Improved Whale Optimization Algorithm(IWOA)with mixed strategies was proposed.Firstly,the model combined the Convolutional Neural Network(CNN)with the Bidirectional Long Short-Term Memory Network(BiLSTM)to fully extract the spatio-temporal characteristics of the load data itself.Then,the Temporal Pattern Attention(TPA)mechanism was introduced into the CNN-BiLSTM model to automatically assign corresponding weights to the hidden states of the BiLSTM.This allowed the model to differentiate the importance of load sequences at different time intervals.At the same time,in order to solve the problem of the difficulties of selecting the parameters of the temporal model,and the poor global search ability of the whale algorithm,which is easy to fall into the local optimization,the whale algorithm(IWOA)was optimized by using the hybrid strategy of Tent chaos mapping and Levy flight strategy,so as to better search the parameters of the model.In this experiment,the real load data of a region in Zhejiang was taken as an example to analyze,and the prediction accuracy(R2)of the proposed method reached 98.83%.Compared with the prediction models such as BP,WOA-CNN-BiLSTM,SSA-CNN-BiLSTM,CNN-BiGRU-Attention,etc.,the experimental results showed that the model proposed in this study has a higher prediction accuracy.展开更多
A clean environment with low carbon emissions is the goal of research on the development of green and sustainable buildings that use bio-sourced materials in conjunction with solar energy to create more sustainable ci...A clean environment with low carbon emissions is the goal of research on the development of green and sustainable buildings that use bio-sourced materials in conjunction with solar energy to create more sustainable cities.This is particularly true in Africa,where there aren’t many studies on the topic.The current study suggests a 90 m^(2) model of a sustainable building in a dry climate that is movable to address the issue of housing in remote areas,ensures comfort in harsh weather conditions,uses solar renewable resources—which are plentiful in Africa—uses biosourced materials,and examines how these materials relate to temperature and humidity control while emitting minimal carbon emissions.In order to solve the topic under consideration,the work is split into two sections:numerical and experimental approaches.Using TRNSYS and Revit,the suggested prototype building is examined numerically to examine the impact of orientation,envelope composition made of bio-sourced materials,and carbon emissions.Through a hygrothermal investigation,experiments are conducted to evaluate this prototype’s effectiveness.Furthermore,an examination of the photovoltaic system’s production,consumption,and several scenarios used tomaximize battery life is included in the paper.Because the biosourcedmaterial achieves a thermal transmittance of 0.15(W.m^(-2).K^(-1)),the results demonstrate an intriguing finding in terms of comfort.This value satisfies the requirements of passive building,energy autonomy of the dwelling,and injection in-network with an annual value of 15,757 kWh.Additionally,compared to the literature,the heating needs ratio is 6.38(kWh/m^(2).an)and the cooling needs ratio is 49(kWh/m^(2).an),both of which are good values.According to international norms,the inside temperature doesn’t go above 26℃,and the humidity level is within a comfortable range.展开更多
In the independent electro-hydrogen system(IEHS)with hybrid energy storage(HESS),achieving optimal scheduling is crucial.Still,it presents a challenge due to the significant deviations in values ofmultiple optimizatio...In the independent electro-hydrogen system(IEHS)with hybrid energy storage(HESS),achieving optimal scheduling is crucial.Still,it presents a challenge due to the significant deviations in values ofmultiple optimization objective functions caused by their physical dimensions.These deviations seriously affect the scheduling process.A novel standardization fusion method has been established to address this issue by analyzing the variation process of each objective function’s values.The optimal scheduling results of IEHS with HESS indicate that the economy and overall energy loss can be improved 2–3 times under different optimization methods.The proposed method better balances all optimization objective functions and reduces the impact of their dimensionality.When the cost of BESS decreases by approximately 30%,its participation deepens by about 1 time.Moreover,if the price of the electrolyzer is less than 15¥/kWh or if the cost of the fuel cell drops below 4¥/kWh,their participation will increase substantially.This study aims to provide a more reasonable approach to solving multi-objective optimization problems.展开更多
After a century of relative stability in the electricity sector,the widespread adoption of distributed energy resources,along with recent advancements in computing and communication technologies,has fundamentally alte...After a century of relative stability in the electricity sector,the widespread adoption of distributed energy resources,along with recent advancements in computing and communication technologies,has fundamentally altered how energy is consumed,traded,and utilized.This change signifies a crucial shift as the power system evolves from its traditional hierarchical organization to a more decentralized approach.At the heart of this transformation are innovative energy distribution models,like peer-to-peer(P2P)sharing,which enable communities to collaboratively manage their energy resources.The effectiveness of P2P sharing not only improves the economic prospects for prosumers,who generate and consume energy,but also enhances energy resilience and sustainability.This allows communities to better leverage local resources while fostering a sense of collective responsibility and collaboration in energy management.However,there is still no extensive implementation of such sharing models in today’s electricitymarkets.Research on distributed energy P2P trading is still in the exploratory stage,and it is particularly important to comprehensively understand and analyze the existing distributed energy P2P trading market.This paper contributes with an overview of the P2P markets that starts with the network framework,market structure,technical approach for trading mechanism,and blockchain technology,moving to the outlook in this field.展开更多
