期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Monitoring nearest neighbor queries with cache strategies 被引量:1
1
作者 PAN Peng LU Yan-sheng 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2007年第4期529-537,共9页
The problem of continuously monitoring multiple K-nearest neighbor (K-NN) queries with dynamic object and query dataset is valuable for many location-based applications. A practical method is to partition the data spa... The problem of continuously monitoring multiple K-nearest neighbor (K-NN) queries with dynamic object and query dataset is valuable for many location-based applications. A practical method is to partition the data space into grid cells, with both object and query table being indexed by this grid structure, while solving the problem by periodically joining cells of objects with queries having their influence regions intersecting the cells. In the worst case, all cells of objects will be accessed once. Object and query cache strategies are proposed to further reduce the I/O cost. With object cache strategy, queries remaining static in current processing cycle seldom need I/O cost, they can be returned quickly. The main I/O cost comes from moving queries, the query cache strategy is used to restrict their search-regions, which uses current results of queries in the main memory buffer. The queries can share not only the accessing of object pages, but also their influence regions. Theoretical analysis of the expected I/O cost is presented, with the I/O cost being about 40% that of the SEA-CNN method in the experiment results. 展开更多
关键词 k-nearest neighbors (K-NNs) Continuous query Object cache query cache
在线阅读 下载PDF
RecBERT:Semantic recommendation engine with large language model enhanced query segmentation for k-nearest neighbors ranking retrieval 被引量:1
2
作者 Richard Wu 《Intelligent and Converged Networks》 EI 2024年第1期42-52,共11页
The increasing amount of user traffic on Internet discussion forums has led to a huge amount of unstructured natural language data in the form of user comments.Most modern recommendation systems rely on manual tagging... The increasing amount of user traffic on Internet discussion forums has led to a huge amount of unstructured natural language data in the form of user comments.Most modern recommendation systems rely on manual tagging,relying on administrators to label the features of a class,or story,which a user comment corresponds to.Another common approach is to use pre-trained word embeddings to compare class descriptions for textual similarity,then use a distance metric such as cosine similarity or Euclidean distance to find top k neighbors.However,neither approach is able to fully utilize this user-generated unstructured natural language data,reducing the scope of these recommendation systems.This paper studies the application of domain adaptation on a transformer for the set of user comments to be indexed,and the use of simple contrastive learning for the sentence transformer fine-tuning process to generate meaningful semantic embeddings for the various user comments that apply to each class.In order to match a query containing content from multiple user comments belonging to the same class,the construction of a subquery channel for computing class-level similarity is proposed.This channel uses query segmentation of the aggregate query into subqueries,performing k-nearest neighbors(KNN)search on each individual subquery.RecBERT achieves state-of-the-art performance,outperforming other state-of-the-art models in accuracy,precision,recall,and F1 score for classifying comments between four and eight classes,respectively.RecBERT outperforms the most precise state-of-the-art model(distilRoBERTa)in precision by 6.97%for matching comments between eight classes. 展开更多
