With people living longer,the societal impact of age-related cognitive decline is becoming more pronounced(Crimmins,2015).Thus,it is increasingly important to comprehend the cognitive shifts linked to aging-whether th...With people living longer,the societal impact of age-related cognitive decline is becoming more pronounced(Crimmins,2015).Thus,it is increasingly important to comprehend the cognitive shifts linked to aging-whether they are physiological or pathological.展开更多
Complex bridge structures designed and constructed by humans often necessitate extensive on-site execution,which carries inherent risks.Consequently,a variety of engineering practices are employed to monitor bridge co...Complex bridge structures designed and constructed by humans often necessitate extensive on-site execution,which carries inherent risks.Consequently,a variety of engineering practices are employed to monitor bridge construction.This paper presents a case study of a large-span prestressed concrete(PC)variable-section continuous girder bridge in China,proposing a feedback system for construction monitoring and establishing a finite element(FE)analysis model for the entire bridge.The alignment of the completed bridge adheres to the initial design expectations,with maximum displacement and pre-arch differences from the ideal state measuring 6.39 and 17.7 mm,respectively,which were less than the 20 mm limit required by the specification.Additionally,the stress monitoring showed that the maximum compressive stress was 10.44 MPa,which was 7.5%different from the finite element results,and better predicted the most unfavorable possible location.These results demonstrate that a scientifically rigorous construction monitoring and feedback system can ensure the safety of bridge construction and meet the expected construction standards.The findings presented in this paper provide valuable insights for bridge construction monitoring practices.展开更多
Aiming at the problems of difficulty in balancing construction efficiency and quality,as well as the high safety risks of working at heights during the construction of main piers for highway bridges,this study takes a...Aiming at the problems of difficulty in balancing construction efficiency and quality,as well as the high safety risks of working at heights during the construction of main piers for highway bridges,this study takes a specific bridge project as an example to introduce the technology of hydraulically sliding formwork for the construction of main piers of highway bridges.An in-depth analysis of the project’s construction process found that this technology can effectively improve construction efficiency,ensure the quality of concrete pouring,and significantly reduce the potential safety hazards of working at heights.It provides a reliable technical solution for constructing the main piers of highway bridges and has important reference significance for similar projects.展开更多
As an evaluation index,the natural frequency has the advantages of easy acquisition and quantitative evaluation.In this paper,the natural frequency is used to evaluate the performance of external cable reinforced brid...As an evaluation index,the natural frequency has the advantages of easy acquisition and quantitative evaluation.In this paper,the natural frequency is used to evaluate the performance of external cable reinforced bridges.Numerical examples show that compared with the natural frequencies of first-order modes,the natural frequencies of higher-order modes are more sensitive and can reflect the damage situation and external cable reinforcement effect of T-beam bridges.For damaged bridges,as the damage to the T-beam increases,the natural frequency value of the bridge gradually decreases.When the degree of local damage to the beam reaches 60%,the amplitude of natural frequency change exceeds 10%for the first time.The natural frequencies of the firstorder vibration mode and higher-order vibration mode can be selected as indexes for different degrees of the damaged T-beam bridges.For damaged bridges reinforced with external cables,the traditional natural frequency of the first-order vibration mode cannot be used as the index,which is insensitive to changes in prestress of the external cable.Some natural frequencies of higher-order vibration modes can be selected as indexes,which can reflect the reinforcement effect of externally prestressed damaged T-beam bridges,and its numerical value increases with the increase of external prestressed cable force.展开更多
To improve the accuracy of thermal response estimation and overcome the limitations of the linear regression model and Artificial Neural Network(ANN)model,this study introduces a deep learning estimation method specif...To improve the accuracy of thermal response estimation and overcome the limitations of the linear regression model and Artificial Neural Network(ANN)model,this study introduces a deep learning estimation method specifically based on the Long Short-Term Memory(LSTM)network,to predict temperature-induced girder end displacements of the Dasha Waterway Bridge,a suspension bridge in China.First,to enhance data quality and select target sensors,preprocessing based on the sigma rule and nearest neighbor interpolation is applied to the raw data.Furthermore,to eliminate the high-frequency components from the displacement signal,the wavelet transform is conducted.Subsequently,the linear regression model and ANN model are established,whose results do not meet the requirements and fail to address the time lag effect between temperature and displacements.The study proceeds to develop the LSTM network model and determine the optimal parameters through hyperparameter sensitivity analysis.Finally,the results of the LSTM network model are discussed by a comparative analysis against the linear regression model and ANN model,which indicates a higher accuracy in predicting temperatureinduced girder end displacements and the ability to mitigate the time-lag effect.To be more specific,in comparison between the linear regression model and LSTM network,the mean square error decreases from 6.5937 to 1.6808 and R^(2) increases from 0.683 to 0.930,which corresponds to a 74.51%decrease in MSE and a 36.14%improvement in R^(2).Compared to ANN,with an MSE of 4.6371 and an R^(2) of 0.807,LSTM shows a decrease in MSE of 63.75%and an increase in R^(2) of 13.23%,demonstrating a significant enhancement in predictive performance.展开更多
