期刊文献+
共找到10,031篇文章
< 1 2 250 >
每页显示 20 50 100
H_∞ Robust Fault-Tolerant Controller Design for an Autonomous Underwater Vehicle’s Navigation Control System 被引量:4
1
作者 程相勤 曲镜圆 +1 位作者 严浙平 边信黔 《Journal of Marine Science and Application》 2010年第1期87-92,共6页
In order to improve the security and reliability for autonomous underwater vehicle (AUV) navigation, an H∞ robust fault-tolerant controller was designed after analyzing variations in state-feedback gain Operating c... In order to improve the security and reliability for autonomous underwater vehicle (AUV) navigation, an H∞ robust fault-tolerant controller was designed after analyzing variations in state-feedback gain Operating conditions and the design method were then analyzed so that the control problem could be expressed as a mathematical optimization problem. This permitted the use of linear matrix inequalities (LMI) to solve for the Hv controller for the system. When considering different actuator failures, these conditions were then also mathematically expressed, allowing the H∞ robust controller to solve for these events and thus be fault-tolerant. Finally, simulation results showed that the H∞ robust fault-tolerant controller could provide precise AUV navigation control with strong robustness. 展开更多
关键词 AUV navigation control robust H∞ fault-tolerant control gain variations LMI
在线阅读 下载PDF
Output feedback based adaptive robust fault-tolerant control for a class of uncertain nonlinear systems 被引量:6
2
作者 Shreekant Gayaka Bin Yao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第1期38-51,共14页
An adaptive robust approach for actuator fault-tolerant control of a class of uncertain nonlinear systems is proposed.The two chief ways in which the system performance can degrade following an actuator-fault are unde... An adaptive robust approach for actuator fault-tolerant control of a class of uncertain nonlinear systems is proposed.The two chief ways in which the system performance can degrade following an actuator-fault are undesirable transients and unacceptably large steady-state tracking errors.Adaptive control based schemes can achieve good final tracking accuracy in spite of change in system parameters following an actuator fault,and robust control based designs can achieve guaranteed transient response.However,neither adaptive control nor robust control based fault-tolerant designs can address both the issues associated with actuator faults.In the present work,an adaptive robust fault-tolerant control scheme is claimed to solve both the problems,as it seamlessly integrates adaptive and robust control design techniques.Comparative simulation studies are performed using a nonlinear hypersonic aircraft model to show the effectiveness of the proposed scheme over a robust adaptive control based faulttolerant scheme. 展开更多
关键词 fault-tolerant system actuator fault adaptive control robust control.
在线阅读 下载PDF
Robust fault-tolerant controller design for linear time-invariant systems with actuator failures:an indirect adaptive method 被引量:7
3
作者 Xiaozheng JIN Guanghong YANG Yanping LI 《控制理论与应用(英文版)》 EI 2010年第4期471-478,共8页
In this paper,indirect adaptive state feedback control schemes are developed to solve the robust fault-tolerant control (FTC) design problem of actuator fault and perturbation compensations for linear time-invariant... In this paper,indirect adaptive state feedback control schemes are developed to solve the robust fault-tolerant control (FTC) design problem of actuator fault and perturbation compensations for linear time-invariant systems.A more general and practical model of actuator faults is presented.While both eventual faults on actuators and perturbations are unknown,the adaptive schemes are addressed to estimate the lower and upper bounds of actuator-stuck faults and perturbations online,as well as to estimate control effectiveness on actuators.Thus,on the basis of the information from adaptive schemes,an adaptive robust state feed-back controller is designed to compensate the effects of faults and perturbations automatically.According to Lyapunov stability theory,it is shown that the robust adaptive closed-loop systems can be ensured to be asymptotically stable under the influence of actuator faults and bounded perturbations.An example is provided to further illustrate the fault compensation effectiveness. 展开更多
关键词 fault-tolerant control Actuator failures Adaptive robust control Asymptotic stability
在线阅读 下载PDF
Research on robust fault-tolerant control for networked control system with packet dropout 被引量:50
4
作者 Huo Zhihong Fang Huajing 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第1期76-82,共7页
A kind of networked control system with network-induced delay and packet dropout, modeled on asynchronous dynamical systems was tested, and the integrity design of the networked control system with sensors failures an... A kind of networked control system with network-induced delay and packet dropout, modeled on asynchronous dynamical systems was tested, and the integrity design of the networked control system with sensors failures and actuators failures was analyzed using hybrid systems technique based on the robust fault-tolerant control theory. The parametric expression of controller is given based on the feasible solution of linear matrix inequality. The simulation results are provided on the basis of detailed theoretical analysis, which further demonstrate the validity of the proposed schema. 展开更多