Renewable Energy Systems(RES)provide a sustainable solution to climate warming and environmental pollution by enhancing stability and reliability through status acquisition and analysis on cloud platforms and intellig...Renewable Energy Systems(RES)provide a sustainable solution to climate warming and environmental pollution by enhancing stability and reliability through status acquisition and analysis on cloud platforms and intelligent processing on edge servers(ES).However,securely distributing encrypted data stored in the cloud to terminals that meet decryption requirements has become a prominent research topic.Additionally,managing attributes,including addition,deletion,and modification,is a crucial issue in the access control scheme for RES.To address these security concerns,a trust-based ciphertext-policy attribute-based encryption(CP-ABE)device access control scheme is proposed for RES(TB-CP-ABE).This scheme effectivelymanages the distribution and control of encrypted data on the cloud through robust attribute key management.By introducing trust management mechanisms and outsourced decryption technology,the ES system can effectively assess and manage the trust worthiness of terminal devices,ensuring that only trusted devices can participate in data exchange and access sensitive information.Besides,the ES system dynamically evaluates trust scores to set decryption trust thresholds,thereby regulating device data access permissions and enhancing the system’s security.To validate the security of the proposed TB-CP-ABE against chosen plaintext attacks,a comprehensive formal security analysis is conducted using the widely accepted random oraclemodel under the decisional q-Bilinear Diffie-Hellman Exponent(q-BDHE)assumption.Finally,comparative analysis with other schemes demonstrates that the TB-CP-ABE scheme cuts energy/communication costs by 43%,and scaleswell with rising terminals,maintaining average latency below 50ms,ensuring real-time service feasibility.The proposed scheme not only provides newinsights for the secure management of RES but also lays a foundation for future secure energy solutions.展开更多
The subject is the thermodynamics of dark energy. Thermodynamically, the ratio of dark energy to CMR temperature has the units of entropy, has a well-defined numerical value at every moment of cosmological history, an...The subject is the thermodynamics of dark energy. Thermodynamically, the ratio of dark energy to CMR temperature has the units of entropy, has a well-defined numerical value at every moment of cosmological history, and increases in time monotonically without limit. The proposal is that it is the cosmological entropy, aka dark entropy. Discussion compares it to other notions of entropy. Dark entropy is a necessary prelude to DEH IV, which is about the thermodynamics of dark matter.展开更多
In the context of the“dual carbon”goals,to address issues such as high energy consumption,high costs,and low power quality in the rapid development of electrified railways,this study focused on the China Railways Hi...In the context of the“dual carbon”goals,to address issues such as high energy consumption,high costs,and low power quality in the rapid development of electrified railways,this study focused on the China Railways High-Speed 5 Electric Multiple Unit and proposed a mathematical model and capacity optimization method for an onboard energy storage system using lithium batteries and supercapacitors as storage media.Firstly,considering the electrical characteristics,weight,and volume of the storage media,a mathematical model of the energy storage system was established.Secondly,to tackle problems related to energy consumption and power quality,an energy management strategy was proposed that comprehensively considers peak shaving and valley filling and power quality by controlling the charge/discharge thresholds of the storage system.Thecapacity optimization adopted a bilevel programming model,with the series/parallel number of storage modules as variables,considering constraints imposed by the Direct Current to Direct Current converter,train load,and space.An improved Particle Swarm Optimization algorithm and linear programming solver were used to solve specific cases.The results show that the proposed onboard energy storage system can effectively achieve energy savings,reduce consumption,and improve power qualitywhile meeting the load and space limitations of the train.展开更多
Electrical energy can be harvested from the rotational kinetic energy of moving bodies,consisting of both mechanical and kinetic energy as a potential power source through electromagnetic induction,similar to wind ene...Electrical energy can be harvested from the rotational kinetic energy of moving bodies,consisting of both mechanical and kinetic energy as a potential power source through electromagnetic induction,similar to wind energy applications.In industries,rotational bodies are commonly present in operations,yet this kinetic energy remains untapped.This research explores the energy generation characteristics of two rotational body types,disk-shaped and cylinder-shaped under specific experimental setups.The hardware setup included a direct current(DC)motor driver,power supply,DC generator,mechanical support,and load resistance,while the software setup involved automation testing tools and data logging.Electromagnetic induction was used to harvest energy,and experiments were conducted at room temperature(25℃)with controlled variables like speed and friction.Results showed the disk-shaped body exhibited higher energy efficiency than the cylinder-shaped body,largely due to lower mechanical losses.The disk required only two bearings,while the cylinder required four,resulting in lower bearing losses for the disk.Additionally,the disk experienced only air friction,whereas the cylinder encountered friction from a soft,uneven rubber material,increasing surface contact losses.Under a 40 W resistive load,the disk demonstrated a 17.1%energy loss due to mechanical friction,achieving up to 15.55 J of recycled energy.Conversely,the cylinder body experienced a 48.05%energy loss,delivering only 51.95%of energy to the load.These insights suggest significant potential for designing efficient energy recycling systems in industrial settings,particularly in manufacturing and processing industries where rotational machinery is prevalent.Despite its lower energy density,this system could be beneficially integrated with energy storage solutions,enhancing sustainability in industrial practices.展开更多
BACKGROUND Surgery is the first choice of treatment for patients with colorectal cancer.Traditional open surgery imparts great damage to the body of the patient and can easily cause adverse stress reactions.With the c...BACKGROUND Surgery is the first choice of treatment for patients with colorectal cancer.Traditional open surgery imparts great damage to the body of the patient and can easily cause adverse stress reactions.With the continuous development of medical technology,laparoscopic minimally invasive surgery has shown great advantages for the treatment of patients with celiac disease.AIM To investigate the short-term efficacy of laparoscopic radical surgery and traditional laparotomy for the treatment of colorectal cancer,and the differences in the risk analysis of unplanned reoperation after operation.METHODS As the research subjects,this study selected 100 patients with colorectal cancer who received surgical treatment at the Yulin First Hospital from January 2018 to January 2022.Among them,50 patients who underwent laparoscopic radical resection were selected as the research group and 50 patients who underwent traditional laparotomy were selected as the control group.Data pertaining to clinical indexes,gastrointestinal hormones,nutrition indexes,the levels of inflammatory factors,quality of life,Visual Analog Scale score,and the postoperative complications of the two groups of patients before and after treatment were collected,and the therapeutic effects in the two groups were analyzed and compared.RESULTS Compared with the control group,perioperative bleeding,peristalsis recovery time,and hospital stays were significantly shorter in the research group.After surgery,the levels of gastrin(GAS)and motilin(MTL)were decreased in both groups,and the fluctuation range of GAS and MTL observed in the research group was significantly lower than that recorded in the control group.The hemoglobin(Hb)levels increased after surgery,and the level of Hb in the research group was significantly higher compared with the control group.After the operation,the expression levels of tumor necrosis factor-α,interleukin-6,and C-reactive protein and the total incidence of complications were significantly lower in the research group compared with the control group.One year after the operation,the quality of life of the two groups was greatly improved,with the quality of life in the research group being significantly better.CONCLUSION Laparoscopy was effective for colorectal surgery by reducing the occurrence of complications and inflammatory stress reaction;moreover,the quality of life of patients was significantly improved,which warrants further promotion.展开更多