The deformation monitoring of long-span railway bridges is significant to ensure the safety of human life and property.The interferometric synthetic aperture radar(In SAR)technology has the advantage of high accuracy ...The deformation monitoring of long-span railway bridges is significant to ensure the safety of human life and property.The interferometric synthetic aperture radar(In SAR)technology has the advantage of high accuracy in bridge deformation monitoring.This study monitored the deformation of the Ganjiang Super Bridge based on the small baseline subsets(SBAS)In SAR technology and Sentinel-1A data.We analyzed the deformation results combined with bridge structure,temperature,and riverbed sediment scouring.The results are as follows:(1)The Ganjiang Super Bridge area is stable overall,with deformation rates ranging from-15.6 mm/yr to 10.7 mm/yr(2)The settlement of the Ganjiang Super Bridge deck gradually increases from the bridge tower toward the main span,which conforms to the typical deformation pattern of a cable-stayed bridge.(3)The sediment scouring from the riverbed cause the serious settlement on the bridge’s east side compared with that on the west side.(4)The bridge deformation negatively correlates with temperature,with a faster settlement at a higher temperature and a slow rebound trend at a lower temperature.The study findings can provide scientific data support for the health monitoring of long-span railway bridges.展开更多
The auto-parametric resonance of a continuous-beam bridge model subjected to a two-point periodic excitation is experimentally and numerically investigated in this study.An auto-parametric resonance experiment of the ...The auto-parametric resonance of a continuous-beam bridge model subjected to a two-point periodic excitation is experimentally and numerically investigated in this study.An auto-parametric resonance experiment of the test model is conducted to observe and measure the auto-parametric resonance of a continuous beam under a two-point excitation on columns.The parametric vibration equation is established for the test model using the finite-element method.The auto-parametric resonance stability of the structure is analyzed by using Newmark's method and the energy-growth exponent method.The effects of the phase difference of the two-point excitation on the stability boundaries of auto-parametric resonance are studied for the test model.Compared with the experiment,the numerical instability predictions of auto-parametric resonance are consistent with the test phenomena,and the numerical stability boundaries of auto-parametric resonance agree with the experimental ones.For a continuous beam bridge,when the ratio of multipoint excitation frequency(applied to the columns)to natural frequency of the continuous girder is approximately equal to 2,the continuous beam may undergo a strong auto-parametric resonance.Combined with the present experiment and analysis,a hypothesis of Volgograd Bridge's serpentine vibration is discussed.展开更多
A novel approach for analyzing coupled vibrations between vehicles and bridges is presented,taking into account spatiotemporal effects and mechanical phenomena resulting fromvehicle braking.Efficient modeling and solu...A novel approach for analyzing coupled vibrations between vehicles and bridges is presented,taking into account spatiotemporal effects and mechanical phenomena resulting fromvehicle braking.Efficient modeling and solution of bridge vibrations induced by vehicle deceleration are realized using this method.The method’s validity and reliability are substantiated through numerical examples.A simply supported beam bridge with a corrugated steel web is taken as an example and the effects of parameters such as the initial vehicle speed,braking acceleration,braking location,and road surface roughness on the mid-span displacement and impact factor of the bridge are analyzed.The results show that vehicle braking significantly amplifies mid-span displacement and impact factor responses in comparison to uniform vehicular motion across the bridge.Notably,the influence of wheelto-bridge friction forces is of particular significance and cannot be overlooked.When the vehicle initiates braking near the middle of the span,both the mid-span displacement and impact factor of the bridge exhibit substantial increases,further escalating with higher braking acceleration.Under favorable road surface conditions,the midspan displacement and the impact factor during vehicle braking may exceed the design values stipulated by codes.It is important to note that road surface roughness exerts a more pronounced effect on the impact factor of the bridge in comparison to the effects of vehicle braking.展开更多
Self-assembly of metal halide perovskite nanocrystals(NCs)into superlattices can exhibit unique collective properties,which have significant application values in the display,detector,and solar cell field.This review ...Self-assembly of metal halide perovskite nanocrystals(NCs)into superlattices can exhibit unique collective properties,which have significant application values in the display,detector,and solar cell field.This review discusses the driving forces behind the self-assembly process of perovskite NCs,and the commonly used self-assembly methods and different self-assembly structures are detailed.Subsequently,we summarize the collective optoelectronic properties and application areas of perovskite superlattice structures.Finally,we conclude with an outlook on the potential issues and future challenges in developing perovskite NCs.展开更多
The interactions between lignin oligomers and solvents determine the behaviors of lignin oligomers self-assembling into uniform lignin nanoparticles(LNPs).Herein,several alcohol solvents,which readily interact with th...The interactions between lignin oligomers and solvents determine the behaviors of lignin oligomers self-assembling into uniform lignin nanoparticles(LNPs).Herein,several alcohol solvents,which readily interact with the lignin oligomers,were adopted to study their effects during solvent shifting process for LNPs’production.The lignin oligomers with widely distributed molecular weight and abundant guaiacyl units were extracted from wood waste(mainly consists of pine wood),exerting outstanding self-assembly capability.Uniform and spherical LNPs were generated in H_(2)O-n-propanol cosolvent,whereas irregular LNPs were obtained in H_(2)O-methanol cosolvent.The unsatisfactory self-assembly performance of the lignin oligomers in H_(2)O-methanol cosolvent could be attributed to two aspects.On one hand,for the initial dissolution state,the distinguishing Hansen solubility parameter and polarity between methanol solvent and lignin oligomers resulted in the poor dispersion of the lignin oligomers.On the other hand,strong hydrogen bonds between methanol solvent and lignin oligomers during solvent shifting process,hindered the interactions among the lignin oligomers for self-assembly.展开更多