关键词 Networked control system (NCS) fault-tolerant control (FTC) Asynchronous dynamical systems (ADS) Integrity design Packet dropout Time delay
在线阅读 下载PDF
New robust fault-tolerant controller for self-repairing flight control systems 被引量:2
5
作者 Zhang Ren Wei Wang Zhen Shen 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第1期77-82,共6页
A new robust fault-tolerant controller scheme integrating a main controller and a compensator for the self-repairing flight control system is discussed.The main controller is designed for high performance of the origi... A new robust fault-tolerant controller scheme integrating a main controller and a compensator for the self-repairing flight control system is discussed.The main controller is designed for high performance of the original faultless system.The compensating controller can be seen as a standalone loop added to the system to compensate the effects of fault guaranteeing the stability of the system.A design method is proposed using nonlinear dynamic inverse control as the main controller and nonlinear extended state observer-based compensator.The stability of the whole closed-loop system is analyzed.Feasibility and validity of the new controller is demonstrated with an aircraft simulation example. 展开更多
关键词 robust control self-repairing flight control nonlinear dynamic control extended state observer compensator.
在线阅读 下载PDF
Robust Fault-Tolerant Control for Longitudinal Dynamics of Aircraft with Input Saturation 被引量:2
6
作者 Yang Qingyun Chen Mou 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2016年第3期319-328,共10页
A robust fault-tolerant control scheme is proposed for the longitudinal dynamics of an aircraft with input saturation,using the anti-windup method and the fault detection observer technology.To estimate the system fau... A robust fault-tolerant control scheme is proposed for the longitudinal dynamics of an aircraft with input saturation,using the anti-windup method and the fault detection observer technology.To estimate the system fault,a detection observer is designed for the longitudinal dynamics,and a fault-tolerant control law is developed to compensate for the fault effects of the longitudinal dynamics.Then,an anti-windup compensator is augmented into the fault-tolerant control law to eliminate the effect of input saturation.Using linear matrix inequality(LMI)technology,the detection observer based fault-tolerant controller is designed to ensure the stability of the closed-loop system and the convergence of the detection observer.Finally,the developed robust fault-tolerant control scheme is applied to the longitudinal model of an aircraft and simulation results are presented to illustrate the effectiveness of the proposed control scheme. 展开更多
关键词 longitudinal dynamics input saturation detection observer fault-tolerant control aircrafts
在线阅读 下载PDF
Event-triggered mechanism based robust fault-tolerant control for networked wind energy conversion system 被引量:1
7
作者 Zhihong Huo Chang Xu 《Global Energy Interconnection》 EI CAS CSCD 2022年第1期55-65,共11页
In this paper,a novel robust fault-tolerant control scheme based on event-triggered communication mechanism for a variable-speed wind energy conversion system(WECS)with sensor and actuator failures is proposed.The non... In this paper,a novel robust fault-tolerant control scheme based on event-triggered communication mechanism for a variable-speed wind energy conversion system(WECS)with sensor and actuator failures is proposed.The nonlinear WECS with event-triggered mechanism is modeled based on the Takagi-Sugeno(T-S)fuzzy model.By Lyapunov stability theory,the parameter expression of the proposed robust fault-tolerant controller with event-triggered mechanisms is proposed based on a feasible solution of linear matrix inequalities.Compared with the existing WECS fault-tolerant control methods,the proposed scheme significantly reduces the pressure of network packet transmission and improves the robustness and reliability of the WECS.Considering a doubly-fed variable speed constant frequency wind turbine,the eventtriggered mechanism based fault-tolerant control for WECS is analyzed considering system model uncertainty.Numerical simulation results demonstrate that the proposed scheme is feasible and effective. 展开更多
关键词 Event-triggered mechanism(ETM) Wind energy conversion system(WECS) fault-tolerant control(FTC) Takagi-sugeno(T-S)fuzzy model
在线阅读 下载PDF
Robust fault-tolerant control for quadrotor UAVs with parameter uncertainties and actuator faults
8
作者 Hao Liu Yuying Guo +1 位作者 Youmin Zhang Bin Jiang 《Control Theory and Technology》 EI CSCD 2024年第4期581-595,共15页