In this paper,a bilevel optimization model of an integrated energy operator(IEO)–load aggregator(LA)is constructed to address the coordinate optimization challenge of multiple stakeholder island integrated energy sys...In this paper,a bilevel optimization model of an integrated energy operator(IEO)–load aggregator(LA)is constructed to address the coordinate optimization challenge of multiple stakeholder island integrated energy system(IIES).The upper level represents the integrated energy operator,and the lower level is the electricity-heatgas load aggregator.Owing to the benefit conflict between the upper and lower levels of the IIES,a dynamic pricing mechanism for coordinating the interests of the upper and lower levels is proposed,combined with factors such as the carbon emissions of the IIES,as well as the lower load interruption power.The price of selling energy can be dynamically adjusted to the lower LA in the mechanism,according to the information on carbon emissions and load interruption power.Mutual benefits and win-win situations are achieved between the upper and lower multistakeholders.Finally,CPLEX is used to iteratively solve the bilevel optimization model.The optimal solution is selected according to the joint optimal discrimination mechanism.Thesimulation results indicate that the sourceload coordinate operation can reduce the upper and lower operation costs.Using the proposed pricingmechanism,the carbon emissions and load interruption power of IEO-LA are reduced by 9.78%and 70.19%,respectively,and the capture power of the carbon capture equipment is improved by 36.24%.The validity of the proposed model and method is verified.展开更多
Complex Field Theory (CFT) proposes that dark matter (DM) and dark energy (DE) are pervasive, complex fields of charged complex masses of equally positive and negative complex charges, respectively. It proposes that e...Complex Field Theory (CFT) proposes that dark matter (DM) and dark energy (DE) are pervasive, complex fields of charged complex masses of equally positive and negative complex charges, respectively. It proposes that each material object, including living creatures, is concomitant with a fraction of the charged complex masses of DM and DE in proportion to its mass. This perception provides new insights into the physics of nature and its constituents from subatomic to cosmic scales. This complex nature of DM and DE explains our inability to see DM or harvest DE for the last several decades. The positive complex DM is responsible for preserving the integrity of galaxies and all material systems. The negative complex charged DE induces a positive repelling force with the positively charged DM and contributes to the universe’s expansion. Both fields are Lorentz invariants in all directions and entangle the whole universe. The paper uses CFT to investigate zero-point energy, particle-wave duality, relativistic mass increase, and entanglement phenomenon and unifies Coulomb’s and Newton’s laws. The paper also verifies the existence of tachyons and explains the spooky action of quantum mechanics at a distance. The paper encourages further research into how CFT might resolve several physical mysteries in physics.展开更多
The new energy power generation is becoming increasingly important in the power system.Such as photovoltaic power generation has become a research hotspot,however,due to the characteristics of light radiation changes,...The new energy power generation is becoming increasingly important in the power system.Such as photovoltaic power generation has become a research hotspot,however,due to the characteristics of light radiation changes,photovoltaic power generation is unstable and random,resulting in a low utilization rate and directly affecting the stability of the power grid.To solve this problem,this paper proposes a coordinated control strategy for a newenergy power generation system with a hybrid energy storage unit based on the lithium iron phosphate-supercapacitor hybrid energy storage unit.Firstly,the variational mode decomposition algorithm is used to separate the high and low frequencies of the power signal,which is conducive to the rapid and accurate suppression of the power fluctuation of the energy storage system.Secondly,the fuzzy control algorithm is introduced to balance the power between energy storage.In this paper,the actual data is used for simulation,and the simulation results show that the strategy realizes the effective suppression of the bus voltage fluctuation and the accurate control of the internal state of the energy storage unit,effectively avoiding problems such as overshoot and over-discharge,and can significantly improve the stability of the photovoltaic power generation systemand the stability of the Direct Current bus.It is of great significance to promote the development of collaborative control technology for photovoltaic hybrid energy storage units.展开更多
文摘An improved method is proposed for the extraction of the symmetry energy coefficient relative to the temperature,a_(sym)/T,in the heavy-ion reactions near the Fermi energy region,based on the modified Fisher Model.This method is applied to the primary fragments of antisymmetrized molecular dynamics(AMD)simulations for ^(46)Fe+^(46)Fe,^(40)Ca+^(40)Ca and ^(48)Ca+^(48)Ca at 35 MeV/nucleon,in order to make direct comparison to the results from the K(N,Z)method of Ono et al.In our improved method,the extracted values of a_(sym)/T increase as the size of isotopes increases whereas,in the K(N,Z)method,the results show rather constant behavior.This increase in our result is attributed to the surface contribution of the symmetry energy in finite nuclei.In order to evaluate the surface contribution,the relation a_(sym)/T=[a_(sym)^((V))(1-k_(S/V) A^(-1/3))]/T is applied and k_(S/V)=1.20~1.25 was extracted.This value is smaller than those extracted from the mass table,reflecting the weakened surface contribution at higher temperature regime.Δμ/T,the difference of the neutron-proton chemical potentials relative to the temperature,is also extracted in this method at the same time.The average values of the extractedΔμ/T,Δμ/T show a linear dependence on the proton-neutron a_(sym)metry parameter of the system,δ_(sys),andΔμ/T=(15.1±0.2)δ_(sys)-(0.5±0.1)is obtained.