Contract Bridge,a four-player imperfect information game,comprises two phases:bidding and playing.While computer programs excel at playing,bidding presents a challenging aspect due to the need for information exchange...Contract Bridge,a four-player imperfect information game,comprises two phases:bidding and playing.While computer programs excel at playing,bidding presents a challenging aspect due to the need for information exchange with partners and interference with communication of opponents.In this work,we introduce a Bridge bidding agent that combines supervised learning,deep reinforcement learning via self-play,and a test-time search approach.Our experiments demonstrate that our agent outperforms WBridge5,a highly regarded computer Bridge software that has won multiple world championships,by a performance of 0.98 IMPs(international match points)per deal over 10000 deals,with a much cost-effective approach.The performance significantly surpasses previous state-of-the-art(0.85 IMPs per deal).Note 0.1 IMPs per deal is a significant improvement in Bridge bidding.展开更多
Arch bridges provide significant technical and economic benefits under suitable conditions.In particular,concrete-filled steel tubular(CFST)arch bridges and steel-reinforced concrete(SRC)arch bridges are two types of ...Arch bridges provide significant technical and economic benefits under suitable conditions.In particular,concrete-filled steel tubular(CFST)arch bridges and steel-reinforced concrete(SRC)arch bridges are two types of arch bridges that have gained great economic competitiveness and span growth potential due to advancements in construction technology,engineering materials,and construction equipment over the past 30 years.Under the leadership of the author,two record-breaking arch bridges—that is,the Pingnan Third Bridge(a CFST arch bridge),with a span of 560 m,and the Tian’e Longtan Bridge(an SRC arch bridge),with a span of 600 m—have been built in the past five years,embodying great technological breakthroughs in the construction of these two types of arch bridges.This paper takes these two arch bridges as examples to systematically summarize the latest technological innovations and practices in the construction of CFST arch bridges and SRC arch bridges in China.The technological innovations of CFST arch bridges include cable-stayed fastening-hanging cantilevered assembly methods,new in-tube concrete materials,in-tube concrete pouring techniques,a novel thrust abutment foundation for nonrocky terrain,and measures to reduce the quantity of temporary facilities.The technological innovations of SRC arch bridges involve arch skeleton stiffness selection,the development of encasing concrete materials,encasing concrete pouring,arch rib stress mitigation,and longitudinal reinforcement optimization.To conclude,future research focuses and development directions for these two types of arch bridges are proposed.展开更多
The abuse of plastic food packaging has brought about severe white pollution issues around the world.Developing green and sustainable biomass packaging is an effective way to solve this problem.Hence,a chitosan/sodium...The abuse of plastic food packaging has brought about severe white pollution issues around the world.Developing green and sustainable biomass packaging is an effective way to solve this problem.Hence,a chitosan/sodium alginate-based multilayer film is fabricated via a layer-by-layer(LBL)self-assembly method.With the help of superior interaction between the layers,the multilayer film possesses excellent mechanical properties(with a tensile strength of 50 MPa).Besides,the film displays outstanding water retention property(blocking moisture of 97.56%)and ultraviolet blocking property.Anthocyanin is introduced into the film to detect the food quality since it is one natural plant polyphenol that is sensitive to the pH changes ranging from 1 to 13 in food when spoilage occurs.It is noted that the film is also bacteriostatic which is desired for food packaging.This study describes a simple technique for the development of advanced multifunctional and fully biodegradable food packaging film and it is a sustainable alternative to plastic packaging.展开更多
Rapid and accurate segmentation of structural cracks is essential for ensuring the quality and safety of engineering projects.In practice,however,this task faces the challenge of finding a balance between detection ac...Rapid and accurate segmentation of structural cracks is essential for ensuring the quality and safety of engineering projects.In practice,however,this task faces the challenge of finding a balance between detection accuracy and efficiency.To alleviate this problem,a lightweight and efficient real-time crack segmentation framework was developed.Specifically,in the network model system based on an encoding-decoding structure,the encoding network is equipped with packet convolution and attention mechanisms to capture features of different visual scales in layers,and in the decoding process,we also introduce a fusion module based on spatial attention to effectively aggregate these hierarchical features.Codecs are connected by pyramid pooling model(PPM)filtering.The results show that the crack segmentation accuracy and real-time operation capability larger than 76%and 15 fps,respectively,are validated by three publicly available datasets.These wide-ranging results highlight the potential of the model for the intelligent O&M for cross-sea bridge.展开更多
Carbon nanotubes(CNTs)have garnered significant attention in the fields of science,engineering,and medicine due to their numerous advantages.The initial step towards harnessing the potential of CNTs involves their mac...Carbon nanotubes(CNTs)have garnered significant attention in the fields of science,engineering,and medicine due to their numerous advantages.The initial step towards harnessing the potential of CNTs involves their macroscopic assembly.The present study employed a gentle and direct self-assembly technique,wherein controlled growth of CNT sheaths occurred on the metal wire’s surface,followed by etching of the remaining metal to obtain the hollow tubes composed of CNTs.By controlling the growth time and temperature,it is possible to alter the thickness of the CNTs sheath.After immersing in a solution containing 1 g/L of CNTs at 60℃ for 24 h,the resulting CNTs layer achieved a thickness of up to 60μm.These hollow CNTs tubes with varying inner diameters were prepared through surface reinforcement using polymers and sacrificing metal wires,thereby exhibiting exceptional attributes such as robustness,flexibility,air tightness,and high adsorption capacity that effectively capture CO_(2) from the gas mixture.展开更多