In this paper,a novel robust composite sliding mode controller(RCSMC)is proposed to accommodate actuator faults for a quadrotor UAV subject to unknown disturbances.The closed-loop system is divided into two parts:the ... In this paper,a novel robust composite sliding mode controller(RCSMC)is proposed to accommodate actuator faults for a quadrotor UAV subject to unknown disturbances.The closed-loop system is divided into two parts:the nominal system without disturbances which is controlled by the designed baseline controller,and the equivalent total disturbances including parameter uncertainties and actuator faults,which is estimated by the developed adaptive finite-time extended state observer(AFTESO).The estimated total disturbances are rejected by RCSMC and the asymptotic stability of flight control system is guaranteed.The proposed method is verified through numerical simulations. 展开更多
关键词 Actuator fault Model uncertainty Adaptive finite-time extended state observer(AFTESO) fault-tolerant control robust control Quadrotor UAV
原文传递
Robust Backstepping Control of a Quadrotor Unmanned Aerial Vehicle under Colored Noises
9
作者 Mehmet Karahan 《Computers, Materials & Continua》 SCIE EI 2025年第1期777-798,共22页
Advances in software and hardware technologies have facilitated the production of quadrotor unmanned aerial vehicles(UAVs).Nowadays,people actively use quadrotor UAVs in essential missions such as search and rescue,co... Advances in software and hardware technologies have facilitated the production of quadrotor unmanned aerial vehicles(UAVs).Nowadays,people actively use quadrotor UAVs in essential missions such as search and rescue,counter-terrorism,firefighting,surveillance,and cargo transportation.While performing these tasks,quadrotors must operate in noisy environments.Therefore,a robust controller design that can control the altitude and attitude of the quadrotor in noisy environments is of great importance.Many researchers have focused only on white Gaussian noise in their studies,whereas researchers need to consider the effects of all colored noises during the operation of the quadrotor.This study aims to design a robust controller that is resistant to all colored noises.Firstly,a nonlinear quadrotormodel was created with MATLAB.Then,a backstepping controller resistant to colored noises was designed.Thedesigned backstepping controller was tested under Gaussian white,pink,brown,blue,and purple noises.PID and Lyapunov-based controller designswere also carried out,and their time responses(rise time,overshoot,settling time)were compared with those of the backstepping controller.In the simulations,time was in seconds,altitude was in meters,and roll,pitch,and yaw references were in radians.Rise and settling time values were in seconds,and overshoot value was in percent.When the obtained values are examined,simulations prove that the proposed backstepping controller has the least overshoot and the shortest settling time under all noise types. 展开更多
关键词 Backstepping control colored noises Gaussian noise Lyapunov stability QUADROTOR robustNESS PID control
在线阅读 下载PDF
A finite-time fuzzy adaptive output-feedback fault-tolerant control for underactuated wheeled mobile robots systems 被引量:1
10
作者 Pingfan Liu Shaocheng Tong 《Journal of Automation and Intelligence》 2024年第2期111-118,共8页
This paper investigates the adaptive fuzzy finite-time output-feedback fault-tolerant control (FTC) problemfor a class of nonlinear underactuated wheeled mobile robots (UWMRs) system with intermittent actuatorfaults. ... This paper investigates the adaptive fuzzy finite-time output-feedback fault-tolerant control (FTC) problemfor a class of nonlinear underactuated wheeled mobile robots (UWMRs) system with intermittent actuatorfaults. The UWMR system includes unknown nonlinear dynamics and immeasurable states. Fuzzy logic systems(FLSs) are utilized to work out immeasurable functions. Furthermore, with the support of the backsteppingcontrol technique and adaptive fuzzy state observer, a fuzzy adaptive finite-time output-feedback FTC scheme isdeveloped under the intermittent actuator faults. It is testifying the scheme can ensure the controlled nonlinearUWMRs is stable and the estimation errors are convergent. Finally, the comparison results and simulationvalidate the effectiveness of the proposed fuzzy adaptive finite-time FTC approach. 展开更多
关键词 Underactuated wheeled mobile robots system FINITE-TIME Fuzzy adaptive fault-tolerant control OUTPUT-FEEDBACK Intermittent actuator faults
在线阅读 下载PDF
Distributed stochastic model predictive control for energy dispatch with distributionally robust optimization
11
作者 Mengting LIN Bin LI C.C.ECATI 《Applied Mathematics and Mechanics(English Edition)》 2025年第2期323-340,共18页