基金financially supported by the Key Research and Development Program of Hubei Province(Nos.2022BCA077 and 2022BCA082).
文摘Styrene-butadiene-styrene(SBS)modified asphalt(SA)has long found effective applications in road construction materials.When combined with fillers,SBS-modified asphalt has demonstrated promising resistance to fatigue cracking caused by temperature fluctuations and aging.In this study,molybdenum disulfide(MoS_(2))and polyphosphoric acid(PPA)were ground in naphthenic oil(NO)and subjected to mechanical activation to create PPAmodified MoS_(2),referred to as OMS-PPA.By blending various ratios of OMS-PPA with SBS-modified asphalt,composite-modified asphalts were successfully developed to enhance their overall properties.To assess the mechanical characteristics and stability of these modified asphalts,various methods were employed,including penetration factor,flow activation energy,fluorescence microscopy,and dynamic shear rheology.Additionally,the short-term aging performance was evaluated using Fourier transform infrared(FTIR)spectroscopy and nanoindentation tests.The results revealed a 3.7%decrease in the penetration-temperature coefficient for SAOMS compared to SA,while 1-SA-OMS-PPA showed an even greater reduction of 7.1%.Furthermore,after short-term aging,carboxyl group generation in SA increased by 5.93%,while SA-OMS exhibited a smaller rise of 1.36%,and 1-SA-OMS-PPA saw an increase of just 0.93%.The study also highlighted significant improvements in the hardness of these materials.The hardness change ratio for SA-OMS decreased by 43.08%,while the ratio for 1-SA-OMS-PPA saw a notable reduction of 65.16% compared to unmodified SA.These findings suggest that OMS-PPA contributed to improvements in temperature sensitivity,particle dispersibility,and resistance to shortterm aging in asphalts.The results hold significant promise for the future development of advanced asphalt-based materials with potential high-value applications in flexible pavements for highways.
文摘The global shift toward next-generation energy systems is propelled by the urgent need to combat climate change and the dwindling supply of fossil fuels.This review explores the intricate challenges and opportunities for transitioning to sustainable renewable energy sources such as solar,wind,and hydrogen.This transition economically challenges traditional energy sectors while fostering new industries,promoting job growth,and sustainable economic development.The transition to renewable energy demands social equity,ensuring universal access to affordable energy,and considering community impact.The environmental benefits include a significant reduction in greenhouse gas emissions and a lesser ecological footprint.This study highlights the rapid growth of the global wind power market,which is projected to increase from$112.23 billion in 2022 to$278.43 billion by 2030,with a compound annual growth rate of 13.67%.In addition,the demand for hydrogen is expected to increase,significantly impacting the market with potential cost reductions and making it a critical renewable energy source owing to its affordability and zero emissions.By 2028,renewables are predicted to account for 42%of global electricity generation,with significant contributions from wind and solar photovoltaic(PV)technology,particularly in China,the European Union,the United States,and India.These developments signify a global commitment to diversifying energy sources,reducing emissions,and moving toward cleaner and more sustainable energy solutions.This review offers stakeholders the insights required to smoothly transition to sustainable energy,setting the stage for a resilient future.
基金supported by the National Natural Science Foundation of China(Nos.12105341 and 12035019)the opening fund of Key Laboratory of Silicon Device and Technology,Chinese Academy of Sciences(No.KLSDTJJ2022-3).
文摘The 28 nm process has a high cost-performance ratio and has gradually become the standard for the field of radiation-hardened devices.However,owing to the minimum physical gate length of only 35 nm,the physical area of a standard 6T SRAM unit is approximately 0.16μm^(2),resulting in a significant enhancement of multi-cell charge-sharing effects.Multiple-cell upsets(MCUs)have become the primary physical mechanism behind single-event upsets(SEUs)in advanced nanometer node devices.The range of ionization track effects increases with higher ion energies,and spacecraft in orbit primarily experience SEUs caused by high-energy ions.However,ground accelerator experiments have mainly obtained low-energy ion irradiation data.Therefore,the impact of ion energy on the SEU cross section,charge collection mechanisms,and MCU patterns and quantities in advanced nanometer devices remains unclear.In this study,based on the experimental platform of the Heavy Ion Research Facility in Lanzhou,low-and high-energy heavy-ion beams were used to study the SEUs of 28 nm SRAM devices.The influence of ion energy on the charge collection processes of small-sensitive-volume devices,MCU patterns,and upset cross sections was obtained,and the applicable range of the inverse cosine law was clarified.The findings of this study are an important guide for the accurate evaluation of SEUs in advanced nanometer devices and for the development of radiation-hardening techniques.