Sudden earthquakes pose a threat to the running safety of trains on high-speed railway bridges,and the stiffness of piers is one of the factors affecting the dynamic response of train-track-bridge system.In this paper...Sudden earthquakes pose a threat to the running safety of trains on high-speed railway bridges,and the stiffness of piers is one of the factors affecting the dynamic response of train-track-bridge system.In this paper,a experiment of a train running on a high-speed railway bridge is performed based on a dynamic experiment system,and the corresponding numerical model is established.The reliability of the numerical model is verified by experiments.Then,the experiment and numerical data are analyzed to reveal the pier height effects on the running safety of trains on bridges.The results show that when the pier height changes,the frequency of the bridge below the 30 m pier height changes greater;the increase of pier height causes the transverse fundamental frequency of the bridge close to that of the train,and the shaking angle and lateral displacement of the train are the largest for bridge with 50 m pier,which increases the risk of derailment;with the pier height increases from 8 m to 50 m,the derailment coefficient obtained by numerical simulations increases by 75% on average,and the spectral intensity obtained by experiments increases by 120% on average,two indicators exhibit logarithmic variation.展开更多
From the standpoint of chemical structures,the organic backbones of energetic materials can be classified into aromatic rings,nonaromatic rings,and open chains.Although the category of aromatic energetic compounds exh...From the standpoint of chemical structures,the organic backbones of energetic materials can be classified into aromatic rings,nonaromatic rings,and open chains.Although the category of aromatic energetic compounds exhibits several advantages in the regulation of energetic properties,the nonaromatic heterocycles,assembling nitramino explosophores with simple alkyl bridges,still have prevailed in benchmark materials.The methylene bridge plays a pivotal role in the constructions of the classic nonaromatic heterocycle-based energetic compounds,e.g.,hexahydro-1,3,5-trinitro-1,3,5-triazine(RDX)and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine(HMX),whereas ethylene bridge is the core moiety of state-of-the-art explosive 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane(CL-20).In this context,it is of great interest to employ simple and practical bridges to assemble aromatic and nonaromatic nitrogen-rich heterocycles,thereby expanding the structural diversity of energetic materials,e.g.,bridged and fused nitrogen-rich poly-heterocycles.Furthermore,alkyl-bridged poly-heterocycles highlight the potential for the open chain type of energetic materials.In this review,the development of alkyl bridges in linking nitrogen-rich heterocycles is presented,and the perspective of the newly constructed energetic backbones is summarized for the future design of advanced energetic materials.展开更多
Seismic fragility analysis of three-tower cable-stayed bridges with three different structural systems,including rigid system(RS),floating system(FS),and passive energy dissipation system(PEDS),is conducted to study t...Seismic fragility analysis of three-tower cable-stayed bridges with three different structural systems,including rigid system(RS),floating system(FS),and passive energy dissipation system(PEDS),is conducted to study the effects of connection configurations on seismic responses and fragilities.Finite element models of bridges are established using OpenSees.A new ground motion screening method based on the statistical characteristic of the predominant period is proposed to avoid irregular behavior in the selection process of ground motions,and incremental dynamic analysis(IDA)is performed to develop components and systems fragility curves.The effects of damper failure on calculated results for PEDS are examined in terms of seismic response and fragility analysis.The results show that the bridge tower is the most affected component by different structural systems.For RS,the fragility of the middle tower is significantly higher than other components,and the bridge failure starts from the middle tower,exhibiting a characteristic of local failure.For FS and PEDS,the fragility of the edge tower is higher than the middle tower.The system fragility of RS is higher than FS and PEDS.Taking the failure of dampers into account is necessary to obtain reliable seismic capacity of cable-stayed bridges.展开更多
Most decisions relating to bridge maintenance are founded on assessments that are based on visual inspections conducted by specially trained engineers,using procedures and aids defined in the management system.Visual ...Most decisions relating to bridge maintenance are founded on assessments that are based on visual inspections conducted by specially trained engineers,using procedures and aids defined in the management system.Visual inspection is the main tool for bridge condition assessment,and is therefore of crucial significance for planning periodic maintenance activities.Paper shall present the study aimed at harmonizing bridge assessment activities,which was conducted in early 2012 in company Hrvatske ceste-Croatian National Road Authority.Small RC bridges were chosen for this study,since visual inspection is usually only tool utilized for their assessment.Ratings obtained by inspection were analyzed using methods of mathematical statistics.The results point to weaknesses in the current assessment system,while the study itself constitutes a good basis for further improvement of management aids,manuals and procedures for bridge inspection.展开更多
In order to investigate the effect of vehicle-bridge coupling on the dynamic characteristics of the bridge,a steel-concrete composite beam suspension bridge is taken as the research object,and a three-dimensional spat...In order to investigate the effect of vehicle-bridge coupling on the dynamic characteristics of the bridge,a steel-concrete composite beam suspension bridge is taken as the research object,and a three-dimensional spatial model of the bridge and a biaxial vehicle model of the vehicle are established,and then a vehicle-bridge coupling vibration system is constructed on the basis of the Nemak-βmethod,and the impact coefficients of each part of the bridge are obtained under different bridge deck unevenness and vehicle speed.The simulation results show that the bridge deck unevenness has the greatest influence on the vibration response of the bridge,and the bridge impact coefficient increases along with the increase in the level of bridge deck unevenness,and the impact coefficient of the main longitudinal girder and the secondary longitudinal girder achieves the maximum value when the level 4 unevenness is 0.328 and 0.314,respectively;when the vehicle speed is increased,the vibration response of the bridge increases and then decreases,and the impact coefficient of the bridge in the middle of the bridge at a speed of 60 km/h achieves the maximum value of 0.192.展开更多
基金Clévio Nóbrega’s laboratory is funded by the Cure CSB projectthe Viljem Julijan Association for Children with Rare Diseases(Slovenia)+1 种基金the Algarve Biomedical Center Research Institute(ABC-Ri)funded by CRESC Algarve 2020(Operation Code:ALG-01-0145-FEDER-072586)(to CN)。
文摘With people living longer,the societal impact of age-related cognitive decline is becoming more pronounced(Crimmins,2015).Thus,it is increasingly important to comprehend the cognitive shifts linked to aging-whether they are physiological or pathological.