A chance-constrained energy dispatch model based on the distributed stochastic model predictive control(DSMPC)approach for an islanded multi-microgrid system is proposed.An ambiguity set considering the inherent uncer... A chance-constrained energy dispatch model based on the distributed stochastic model predictive control(DSMPC)approach for an islanded multi-microgrid system is proposed.An ambiguity set considering the inherent uncertainties of renewable energy sources(RESs)is constructed without requiring the full distribution knowledge of the uncertainties.The power balance chance constraint is reformulated within the framework of the distributionally robust optimization(DRO)approach.With the exchange of information and energy flow,each microgrid can achieve its local supply-demand balance.Furthermore,the closed-loop stability and recursive feasibility of the proposed algorithm are proved.The comparative results with other DSMPC methods show that a trade-off between robustness and economy can be achieved. 展开更多
关键词 distributed stochastic model predictive control(DSMPC) distributionally robust optimization(DRO) islanded multi-microgrid energy dispatch strategy
在线阅读 下载PDF
Analysis of a uniform passive fault-tolerant control method for multicopters
12
作者 KE Chenxu CAI Kaiyuan QUAN Quan 《Journal of Systems Engineering and Electronics》 CSCD 2024年第6期1574-1582,共9页
For the multicopter with more than four rotors,the rotor fault information is unobservable,which limits the applica-tion of active fault-tolerant on multicopters.This paper applies an existing fault-tolerant control m... For the multicopter with more than four rotors,the rotor fault information is unobservable,which limits the applica-tion of active fault-tolerant on multicopters.This paper applies an existing fault-tolerant control method for quadcopter to multi-copter with more than four rotors.Without relying on rotor fault information,this method is able to stabilize the multicopter with multiple rotor failures,which is validated on the hexacopter and octocopter using the hardware-in-the-loop simulations.Addi-tionally,the hardware-in-the-loop simulations demonstrate that a more significant tilt angle in flight will inhibit the maximum tolera-ble number of rotor failures of a multicopter.The more signifi-cant aerodynamic drag moment will make it difficult for the mul-ticopter to regain altitude control after rotor failure. 展开更多
关键词 AUTONOMOUS dependable affordable control fault-tolerant control multicopter nonlinear system unmanned aerial vehicles
在线阅读 下载PDF
Tracking and Fault-Tolerant Controller Design for Uncertain Steer-by-Wire Systems Using Model Predictive Control
13
作者 Han Zhang Wentao Jiang +1 位作者 Wanzhong Zhao Yuanhao Li 《Chinese Journal of Mechanical Engineering》 CSCD 2024年第6期482-494,共13页
This study presents a tracking and fault-tolerant controller architecture for uncertain steer-by-wire(SbW)systems using model predictive control in the presence of actuator malfunction and the nonlinear properties of ... This study presents a tracking and fault-tolerant controller architecture for uncertain steer-by-wire(SbW)systems using model predictive control in the presence of actuator malfunction and the nonlinear properties of tire lateral stiffness coefficients.By changing the internal model,the model predictive control(MPC)technique was used to achieve optimal tracking performance under the actuator output limitation variation problem and uncertain system parameters.System parameters and state estimates were simultaneously provided by the fault detection and isolation modules to detect actuator failure using the coupling estimation approach.The estimation accuracy was further improved by considering the replacement errors as virtual noise,which was also estimated during the estimation process.Simulation and experimental results demonstrate that the proposed fault-tolerant control technique can identify motor faults and conduct fault-tolerant control based on fault identification,showing good front-wheel steering angle tracking performance under both normal and fault conditions. 展开更多
关键词 Fault detection fault-tolerant system Model predictive control Parameter estimation Steer-by-wire system
在线阅读 下载PDF
An LMI Method to Robust Iterative Learning Fault-tolerant Guaranteed Cost Control for Batch Processes 被引量:11
14
作者 王立敏 陈曦 高福荣 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2013年第4期401-411,共11页
Based on an equivalent two-dimensional Fornasini-Marchsini model for a batch process in industry, a closed-loop robust iterative learning fault-tolerant guaranteed cost control scheme is proposed for batch processes w... Based on an equivalent two-dimensional Fornasini-Marchsini model for a batch process in industry, a closed-loop robust iterative learning fault-tolerant guaranteed cost control scheme is proposed for batch processes with actuator failures. This paper introduces relevant concepts of the fault-tolerant guaranteed cost control and formulates the robust iterative learning reliable guaranteed cost controller (ILRGCC). A significant advantage is that the proposed ILRGCC design method can be used for on-line optimization against batch-to-batch process uncertainties to realize robust tracking of set-point trajectory in time and batch-to-batch sequences. For the convenience of implementation, only measured output errors of current and previous cycles are used to design a synthetic controller for iterative learning control, consisting of dynamic output feedback plus feed-forward control. The proposed controller can not only guarantee the closed-loop convergency along time and cycle sequences but also satisfy the H∞performance level and a cost function with upper bounds for all admissible uncertainties and any actuator failures. Sufficient conditions for the controller solution are derived in terms of linear matrix inequalities (LMIs), and design procedures, which formulate a convex optimization problem with LMI constraints, are presented. An example of injection molding is given to illustrate the effectiveness and advantages of the ILRGCC design approach. 