文摘Cells undergo metabolic reprogramming to adapt to changes in nutrient availability, cellular activity, and transitions in cell states. The balance between glycolysis and mitochondrial respiration is crucial for energy production, and metabolic reprogramming stipulates a shift in such balance to optimize both bioenergetic efficiency and anabolic requirements. Failure in switching bioenergetic dependence can lead to maladaptation and pathogenesis. While cellular degradation is known to recycle precursor molecules for anabolism, its potential role in regulating energy production remains less explored. The bioenergetic switch between glycolysis and mitochondrial respiration involves transcription factors and organelle homeostasis, which are both regulated by the cellular degradation pathways. A growing body of studies has demonstrated that both stem cells and differentiated cells exhibit bioenergetic switch upon perturbations of autophagic activity or endolysosomal processes. Here, we highlighted the current understanding of the interplay between degradation processes, specifically autophagy and endolysosomes, transcription factors, endolysosomal signaling, and mitochondrial homeostasis in shaping cellular bioenergetics. This review aims to summarize the relationship between degradation processes and bioenergetics, providing a foundation for future research to unveil deeper mechanistic insights into bioenergetic regulation.
基金supported by the National Natural Science Foundation of China(No.52373280,52177014,51977009,52273257)。
文摘Polymeric microwave actuators combining tissue-like softness with programmablemicrowave-responsive deformation hold great promise for mobile intelligentdevices and bionic soft robots. However, their application is challenged by restricted electromagneticsensitivity and intricate sensing coupling. In this study, a sensitized polymericmicrowave actuator is fabricated by hybridizing a liquid crystal polymer with Ti3C2Tx(MXene). Compared to the initial counterpart, the hybrid polymer exhibits unique spacechargepolarization and interfacial polarization, resulting in significant improvements of230% in the dielectric loss factor and 830% in the apparent efficiency of electromagneticenergy harvest. The sensitized microwave actuation demonstrates as the shortenedresponse time of nearly 10 s, which is merely 13% of that for the initial shape memory polymer. Moreover, the ultra-low content of MXene (upto 0.15 wt%) benefits for maintaining the actuation potential of the hybrid polymer. An innovative self-powered sensing prototype that combinesdriving and piezoelectric polymers is developed, which generates real-time electric potential feedback (open-circuit potential of ~ 3 mV) duringactuation. The polarization-dominant energy conversion mechanism observed in the MXene-polymer hybrid structure furnishes a new approachfor developing efficient electromagnetic dissipative structures and shows potential for advancing polymeric electromagnetic intelligent devices.
文摘A hydrogen energy storage system(HESS)is one of the many risingmodern green innovations,using excess energy to generate hydrogen and storing it for various purposes.With that,there have been many discussions about commercializing HESS and improving it further.However,the design and sizing process can be overwhelming to comprehend with various sources to examine,and understanding optimal design methodologies is crucial to optimize a HESS design.With that,this review aims to collect and analyse a wide range of HESS studies to summarise recent studies.Two different collections of studies are studied,one was sourced by the main author for preliminary readings,and another was obtained via VOSViewer.The findings from the Web of Science platform were also examined for amore comprehensive understanding.Major findings include the People’sRepublic of China has been active in HESS research,as most works and active organizations originate from this country.HESS has been mainly researched to support power generation and balance load demands,with financial analysis being the common scope of analysis.MATLAB is a common tool used for HESS design,modelling,and optimization as it can handle complex calculations.Artificial neural network(ANN)has the potential to be used to model the HESS,but additional review is required as a formof future work.From a commercialization perspective,pressurized hydrogen tanks are ideal for hydrogen storage in a HESS,but other methods can be considered after additional research and development.From this review,it can be implied that modelling works will be the way forward for HESS research,but extensive collaborations and additional review are needed.Overall,this review summarized various takeaways that future research works on HESS can use.
基金supported by the National Natural Science Foundation of China(Grant Nos.52272103 and 52072010)Beijing Natural Science Foundation(Grant Nos.2242029 and JL23004).
文摘High temperature piezoelectric energy harvester(HTPEH)is an important solution to replace chemical battery to achieve independent power supply of HT wireless sensors.However,simultaneously excellent performances,including high figure of merit(FOM),insulation resistivity(ρ)and depolarization temperature(Td)are indispensable but hard to achieve in lead-free piezoceramics,especially operating at 250°C has not been reported before.Herein,well-balanced performances are achieved in BiFeO3–BaTiO3 ceramics via innovative defect engineering with respect to delicate manganese doping.Due to the synergistic effect of enhancing electrostrictive coefficient by polarization configuration optimization,regulating iron ion oxidation state by high valence manganese ion and stabilizing domain orientation by defect dipole,comprehensive excellent electrical performances(Td=340°C,ρ250°C>10^(7)Ωcm and FOM_(250°C)=4905×10^(–15)m^(2)N^(−1))are realized at the solid solubility limit of manganese ions.The HT-PEHs assembled using the rationally designed piezoceramic can allow for fast charging of commercial electrolytic capacitor at 250°C with high energy conversion efficiency(η=11.43%).These characteristics demonstrate that defect engineering tailored BF-BT can satisfy high-end HT-PEHs requirements,paving a new way in developing selfpowered wireless sensors working in HT environments.