基金The Guangdong Basic and Applied Basic Research Foundation(Grant#2023A1515010535).
文摘Complex bridge structures designed and constructed by humans often necessitate extensive on-site execution,which carries inherent risks.Consequently,a variety of engineering practices are employed to monitor bridge construction.This paper presents a case study of a large-span prestressed concrete(PC)variable-section continuous girder bridge in China,proposing a feedback system for construction monitoring and establishing a finite element(FE)analysis model for the entire bridge.The alignment of the completed bridge adheres to the initial design expectations,with maximum displacement and pre-arch differences from the ideal state measuring 6.39 and 17.7 mm,respectively,which were less than the 20 mm limit required by the specification.Additionally,the stress monitoring showed that the maximum compressive stress was 10.44 MPa,which was 7.5%different from the finite element results,and better predicted the most unfavorable possible location.These results demonstrate that a scientifically rigorous construction monitoring and feedback system can ensure the safety of bridge construction and meet the expected construction standards.The findings presented in this paper provide valuable insights for bridge construction monitoring practices.
文摘Aiming at the problems of difficulty in balancing construction efficiency and quality,as well as the high safety risks of working at heights during the construction of main piers for highway bridges,this study takes a specific bridge project as an example to introduce the technology of hydraulically sliding formwork for the construction of main piers of highway bridges.An in-depth analysis of the project’s construction process found that this technology can effectively improve construction efficiency,ensure the quality of concrete pouring,and significantly reduce the potential safety hazards of working at heights.It provides a reliable technical solution for constructing the main piers of highway bridges and has important reference significance for similar projects.
基金supported by Henan Province Science and Technology Research Funding Project(No.222102320129)the Key Research Project of Henan Higher Education Institutions(Grant Nos.22A560004,22A56005).
文摘As an evaluation index,the natural frequency has the advantages of easy acquisition and quantitative evaluation.In this paper,the natural frequency is used to evaluate the performance of external cable reinforced bridges.Numerical examples show that compared with the natural frequencies of first-order modes,the natural frequencies of higher-order modes are more sensitive and can reflect the damage situation and external cable reinforcement effect of T-beam bridges.For damaged bridges,as the damage to the T-beam increases,the natural frequency value of the bridge gradually decreases.When the degree of local damage to the beam reaches 60%,the amplitude of natural frequency change exceeds 10%for the first time.The natural frequencies of the firstorder vibration mode and higher-order vibration mode can be selected as indexes for different degrees of the damaged T-beam bridges.For damaged bridges reinforced with external cables,the traditional natural frequency of the first-order vibration mode cannot be used as the index,which is insensitive to changes in prestress of the external cable.Some natural frequencies of higher-order vibration modes can be selected as indexes,which can reflect the reinforcement effect of externally prestressed damaged T-beam bridges,and its numerical value increases with the increase of external prestressed cable force.
基金The National Key Research and Development Program of China grant No.2022YFB3706704 received by Yuan Renthe National Natural and Science Foundation of China grant No.52308150 received by Xiang Xu.
文摘To improve the accuracy of thermal response estimation and overcome the limitations of the linear regression model and Artificial Neural Network(ANN)model,this study introduces a deep learning estimation method specifically based on the Long Short-Term Memory(LSTM)network,to predict temperature-induced girder end displacements of the Dasha Waterway Bridge,a suspension bridge in China.First,to enhance data quality and select target sensors,preprocessing based on the sigma rule and nearest neighbor interpolation is applied to the raw data.Furthermore,to eliminate the high-frequency components from the displacement signal,the wavelet transform is conducted.Subsequently,the linear regression model and ANN model are established,whose results do not meet the requirements and fail to address the time lag effect between temperature and displacements.The study proceeds to develop the LSTM network model and determine the optimal parameters through hyperparameter sensitivity analysis.Finally,the results of the LSTM network model are discussed by a comparative analysis against the linear regression model and ANN model,which indicates a higher accuracy in predicting temperatureinduced girder end displacements and the ability to mitigate the time-lag effect.To be more specific,in comparison between the linear regression model and LSTM network,the mean square error decreases from 6.5937 to 1.6808 and R^(2) increases from 0.683 to 0.930,which corresponds to a 74.51%decrease in MSE and a 36.14%improvement in R^(2).Compared to ANN,with an MSE of 4.6371 and an R^(2) of 0.807,LSTM shows a decrease in MSE of 63.75%and an increase in R^(2) of 13.23%,demonstrating a significant enhancement in predictive performance.
