Marangoni convection and its influence on the mass transter in the liquid phase were investigated. Marangoni convection was visualized using laser Schlieren technique, Orderly polygonal convection patterns and random ...Marangoni convection and its influence on the mass transter in the liquid phase were investigated. Marangoni convection was visualized using laser Schlieren technique, Orderly polygonal convection patterns and random interfacial turbulence were observed. The effect of Marangoni convection on the mass transfer rate was studied by desorbing ethanol from aqneous solution in the falling film. The experimental results show that Marangoni convection can speed up the surface real and enhance the mass transfer rate in the liquid phase.The liquid mass transfer coefficient can be enhanced by as much as 3 folds. The corresponding empirical correlations are given in terms of the mass transfer enhancement factor. Furthermore, in considering the Marangoni effect, the conventional mass transfer correlation was modified, The differences between the values predicted by the correlation and the experimental data are within ±8.2% and the average difference is 4.2%.展开更多
By using a hybrid lattice-Boltzmann–finite-difference method(hybrid LBM–FDM method),three-dimensional simulations of solutal interfacial convection were conducted for the process of CO2absorption into ethanol.A self...By using a hybrid lattice-Boltzmann–finite-difference method(hybrid LBM–FDM method),three-dimensional simulations of solutal interfacial convection were conducted for the process of CO2absorption into ethanol.A self-renewal interface model is adopted as an interfacial perturbation model.The simulation results revealed some three-dimensional features of the induced interfacial convection,such as the development of diverging cellular flow and Rayleigh plume-like convection in liquid phase.The concentration distribution of the simulation result is validated and found to be in well agreement with the Schlieren visualization results qualitatively.Additionally,the mass transfer enhancements by interfacial convection were investigated via both simulation and experiment for the absorption process,and the mass transfer is shown to be enhanced by the interfacial convection by about two-fold comparing with that by diffusion.展开更多
This paper analyzes the correctly-expanded supersonic jet from a convergent-divergent axisymmetric nozzle by using numerical simulation of turbulent flow.And the calculated density distributions in this flow are compa...This paper analyzes the correctly-expanded supersonic jet from a convergent-divergent axisymmetric nozzle by using numerical simulation of turbulent flow.And the calculated density distributions in this flow are compared with the present experimental data using rainbow schlieren deflectometry.The value of the density from the experimental data agrees well with the results calculated by this simulation.Therefore,the present method of the measurement using rainbow schlieren deflectometry is useful for the measurement of the density of the correctly-expanded supersonic jet.展开更多
A single Dielectric Barrier Discharge(DBD) plasma actuator driven by Alternating Current(AC) power, capable of inducing a starting vortex and a wall jet in quiescent air, is suited for low-Reynolds-number flow control...A single Dielectric Barrier Discharge(DBD) plasma actuator driven by Alternating Current(AC) power, capable of inducing a starting vortex and a wall jet in quiescent air, is suited for low-Reynolds-number flow control. However, the starting vortex and the wall jet are usually observed after the plasma actuator has been operated for dozens of and hundreds of cycles of the voltage, respectively. The detail of the induced flow field at the initiation stage of the plasma actuator has rarely been addressed. At the initiation stage, a thin jet that provides the impetus for the entrainment of the induced flow at the beginning of the plasma actuation is first observed by using a high-accuracy phase-lock Schlieren technique and a high-speed Particle Image Velocimetry(PIV) system. This is the initial form of the momentum transfer from the plasma to the fluid.Then, an arched type jet is created by the plasma actuator. In addition, the whole development process of the induced flow field from the starting point of the thin jet to the quasi-steady stage of wall jet is presented for providing a comprehensive understanding of the plasma actuator and proposing a relevant enhancement of the numerical simulation model.展开更多
基金Supported by National Natural Science Foundation of China(No.20136010).
文摘Marangoni convection and its influence on the mass transter in the liquid phase were investigated. Marangoni convection was visualized using laser Schlieren technique, Orderly polygonal convection patterns and random interfacial turbulence were observed. The effect of Marangoni convection on the mass transfer rate was studied by desorbing ethanol from aqneous solution in the falling film. The experimental results show that Marangoni convection can speed up the surface real and enhance the mass transfer rate in the liquid phase.The liquid mass transfer coefficient can be enhanced by as much as 3 folds. The corresponding empirical correlations are given in terms of the mass transfer enhancement factor. Furthermore, in considering the Marangoni effect, the conventional mass transfer correlation was modified, The differences between the values predicted by the correlation and the experimental data are within ±8.2% and the average difference is 4.2%.
基金Supported by the National Natural Science Foundation of China(20736005)
文摘By using a hybrid lattice-Boltzmann–finite-difference method(hybrid LBM–FDM method),three-dimensional simulations of solutal interfacial convection were conducted for the process of CO2absorption into ethanol.A self-renewal interface model is adopted as an interfacial perturbation model.The simulation results revealed some three-dimensional features of the induced interfacial convection,such as the development of diverging cellular flow and Rayleigh plume-like convection in liquid phase.The concentration distribution of the simulation result is validated and found to be in well agreement with the Schlieren visualization results qualitatively.Additionally,the mass transfer enhancements by interfacial convection were investigated via both simulation and experiment for the absorption process,and the mass transfer is shown to be enhanced by the interfacial convection by about two-fold comparing with that by diffusion.
文摘This paper analyzes the correctly-expanded supersonic jet from a convergent-divergent axisymmetric nozzle by using numerical simulation of turbulent flow.And the calculated density distributions in this flow are compared with the present experimental data using rainbow schlieren deflectometry.The value of the density from the experimental data agrees well with the results calculated by this simulation.Therefore,the present method of the measurement using rainbow schlieren deflectometry is useful for the measurement of the density of the correctly-expanded supersonic jet.
基金financial support of the research project by the National University of Singaporesupport by the National Natural Science Foundation of China (No. 11902336)+2 种基金State Key Laboratory of Aerodynamics Foundation of China (Nos. SKLA2019020201 and JBKYC190103)CARDC Fundamental and Frontier Technology Research Fund (No. PJD20180144)China Scholarship Council。
文摘A single Dielectric Barrier Discharge(DBD) plasma actuator driven by Alternating Current(AC) power, capable of inducing a starting vortex and a wall jet in quiescent air, is suited for low-Reynolds-number flow control. However, the starting vortex and the wall jet are usually observed after the plasma actuator has been operated for dozens of and hundreds of cycles of the voltage, respectively. The detail of the induced flow field at the initiation stage of the plasma actuator has rarely been addressed. At the initiation stage, a thin jet that provides the impetus for the entrainment of the induced flow at the beginning of the plasma actuation is first observed by using a high-accuracy phase-lock Schlieren technique and a high-speed Particle Image Velocimetry(PIV) system. This is the initial form of the momentum transfer from the plasma to the fluid.Then, an arched type jet is created by the plasma actuator. In addition, the whole development process of the induced flow field from the starting point of the thin jet to the quasi-steady stage of wall jet is presented for providing a comprehensive understanding of the plasma actuator and proposing a relevant enhancement of the numerical simulation model.