文摘Load forecasting is of great significance to the development of new power systems.With the advancement of smart grids,the integration and distribution of distributed renewable energy sources and power electronics devices have made power load data increasingly complex and volatile.This places higher demands on the prediction and analysis of power loads.In order to improve the prediction accuracy of short-term power load,a CNN-BiLSTMTPA short-term power prediction model based on the Improved Whale Optimization Algorithm(IWOA)with mixed strategies was proposed.Firstly,the model combined the Convolutional Neural Network(CNN)with the Bidirectional Long Short-Term Memory Network(BiLSTM)to fully extract the spatio-temporal characteristics of the load data itself.Then,the Temporal Pattern Attention(TPA)mechanism was introduced into the CNN-BiLSTM model to automatically assign corresponding weights to the hidden states of the BiLSTM.This allowed the model to differentiate the importance of load sequences at different time intervals.At the same time,in order to solve the problem of the difficulties of selecting the parameters of the temporal model,and the poor global search ability of the whale algorithm,which is easy to fall into the local optimization,the whale algorithm(IWOA)was optimized by using the hybrid strategy of Tent chaos mapping and Levy flight strategy,so as to better search the parameters of the model.In this experiment,the real load data of a region in Zhejiang was taken as an example to analyze,and the prediction accuracy(R2)of the proposed method reached 98.83%.Compared with the prediction models such as BP,WOA-CNN-BiLSTM,SSA-CNN-BiLSTM,CNN-BiGRU-Attention,etc.,the experimental results showed that the model proposed in this study has a higher prediction accuracy.
文摘A clean environment with low carbon emissions is the goal of research on the development of green and sustainable buildings that use bio-sourced materials in conjunction with solar energy to create more sustainable cities.This is particularly true in Africa,where there aren’t many studies on the topic.The current study suggests a 90 m^(2) model of a sustainable building in a dry climate that is movable to address the issue of housing in remote areas,ensures comfort in harsh weather conditions,uses solar renewable resources—which are plentiful in Africa—uses biosourced materials,and examines how these materials relate to temperature and humidity control while emitting minimal carbon emissions.In order to solve the topic under consideration,the work is split into two sections:numerical and experimental approaches.Using TRNSYS and Revit,the suggested prototype building is examined numerically to examine the impact of orientation,envelope composition made of bio-sourced materials,and carbon emissions.Through a hygrothermal investigation,experiments are conducted to evaluate this prototype’s effectiveness.Furthermore,an examination of the photovoltaic system’s production,consumption,and several scenarios used tomaximize battery life is included in the paper.Because the biosourcedmaterial achieves a thermal transmittance of 0.15(W.m^(-2).K^(-1)),the results demonstrate an intriguing finding in terms of comfort.This value satisfies the requirements of passive building,energy autonomy of the dwelling,and injection in-network with an annual value of 15,757 kWh.Additionally,compared to the literature,the heating needs ratio is 6.38(kWh/m^(2).an)and the cooling needs ratio is 49(kWh/m^(2).an),both of which are good values.According to international norms,the inside temperature doesn’t go above 26℃,and the humidity level is within a comfortable range.
基金sponsored by R&D Program of Beijing Municipal Education Commission(KM202410009013).
文摘In the independent electro-hydrogen system(IEHS)with hybrid energy storage(HESS),achieving optimal scheduling is crucial.Still,it presents a challenge due to the significant deviations in values ofmultiple optimization objective functions caused by their physical dimensions.These deviations seriously affect the scheduling process.A novel standardization fusion method has been established to address this issue by analyzing the variation process of each objective function’s values.The optimal scheduling results of IEHS with HESS indicate that the economy and overall energy loss can be improved 2–3 times under different optimization methods.The proposed method better balances all optimization objective functions and reduces the impact of their dimensionality.When the cost of BESS decreases by approximately 30%,its participation deepens by about 1 time.Moreover,if the price of the electrolyzer is less than 15¥/kWh or if the cost of the fuel cell drops below 4¥/kWh,their participation will increase substantially.This study aims to provide a more reasonable approach to solving multi-objective optimization problems.
基金funded by the National Natural Science Foundation of China(52167013)the Key Program of Natural Science Foundation of Gansu Province(24JRRA225)Natural Science Foundation of Gansu Province(23JRRA891).
文摘After a century of relative stability in the electricity sector,the widespread adoption of distributed energy resources,along with recent advancements in computing and communication technologies,has fundamentally altered how energy is consumed,traded,and utilized.This change signifies a crucial shift as the power system evolves from its traditional hierarchical organization to a more decentralized approach.At the heart of this transformation are innovative energy distribution models,like peer-to-peer(P2P)sharing,which enable communities to collaboratively manage their energy resources.The effectiveness of P2P sharing not only improves the economic prospects for prosumers,who generate and consume energy,but also enhances energy resilience and sustainability.This allows communities to better leverage local resources while fostering a sense of collective responsibility and collaboration in energy management.However,there is still no extensive implementation of such sharing models in today’s electricitymarkets.Research on distributed energy P2P trading is still in the exploratory stage,and it is particularly important to comprehensively understand and analyze the existing distributed energy P2P trading market.This paper contributes with an overview of the P2P markets that starts with the network framework,market structure,technical approach for trading mechanism,and blockchain technology,moving to the outlook in this field.