基金supported by the National Natural Science Foundation of China(Grant Nos.42264004,42274033,and 41904012)the Open Fund of Hubei Luojia Laboratory(Grant Nos.2201000049 and 230100018)+2 种基金the Guangxi Universities’1,000 Young and Middle-aged Backbone Teachers Training Program,the Fundamental Research Funds for Central Universities(Grant No.2042022kf1197)the Natural Science Foundation of Hubei(Grant No.2020CFB282)the China Postdoctoral Science Foundation(Grant Nos.2020T130482,2018M630879)。
文摘The deformation monitoring of long-span railway bridges is significant to ensure the safety of human life and property.The interferometric synthetic aperture radar(In SAR)technology has the advantage of high accuracy in bridge deformation monitoring.This study monitored the deformation of the Ganjiang Super Bridge based on the small baseline subsets(SBAS)In SAR technology and Sentinel-1A data.We analyzed the deformation results combined with bridge structure,temperature,and riverbed sediment scouring.The results are as follows:(1)The Ganjiang Super Bridge area is stable overall,with deformation rates ranging from-15.6 mm/yr to 10.7 mm/yr(2)The settlement of the Ganjiang Super Bridge deck gradually increases from the bridge tower toward the main span,which conforms to the typical deformation pattern of a cable-stayed bridge.(3)The sediment scouring from the riverbed cause the serious settlement on the bridge’s east side compared with that on the west side.(4)The bridge deformation negatively correlates with temperature,with a faster settlement at a higher temperature and a slow rebound trend at a lower temperature.The study findings can provide scientific data support for the health monitoring of long-span railway bridges.
基金National Natural Science Foundation of China under Grant No.51879191。
文摘The auto-parametric resonance of a continuous-beam bridge model subjected to a two-point periodic excitation is experimentally and numerically investigated in this study.An auto-parametric resonance experiment of the test model is conducted to observe and measure the auto-parametric resonance of a continuous beam under a two-point excitation on columns.The parametric vibration equation is established for the test model using the finite-element method.The auto-parametric resonance stability of the structure is analyzed by using Newmark's method and the energy-growth exponent method.The effects of the phase difference of the two-point excitation on the stability boundaries of auto-parametric resonance are studied for the test model.Compared with the experiment,the numerical instability predictions of auto-parametric resonance are consistent with the test phenomena,and the numerical stability boundaries of auto-parametric resonance agree with the experimental ones.For a continuous beam bridge,when the ratio of multipoint excitation frequency(applied to the columns)to natural frequency of the continuous girder is approximately equal to 2,the continuous beam may undergo a strong auto-parametric resonance.Combined with the present experiment and analysis,a hypothesis of Volgograd Bridge's serpentine vibration is discussed.
基金supported by the Henan Provincial Science and Technology Research Project under Grant(152102310295).
文摘A novel approach for analyzing coupled vibrations between vehicles and bridges is presented,taking into account spatiotemporal effects and mechanical phenomena resulting fromvehicle braking.Efficient modeling and solution of bridge vibrations induced by vehicle deceleration are realized using this method.The method’s validity and reliability are substantiated through numerical examples.A simply supported beam bridge with a corrugated steel web is taken as an example and the effects of parameters such as the initial vehicle speed,braking acceleration,braking location,and road surface roughness on the mid-span displacement and impact factor of the bridge are analyzed.The results show that vehicle braking significantly amplifies mid-span displacement and impact factor responses in comparison to uniform vehicular motion across the bridge.Notably,the influence of wheelto-bridge friction forces is of particular significance and cannot be overlooked.When the vehicle initiates braking near the middle of the span,both the mid-span displacement and impact factor of the bridge exhibit substantial increases,further escalating with higher braking acceleration.Under favorable road surface conditions,the midspan displacement and the impact factor during vehicle braking may exceed the design values stipulated by codes.It is important to note that road surface roughness exerts a more pronounced effect on the impact factor of the bridge in comparison to the effects of vehicle braking.
基金financially supported by the National Key Research and Development Program of China (2021YFB3600403)the Fundamental Research Funds for the Central Universities (000-0903069032)。
文摘Self-assembly of metal halide perovskite nanocrystals(NCs)into superlattices can exhibit unique collective properties,which have significant application values in the display,detector,and solar cell field.This review discusses the driving forces behind the self-assembly process of perovskite NCs,and the commonly used self-assembly methods and different self-assembly structures are detailed.Subsequently,we summarize the collective optoelectronic properties and application areas of perovskite superlattice structures.Finally,we conclude with an outlook on the potential issues and future challenges in developing perovskite NCs.
基金supported by the National Natural Science Foundation of China(22078211)the China Postdoctoral Science Foundation(2022M721115).
文摘The interactions between lignin oligomers and solvents determine the behaviors of lignin oligomers self-assembling into uniform lignin nanoparticles(LNPs).Herein,several alcohol solvents,which readily interact with the lignin oligomers,were adopted to study their effects during solvent shifting process for LNPs’production.The lignin oligomers with widely distributed molecular weight and abundant guaiacyl units were extracted from wood waste(mainly consists of pine wood),exerting outstanding self-assembly capability.Uniform and spherical LNPs were generated in H_(2)O-n-propanol cosolvent,whereas irregular LNPs were obtained in H_(2)O-methanol cosolvent.The unsatisfactory self-assembly performance of the lignin oligomers in H_(2)O-methanol cosolvent could be attributed to two aspects.On one hand,for the initial dissolution state,the distinguishing Hansen solubility parameter and polarity between methanol solvent and lignin oligomers resulted in the poor dispersion of the lignin oligomers.On the other hand,strong hydrogen bonds between methanol solvent and lignin oligomers during solvent shifting process,hindered the interactions among the lignin oligomers for self-assembly.
