Hand gesture recognition is a popular topic in computer vision and makes human-computer interaction more flexible and convenient.The representation of hand gestures is critical for recognition.In this paper,we propose...Hand gesture recognition is a popular topic in computer vision and makes human-computer interaction more flexible and convenient.The representation of hand gestures is critical for recognition.In this paper,we propose a new method to measure the similarity between hand gestures and exploit it for hand gesture recognition.The depth maps of hand gestures captured via the Kinect sensors are used in our method,where the 3D hand shapes can be segmented from the cluttered backgrounds.To extract the pattern of salient 3D shape features,we propose a new descriptor-3D Shape Context,for 3D hand gesture representation.The 3D Shape Context information of each 3D point is obtained in multiple scales because both local shape context and global shape distribution are necessary for recognition.The description of all the 3D points constructs the hand gesture representation,and hand gesture recognition is explored via dynamic time warping algorithm.Extensive experiments are conducted on multiple benchmark datasets.The experimental results verify that the proposed method is robust to noise,articulated variations,and rigid transformations.Our method outperforms state-of-the-art methods in the comparisons of accuracy and efficiency.展开更多
AIM: To achieve symmetric boundaries for left and right breasts boundaries in thermal images by registration. METHODS: The proposed method for registration consists of two steps. In the first step, shape context, an a...AIM: To achieve symmetric boundaries for left and right breasts boundaries in thermal images by registration. METHODS: The proposed method for registration consists of two steps. In the first step, shape context, an approach as presented by Belongie and Malik was applied for registration of two breast boundaries. The shape context is an approach to measure shape similarity. Two sets of finite sample points from shape contours of two breasts are then presented. Consequently, the correspondences between the two shapes are found. By finding correspondences, the sample point which has the most similar shape context is obtained. RESULTS: In this study, a line up transformation which maps one shape onto the other has been estimated in order to complete shape. The used of a thin plate spline permitted good estimation of a plane transformation which has capability to map unselective points from one shape onto the other. The obtained aligningtransformation of boundaries points has been applied successfully to map the two breasts interior points. Some of advantages for using shape context method in this work are as follows:(1) no special land marks or key points are needed;(2) it is tolerant to all common shape deformation; and(3) although it is uncomplicated and straightforward to use, it gives remarkably powerful descriptor for point sets significantly upgrading point set registration. Results are very promising. The proposed algorithm was implemented for 32 cases. Boundary registration is done perfectly for 28 cases.CONCLUSION: We used shape contexts method that is simple and easy to implement to achieve symmetric boundaries for left and right breasts boundaries in thermal images.展开更多
利用图像处理和模式识别技术进行复杂背景下黄瓜叶部病害的自动识别,需要先把目标叶片从复杂背景中分割出来,才能进行后续的特征提取和病害识别。为实现复杂背景下黄瓜叶片的分割,首先利用K-均值聚类算法去除图片中的非绿色部分,再采用...利用图像处理和模式识别技术进行复杂背景下黄瓜叶部病害的自动识别,需要先把目标叶片从复杂背景中分割出来,才能进行后续的特征提取和病害识别。为实现复杂背景下黄瓜叶片的分割,首先利用K-均值聚类算法去除图片中的非绿色部分,再采用基于laplacian of gaussia(LOG)算子的方法对待分割的叶片进行区域检测,然后进行基于形状上下文(shape context)的模板匹配和分割。为了提高匹配速度,先检测叶片的生长点和叶尖,以确定叶片的位置、尺寸和方向;然后使用基于超像素(superpixel)的最优匹配搜索方法来减少搜索的复杂度。对20幅黄瓜叶部病害图像进行分割测试,并与人工分割法进行对比,结果表明,本文所采用的分割算法能较好地从复杂背景下提取出黄瓜叶部病害图像,分割准确率达94.7%,为后期黄瓜病斑的特征提取等工作奠定了良好的基础。展开更多
基金supported by the National Natural Science Foundation of China(61773272,61976191)the Six Talent Peaks Project of Jiangsu Province,China(XYDXX-053)Suzhou Research Project of Technical Innovation,Jiangsu,China(SYG201711)。
文摘Hand gesture recognition is a popular topic in computer vision and makes human-computer interaction more flexible and convenient.The representation of hand gestures is critical for recognition.In this paper,we propose a new method to measure the similarity between hand gestures and exploit it for hand gesture recognition.The depth maps of hand gestures captured via the Kinect sensors are used in our method,where the 3D hand shapes can be segmented from the cluttered backgrounds.To extract the pattern of salient 3D shape features,we propose a new descriptor-3D Shape Context,for 3D hand gesture representation.The 3D Shape Context information of each 3D point is obtained in multiple scales because both local shape context and global shape distribution are necessary for recognition.The description of all the 3D points constructs the hand gesture representation,and hand gesture recognition is explored via dynamic time warping algorithm.Extensive experiments are conducted on multiple benchmark datasets.The experimental results verify that the proposed method is robust to noise,articulated variations,and rigid transformations.Our method outperforms state-of-the-art methods in the comparisons of accuracy and efficiency.
文摘AIM: To achieve symmetric boundaries for left and right breasts boundaries in thermal images by registration. METHODS: The proposed method for registration consists of two steps. In the first step, shape context, an approach as presented by Belongie and Malik was applied for registration of two breast boundaries. The shape context is an approach to measure shape similarity. Two sets of finite sample points from shape contours of two breasts are then presented. Consequently, the correspondences between the two shapes are found. By finding correspondences, the sample point which has the most similar shape context is obtained. RESULTS: In this study, a line up transformation which maps one shape onto the other has been estimated in order to complete shape. The used of a thin plate spline permitted good estimation of a plane transformation which has capability to map unselective points from one shape onto the other. The obtained aligningtransformation of boundaries points has been applied successfully to map the two breasts interior points. Some of advantages for using shape context method in this work are as follows:(1) no special land marks or key points are needed;(2) it is tolerant to all common shape deformation; and(3) although it is uncomplicated and straightforward to use, it gives remarkably powerful descriptor for point sets significantly upgrading point set registration. Results are very promising. The proposed algorithm was implemented for 32 cases. Boundary registration is done perfectly for 28 cases.CONCLUSION: We used shape contexts method that is simple and easy to implement to achieve symmetric boundaries for left and right breasts boundaries in thermal images.
文摘利用图像处理和模式识别技术进行复杂背景下黄瓜叶部病害的自动识别,需要先把目标叶片从复杂背景中分割出来,才能进行后续的特征提取和病害识别。为实现复杂背景下黄瓜叶片的分割,首先利用K-均值聚类算法去除图片中的非绿色部分,再采用基于laplacian of gaussia(LOG)算子的方法对待分割的叶片进行区域检测,然后进行基于形状上下文(shape context)的模板匹配和分割。为了提高匹配速度,先检测叶片的生长点和叶尖,以确定叶片的位置、尺寸和方向;然后使用基于超像素(superpixel)的最优匹配搜索方法来减少搜索的复杂度。对20幅黄瓜叶部病害图像进行分割测试,并与人工分割法进行对比,结果表明,本文所采用的分割算法能较好地从复杂背景下提取出黄瓜叶部病害图像,分割准确率达94.7%,为后期黄瓜病斑的特征提取等工作奠定了良好的基础。