基金supported by the Science and Technology Project of the State Grid Corporation of China,Grant number 5700-202223189A-1-1-ZN.
文摘Renewable Energy Systems(RES)provide a sustainable solution to climate warming and environmental pollution by enhancing stability and reliability through status acquisition and analysis on cloud platforms and intelligent processing on edge servers(ES).However,securely distributing encrypted data stored in the cloud to terminals that meet decryption requirements has become a prominent research topic.Additionally,managing attributes,including addition,deletion,and modification,is a crucial issue in the access control scheme for RES.To address these security concerns,a trust-based ciphertext-policy attribute-based encryption(CP-ABE)device access control scheme is proposed for RES(TB-CP-ABE).This scheme effectivelymanages the distribution and control of encrypted data on the cloud through robust attribute key management.By introducing trust management mechanisms and outsourced decryption technology,the ES system can effectively assess and manage the trust worthiness of terminal devices,ensuring that only trusted devices can participate in data exchange and access sensitive information.Besides,the ES system dynamically evaluates trust scores to set decryption trust thresholds,thereby regulating device data access permissions and enhancing the system’s security.To validate the security of the proposed TB-CP-ABE against chosen plaintext attacks,a comprehensive formal security analysis is conducted using the widely accepted random oraclemodel under the decisional q-Bilinear Diffie-Hellman Exponent(q-BDHE)assumption.Finally,comparative analysis with other schemes demonstrates that the TB-CP-ABE scheme cuts energy/communication costs by 43%,and scaleswell with rising terminals,maintaining average latency below 50ms,ensuring real-time service feasibility.The proposed scheme not only provides newinsights for the secure management of RES but also lays a foundation for future secure energy solutions.
文摘The subject is the thermodynamics of dark energy. Thermodynamically, the ratio of dark energy to CMR temperature has the units of entropy, has a well-defined numerical value at every moment of cosmological history, and increases in time monotonically without limit. The proposal is that it is the cosmological entropy, aka dark entropy. Discussion compares it to other notions of entropy. Dark entropy is a necessary prelude to DEH IV, which is about the thermodynamics of dark matter.
基金funded by the National Natural Science Foundation of China(52167013)the Key Program of Natural Science Foundation of Gansu Province(24JRRA225)Natural Science Foundation of Gansu Province(23JRRA891).
文摘In the context of the“dual carbon”goals,to address issues such as high energy consumption,high costs,and low power quality in the rapid development of electrified railways,this study focused on the China Railways High-Speed 5 Electric Multiple Unit and proposed a mathematical model and capacity optimization method for an onboard energy storage system using lithium batteries and supercapacitors as storage media.Firstly,considering the electrical characteristics,weight,and volume of the storage media,a mathematical model of the energy storage system was established.Secondly,to tackle problems related to energy consumption and power quality,an energy management strategy was proposed that comprehensively considers peak shaving and valley filling and power quality by controlling the charge/discharge thresholds of the storage system.Thecapacity optimization adopted a bilevel programming model,with the series/parallel number of storage modules as variables,considering constraints imposed by the Direct Current to Direct Current converter,train load,and space.An improved Particle Swarm Optimization algorithm and linear programming solver were used to solve specific cases.The results show that the proposed onboard energy storage system can effectively achieve energy savings,reduce consumption,and improve power qualitywhile meeting the load and space limitations of the train.
基金The APC was funded by Research Management Center, Multimedia University, Malaysia.
文摘Electrical energy can be harvested from the rotational kinetic energy of moving bodies,consisting of both mechanical and kinetic energy as a potential power source through electromagnetic induction,similar to wind energy applications.In industries,rotational bodies are commonly present in operations,yet this kinetic energy remains untapped.This research explores the energy generation characteristics of two rotational body types,disk-shaped and cylinder-shaped under specific experimental setups.The hardware setup included a direct current(DC)motor driver,power supply,DC generator,mechanical support,and load resistance,while the software setup involved automation testing tools and data logging.Electromagnetic induction was used to harvest energy,and experiments were conducted at room temperature(25℃)with controlled variables like speed and friction.Results showed the disk-shaped body exhibited higher energy efficiency than the cylinder-shaped body,largely due to lower mechanical losses.The disk required only two bearings,while the cylinder required four,resulting in lower bearing losses for the disk.Additionally,the disk experienced only air friction,whereas the cylinder encountered friction from a soft,uneven rubber material,increasing surface contact losses.Under a 40 W resistive load,the disk demonstrated a 17.1%energy loss due to mechanical friction,achieving up to 15.55 J of recycled energy.Conversely,the cylinder body experienced a 48.05%energy loss,delivering only 51.95%of energy to the load.These insights suggest significant potential for designing efficient energy recycling systems in industrial settings,particularly in manufacturing and processing industries where rotational machinery is prevalent.Despite its lower energy density,this system could be beneficially integrated with energy storage solutions,enhancing sustainability in industrial practices.