文摘Contract Bridge,a four-player imperfect information game,comprises two phases:bidding and playing.While computer programs excel at playing,bidding presents a challenging aspect due to the need for information exchange with partners and interference with communication of opponents.In this work,we introduce a Bridge bidding agent that combines supervised learning,deep reinforcement learning via self-play,and a test-time search approach.Our experiments demonstrate that our agent outperforms WBridge5,a highly regarded computer Bridge software that has won multiple world championships,by a performance of 0.98 IMPs(international match points)per deal over 10000 deals,with a much cost-effective approach.The performance significantly surpasses previous state-of-the-art(0.85 IMPs per deal).Note 0.1 IMPs per deal is a significant improvement in Bridge bidding.
基金financially supported by the Guangxi Key Research and Development Plan Program(AB22036007).
文摘Arch bridges provide significant technical and economic benefits under suitable conditions.In particular,concrete-filled steel tubular(CFST)arch bridges and steel-reinforced concrete(SRC)arch bridges are two types of arch bridges that have gained great economic competitiveness and span growth potential due to advancements in construction technology,engineering materials,and construction equipment over the past 30 years.Under the leadership of the author,two record-breaking arch bridges—that is,the Pingnan Third Bridge(a CFST arch bridge),with a span of 560 m,and the Tian’e Longtan Bridge(an SRC arch bridge),with a span of 600 m—have been built in the past five years,embodying great technological breakthroughs in the construction of these two types of arch bridges.This paper takes these two arch bridges as examples to systematically summarize the latest technological innovations and practices in the construction of CFST arch bridges and SRC arch bridges in China.The technological innovations of CFST arch bridges include cable-stayed fastening-hanging cantilevered assembly methods,new in-tube concrete materials,in-tube concrete pouring techniques,a novel thrust abutment foundation for nonrocky terrain,and measures to reduce the quantity of temporary facilities.The technological innovations of SRC arch bridges involve arch skeleton stiffness selection,the development of encasing concrete materials,encasing concrete pouring,arch rib stress mitigation,and longitudinal reinforcement optimization.To conclude,future research focuses and development directions for these two types of arch bridges are proposed.
基金National Undergraduate Training Program for Innovation and Entrepreneurship of China (Grant No.202210288027).
文摘The abuse of plastic food packaging has brought about severe white pollution issues around the world.Developing green and sustainable biomass packaging is an effective way to solve this problem.Hence,a chitosan/sodium alginate-based multilayer film is fabricated via a layer-by-layer(LBL)self-assembly method.With the help of superior interaction between the layers,the multilayer film possesses excellent mechanical properties(with a tensile strength of 50 MPa).Besides,the film displays outstanding water retention property(blocking moisture of 97.56%)and ultraviolet blocking property.Anthocyanin is introduced into the film to detect the food quality since it is one natural plant polyphenol that is sensitive to the pH changes ranging from 1 to 13 in food when spoilage occurs.It is noted that the film is also bacteriostatic which is desired for food packaging.This study describes a simple technique for the development of advanced multifunctional and fully biodegradable food packaging film and it is a sustainable alternative to plastic packaging.
基金supported by the National Key Research and Development Program of China(Grant Nos.2019YFB1600700 and 2019YFB1600701)the Wuhan Maritime Communication Research Institute(Grant No.2020MG001/050-22-CF).
文摘Rapid and accurate segmentation of structural cracks is essential for ensuring the quality and safety of engineering projects.In practice,however,this task faces the challenge of finding a balance between detection accuracy and efficiency.To alleviate this problem,a lightweight and efficient real-time crack segmentation framework was developed.Specifically,in the network model system based on an encoding-decoding structure,the encoding network is equipped with packet convolution and attention mechanisms to capture features of different visual scales in layers,and in the decoding process,we also introduce a fusion module based on spatial attention to effectively aggregate these hierarchical features.Codecs are connected by pyramid pooling model(PPM)filtering.The results show that the crack segmentation accuracy and real-time operation capability larger than 76%and 15 fps,respectively,are validated by three publicly available datasets.These wide-ranging results highlight the potential of the model for the intelligent O&M for cross-sea bridge.
基金Project(ZCLTGS24B0101)supported by Zhejiang Provincial Natural Science Foundation of ChinaProject(Y202250501)supported by Scientific Research Fund of Zhejiang Provincial Education Department,ChinaProject supported by SRT Research Project of Jiaxing Nanhu University,China。
文摘Carbon nanotubes(CNTs)have garnered significant attention in the fields of science,engineering,and medicine due to their numerous advantages.The initial step towards harnessing the potential of CNTs involves their macroscopic assembly.The present study employed a gentle and direct self-assembly technique,wherein controlled growth of CNT sheaths occurred on the metal wire’s surface,followed by etching of the remaining metal to obtain the hollow tubes composed of CNTs.By controlling the growth time and temperature,it is possible to alter the thickness of the CNTs sheath.After immersing in a solution containing 1 g/L of CNTs at 60℃ for 24 h,the resulting CNTs layer achieved a thickness of up to 60μm.These hollow CNTs tubes with varying inner diameters were prepared through surface reinforcement using polymers and sacrificing metal wires,thereby exhibiting exceptional attributes such as robustness,flexibility,air tightness,and high adsorption capacity that effectively capture CO_(2) from the gas mixture.