关键词 sentence transformer simple contrastive learning large language models query segmentation k-nearest neighbors
原文传递
k-Nearest Neighbor Query Processing Algorithms for a Query Region in Road Networks 被引量:7
3
作者 Hyeong-Il Kim Jae-Woo Chang 《Journal of Computer Science & Technology》 SCIE EI CSCD 2013年第4期585-596,共12页
Recent development of wireless communication technologies and the popularity of smart phones .are making location-based services (LBS) popular. However, requesting queries to LBS servers with users' exact locations... Recent development of wireless communication technologies and the popularity of smart phones .are making location-based services (LBS) popular. However, requesting queries to LBS servers with users' exact locations may threat the privacy of users. Therefore, there have been many researches on generating a cloaked query region for user privacy protection. Consequently, an efficient query processing algorithm for a query region is required. So, in this paper, we propose k-nearest neighbor query (k-NN) processing algorithms for a query region in road networks. To efficiently retrieve k-NN points of interest (POIs), we make use of the Island index. We also propose a method that generates an adaptive Island index to improve the query processing performance and storage usage. Finally, we show by our performance analysis that our k-NN query processing algorithms outperform the existing k-Range Nearest Neighbor (kRNN) algorithm in terms of network expansion cost and query processing time. 展开更多
关键词 island index k-nearest neighbor query processing scheme locatiombased service road network
原文传递
基于位置语义的增量近邻隐私保护研究
4
作者 张润莲 赵新红 武小年 《计算机应用研究》 CSCD 北大核心 2020年第8期2460-2463,共4页
针对LBS查询服务中构造的匿名区或选取的锚点仍位于敏感区域而导致的位置隐私泄露问题,提出一种基于位置语义的增量近邻隐私保护方法。该方法在客户端/服务器体系架构下,先根据用户的位置隐私需求计算语义安全匿名区,保护用户位置隐私;... 针对LBS查询服务中构造的匿名区或选取的锚点仍位于敏感区域而导致的位置隐私泄露问题,提出一种基于位置语义的增量近邻隐私保护方法。该方法在客户端/服务器体系架构下,先根据用户的位置隐私需求计算语义安全匿名区,保护用户位置隐私;再筛选语义安全匿名区中道路交叉点作为语义安全锚点,保证了选取锚点是真实存在的,且其语义安全性达到最大;最终客户端以锚点位置请求服务并获取查询结果。实验结果表明,该方法能够较好地保护用户位置的隐私,且查询准确率较高约90%,查询时间较低约60 ms。 展开更多
关键词 基于位置的服务 语义安全匿名区 锚点 增量近邻查询
在线阅读 下载PDF
路网环境下保护用户隐私的K近邻查询方法 被引量:3
5
作者 庄礼金 欧毓毅 凌捷 《计算机工程与设计》 北大核心 2017年第11期2914-2918,2924,共6页
针对用户位置隐私泄露问题,结合人口分布的路网环境提出一种位置隐私保护方法。用户依据自身的隐私需求和用户所在的路网环境生成用户匿名区,利用安全多方求和方法计算锚点并进行均衡增量近邻查询,使用户在获得精确的查询结果的同时,保... 针对用户位置隐私泄露问题,结合人口分布的路网环境提出一种位置隐私保护方法。用户依据自身的隐私需求和用户所在的路网环境生成用户匿名区,利用安全多方求和方法计算锚点并进行均衡增量近邻查询,使用户在获得精确的查询结果的同时,保护用户位置隐私。根据不同密度的路网环境进行大量实验,实验结果表明,该方法提高了位置隐私保护度和位置查询准确度。 展开更多
关键词 匿名区 安全多方求和 锚点 均衡增量近邻查询 查准率
在线阅读 下载PDF
无线体域网中隐私保护安全kNN查询协议 被引量:2
6
作者 张大方 徐鸿玥 李睿 《电子科技大学学报》 EI CAS CSCD 北大核心 2017年第5期722-727,共6页
针对无线体域网中的数据隐私问题,提出了一种适用于无线体域网的安全k NN查询协议,能够保护数据隐私与访问权限控制。该协议主要分3个部分,首先采用非对称矩阵向量积保值加密机制(ASPE)对数据和查询条件分别进行加密,从而保护数据的隐私... 针对无线体域网中的数据隐私问题,提出了一种适用于无线体域网的安全k NN查询协议,能够保护数据隐私与访问权限控制。该协议主要分3个部分,首先采用非对称矩阵向量积保值加密机制(ASPE)对数据和查询条件分别进行加密,从而保护数据的隐私;其次基于R树的桶划分索引结构BRtree,将数据划分到桶节点后采用剪枝策略去除不必要的查询来提高查询效率;最后基于数据层面的访问权限授予与回收机制,从ASPE加密密钥中分解出权限密钥,通过可信第三方实现了访问权限控制和访问权限迁移。并在真实移动健康数据集上验证了该方案的有效性。 展开更多
关键词 权限控制 矩阵加密 安全k邻近查询 无线体域网
在线阅读 下载PDF
路网环境下基于不经意传输的LBS隐私保护方法 被引量:4
7
作者 周长利 蔡绍滨 +1 位作者 王田 马春光 《北京邮电大学学报》 EI CAS CSCD 北大核心 2017年第6期37-42,共6页
基于位置服务(LBS)中的隐私保护方法存在如下常见问题:重视用户端隐私保护而容易忽略LBS服务端的数据安全;隐私保护强度高的方法实用效率低;隐私保护方法大多面向欧氏空间提出,无法适用路网环境,查询准确率低.针对上述问题,基于不经意... 基于位置服务(LBS)中的隐私保护方法存在如下常见问题:重视用户端隐私保护而容易忽略LBS服务端的数据安全;隐私保护强度高的方法实用效率低;隐私保护方法大多面向欧氏空间提出,无法适用路网环境,查询准确率低.针对上述问题,基于不经意传输提出了一种LBS兴趣点查询服务中的隐私保护方法,在保护用户位置和查询内容隐私的同时确保LBS服务端数据安全,并能确保路网连续查询的效率和准确率.性能分析及实验结果表明,新方法具有较强的安全性和良好的工作效率. 展开更多
关键词 基于位置的服务 隐私保护 K近邻查询 服务端数据安全
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部