文摘BACKGROUND Surgery is the first choice of treatment for patients with colorectal cancer.Traditional open surgery imparts great damage to the body of the patient and can easily cause adverse stress reactions.With the continuous development of medical technology,laparoscopic minimally invasive surgery has shown great advantages for the treatment of patients with celiac disease.AIM To investigate the short-term efficacy of laparoscopic radical surgery and traditional laparotomy for the treatment of colorectal cancer,and the differences in the risk analysis of unplanned reoperation after operation.METHODS As the research subjects,this study selected 100 patients with colorectal cancer who received surgical treatment at the Yulin First Hospital from January 2018 to January 2022.Among them,50 patients who underwent laparoscopic radical resection were selected as the research group and 50 patients who underwent traditional laparotomy were selected as the control group.Data pertaining to clinical indexes,gastrointestinal hormones,nutrition indexes,the levels of inflammatory factors,quality of life,Visual Analog Scale score,and the postoperative complications of the two groups of patients before and after treatment were collected,and the therapeutic effects in the two groups were analyzed and compared.RESULTS Compared with the control group,perioperative bleeding,peristalsis recovery time,and hospital stays were significantly shorter in the research group.After surgery,the levels of gastrin(GAS)and motilin(MTL)were decreased in both groups,and the fluctuation range of GAS and MTL observed in the research group was significantly lower than that recorded in the control group.The hemoglobin(Hb)levels increased after surgery,and the level of Hb in the research group was significantly higher compared with the control group.After the operation,the expression levels of tumor necrosis factor-α,interleukin-6,and C-reactive protein and the total incidence of complications were significantly lower in the research group compared with the control group.One year after the operation,the quality of life of the two groups was greatly improved,with the quality of life in the research group being significantly better.CONCLUSION Laparoscopy was effective for colorectal surgery by reducing the occurrence of complications and inflammatory stress reaction;moreover,the quality of life of patients was significantly improved,which warrants further promotion.
基金supported by the Central Government Guides Local Science and Technology Development Fund Project(2023ZY0020)Key R&D and Achievement Transformation Project in InnerMongolia Autonomous Region(2022YFHH0019)+3 种基金the Fundamental Research Funds for Inner Mongolia University of Science&Technology(2022053)Natural Science Foundation of Inner Mongolia(2022LHQN05002)National Natural Science Foundation of China(52067018)Metallurgical Engineering First-Class Discipline Construction Project in Inner Mongolia University of Science and Technology,Control Science and Engineering Quality Improvement and Cultivation Discipline Project in Inner Mongolia University of Science and Technology。
文摘In this paper,a bilevel optimization model of an integrated energy operator(IEO)–load aggregator(LA)is constructed to address the coordinate optimization challenge of multiple stakeholder island integrated energy system(IIES).The upper level represents the integrated energy operator,and the lower level is the electricity-heatgas load aggregator.Owing to the benefit conflict between the upper and lower levels of the IIES,a dynamic pricing mechanism for coordinating the interests of the upper and lower levels is proposed,combined with factors such as the carbon emissions of the IIES,as well as the lower load interruption power.The price of selling energy can be dynamically adjusted to the lower LA in the mechanism,according to the information on carbon emissions and load interruption power.Mutual benefits and win-win situations are achieved between the upper and lower multistakeholders.Finally,CPLEX is used to iteratively solve the bilevel optimization model.The optimal solution is selected according to the joint optimal discrimination mechanism.Thesimulation results indicate that the sourceload coordinate operation can reduce the upper and lower operation costs.Using the proposed pricingmechanism,the carbon emissions and load interruption power of IEO-LA are reduced by 9.78%and 70.19%,respectively,and the capture power of the carbon capture equipment is improved by 36.24%.The validity of the proposed model and method is verified.
文摘Complex Field Theory (CFT) proposes that dark matter (DM) and dark energy (DE) are pervasive, complex fields of charged complex masses of equally positive and negative complex charges, respectively. It proposes that each material object, including living creatures, is concomitant with a fraction of the charged complex masses of DM and DE in proportion to its mass. This perception provides new insights into the physics of nature and its constituents from subatomic to cosmic scales. This complex nature of DM and DE explains our inability to see DM or harvest DE for the last several decades. The positive complex DM is responsible for preserving the integrity of galaxies and all material systems. The negative complex charged DE induces a positive repelling force with the positively charged DM and contributes to the universe’s expansion. Both fields are Lorentz invariants in all directions and entangle the whole universe. The paper uses CFT to investigate zero-point energy, particle-wave duality, relativistic mass increase, and entanglement phenomenon and unifies Coulomb’s and Newton’s laws. The paper also verifies the existence of tachyons and explains the spooky action of quantum mechanics at a distance. The paper encourages further research into how CFT might resolve several physical mysteries in physics.
基金supported by the State Grid Corporation of China Science and Technology Project,grant number 52270723000900K.
文摘The new energy power generation is becoming increasingly important in the power system.Such as photovoltaic power generation has become a research hotspot,however,due to the characteristics of light radiation changes,photovoltaic power generation is unstable and random,resulting in a low utilization rate and directly affecting the stability of the power grid.To solve this problem,this paper proposes a coordinated control strategy for a newenergy power generation system with a hybrid energy storage unit based on the lithium iron phosphate-supercapacitor hybrid energy storage unit.Firstly,the variational mode decomposition algorithm is used to separate the high and low frequencies of the power signal,which is conducive to the rapid and accurate suppression of the power fluctuation of the energy storage system.Secondly,the fuzzy control algorithm is introduced to balance the power between energy storage.In this paper,the actual data is used for simulation,and the simulation results show that the strategy realizes the effective suppression of the bus voltage fluctuation and the accurate control of the internal state of the energy storage unit,effectively avoiding problems such as overshoot and over-discharge,and can significantly improve the stability of the photovoltaic power generation systemand the stability of the Direct Current bus.It is of great significance to promote the development of collaborative control technology for photovoltaic hybrid energy storage units.