基金Projects(52022113,52278546)supported by the National Natural Science Foundation of ChinaProject(2020EEEVL0403)supported by the China Earthquake Administration。
文摘Sudden earthquakes pose a threat to the running safety of trains on high-speed railway bridges,and the stiffness of piers is one of the factors affecting the dynamic response of train-track-bridge system.In this paper,a experiment of a train running on a high-speed railway bridge is performed based on a dynamic experiment system,and the corresponding numerical model is established.The reliability of the numerical model is verified by experiments.Then,the experiment and numerical data are analyzed to reveal the pier height effects on the running safety of trains on bridges.The results show that when the pier height changes,the frequency of the bridge below the 30 m pier height changes greater;the increase of pier height causes the transverse fundamental frequency of the bridge close to that of the train,and the shaking angle and lateral displacement of the train are the largest for bridge with 50 m pier,which increases the risk of derailment;with the pier height increases from 8 m to 50 m,the derailment coefficient obtained by numerical simulations increases by 75% on average,and the spectral intensity obtained by experiments increases by 120% on average,two indicators exhibit logarithmic variation.
基金National Natural Science Foundation of China(Grant Nos.22075023,22205022,and 22235003)to provide fund for conducting experiments。
文摘From the standpoint of chemical structures,the organic backbones of energetic materials can be classified into aromatic rings,nonaromatic rings,and open chains.Although the category of aromatic energetic compounds exhibits several advantages in the regulation of energetic properties,the nonaromatic heterocycles,assembling nitramino explosophores with simple alkyl bridges,still have prevailed in benchmark materials.The methylene bridge plays a pivotal role in the constructions of the classic nonaromatic heterocycle-based energetic compounds,e.g.,hexahydro-1,3,5-trinitro-1,3,5-triazine(RDX)and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine(HMX),whereas ethylene bridge is the core moiety of state-of-the-art explosive 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane(CL-20).In this context,it is of great interest to employ simple and practical bridges to assemble aromatic and nonaromatic nitrogen-rich heterocycles,thereby expanding the structural diversity of energetic materials,e.g.,bridged and fused nitrogen-rich poly-heterocycles.Furthermore,alkyl-bridged poly-heterocycles highlight the potential for the open chain type of energetic materials.In this review,the development of alkyl bridges in linking nitrogen-rich heterocycles is presented,and the perspective of the newly constructed energetic backbones is summarized for the future design of advanced energetic materials.
基金National Key R&D Program of China under Grant No.2022YFC3003603。
文摘Seismic fragility analysis of three-tower cable-stayed bridges with three different structural systems,including rigid system(RS),floating system(FS),and passive energy dissipation system(PEDS),is conducted to study the effects of connection configurations on seismic responses and fragilities.Finite element models of bridges are established using OpenSees.A new ground motion screening method based on the statistical characteristic of the predominant period is proposed to avoid irregular behavior in the selection process of ground motions,and incremental dynamic analysis(IDA)is performed to develop components and systems fragility curves.The effects of damper failure on calculated results for PEDS are examined in terms of seismic response and fragility analysis.The results show that the bridge tower is the most affected component by different structural systems.For RS,the fragility of the middle tower is significantly higher than other components,and the bridge failure starts from the middle tower,exhibiting a characteristic of local failure.For FS and PEDS,the fragility of the edge tower is higher than the middle tower.The system fragility of RS is higher than FS and PEDS.Taking the failure of dampers into account is necessary to obtain reliable seismic capacity of cable-stayed bridges.
基金support of the company Hrvatske ceste,and the data contained in the Road Database(BCP)were used.
文摘Most decisions relating to bridge maintenance are founded on assessments that are based on visual inspections conducted by specially trained engineers,using procedures and aids defined in the management system.Visual inspection is the main tool for bridge condition assessment,and is therefore of crucial significance for planning periodic maintenance activities.Paper shall present the study aimed at harmonizing bridge assessment activities,which was conducted in early 2012 in company Hrvatske ceste-Croatian National Road Authority.Small RC bridges were chosen for this study,since visual inspection is usually only tool utilized for their assessment.Ratings obtained by inspection were analyzed using methods of mathematical statistics.The results point to weaknesses in the current assessment system,while the study itself constitutes a good basis for further improvement of management aids,manuals and procedures for bridge inspection.
基金National Natural Science Foundation of China(11572001,51478004)2021 Undergraduate Course Ideological and Political Demonstration Course-Theoretical Mechanics(108051360022XN569)2022 Great Innovation Project-Frame Bridge Structural Engineering Research(108051360022XN388)。
文摘In order to investigate the effect of vehicle-bridge coupling on the dynamic characteristics of the bridge,a steel-concrete composite beam suspension bridge is taken as the research object,and a three-dimensional spatial model of the bridge and a biaxial vehicle model of the vehicle are established,and then a vehicle-bridge coupling vibration system is constructed on the basis of the Nemak-βmethod,and the impact coefficients of each part of the bridge are obtained under different bridge deck unevenness and vehicle speed.The simulation results show that the bridge deck unevenness has the greatest influence on the vibration response of the bridge,and the bridge impact coefficient increases along with the increase in the level of bridge deck unevenness,and the impact coefficient of the main longitudinal girder and the secondary longitudinal girder achieves the maximum value when the level 4 unevenness is 0.328 and 0.314,respectively;when the vehicle speed is increased,the vibration response of the bridge increases and then decreases,and the impact coefficient of the bridge in the middle of the bridge at a speed of 60 km/h achieves the maximum value of 0.192.