展开更多
关键词 two-dimensional Fornasini-Marchsini model batch process iterative learning control linear matrix inequality fault-tolerant guaranteed cost control
在线阅读 下载PDF
Robust H-infinity fault-tolerant control for uncertain descriptor systems by dynamical compensators 被引量:7
15
作者 BingLIANG GuangrenDUAN 《控制理论与应用(英文版)》 EI 2004年第3期288-292,共5页
The problem of robust H-infinity fault-tolerant control against sensor failures for a class of uncertain descriptor systems via dynamical compensators is considered. Based on H-infinity theory in descriptor systems, a... The problem of robust H-infinity fault-tolerant control against sensor failures for a class of uncertain descriptor systems via dynamical compensators is considered. Based on H-infinity theory in descriptor systems, a sufficient condition for the existence of dynamical compensators with H-infinity fault-tolerant function is derived and expressions for the gain matrices in the compensators are presented. The dynamical compensator guarantees that the resultant colsed-loop system is admissible; furthermore, it maintains certain H-infinity norm performance in the normal condition as well as in the event of sensor failures and parameter uncertainties. A numerical example shows the effect of the proposed method. 展开更多
关键词 fault-tolerant control H-infinity control Uncertain descriptor systems Sensor failures
在线阅读 下载PDF
Robust fault-tolerant control for wing flutter under actuator failure 被引量:4
16
作者 Gao Mingzhou Cai Guoping 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2016年第4期1007-1017,共11页
Many control laws, such as optimal controller and classical controller, have seen their applications to suppressing the aeroelastic vibrations of the aeroelastic system. However, those control laws may not work effect... Many control laws, such as optimal controller and classical controller, have seen their applications to suppressing the aeroelastic vibrations of the aeroelastic system. However, those control laws may not work effectively if the aeroelastic system involves actuator faults. In the current study for wing flutter of reentry vehicle, the effect of actuator faults on wing flutter system is rarely considered and few of the fault-tolerant control problems are taken into account. In this paper, we use the radial basis function neural network and the finite-time H-infinity adaptive fault-tolerant control technique to deal with the flutter problem of wings, which is affected by actuator faults, actuator saturation, parameter uncertainties and external disturbances. The theory of this article includes the modeling of wing flutter and fault-tolerant controller design. The stability of the finite-time adaptive fault-tolerant controller is theoretically proved. Simulation results indicate that the designed fault-tolerant flutter controller can effectively deal with the faults in the flutter system and can promptly suppress the wing flutter as well. (C) 2016 Chinese Society of Aeronautics and Astronautics. Production and hosting by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license. 展开更多
关键词 Actuator fault Actuator saturation Aeroservoelasticity fault-tolerant control FLUTTER OBSERVER
原文传递
Robust H_∞ guaranteed cost satisfactory fault-tolerant control for discrete-time systems with quadratic D stabilizability 被引量:5
17
作者 Xiaodong Han Jiangong Liu +2 位作者 Dexiao Xie Dengfeng Zhang Zhiquan Wang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第3期496-502,共7页
The problem of robust H∞ guaranteed cost satisfactory fault-tolerant control with quadratic D stabilizability against actuator failures is investigated for a class of discrete-time systems with value-bounded uncertai... The problem of robust H∞ guaranteed cost satisfactory fault-tolerant control with quadratic D stabilizability against actuator failures is investigated for a class of discrete-time systems with value-bounded uncertainties existing in both the state and control input matrices.Based on a more practical and general model of actuator continuous gain failures,taking the transient property,robust behaviour on H∞ performance and quadratic cost performance requirements into consideration,sufficient conditions for the existence of satisfactory fault-tolerant controller are given and the effective design steps with constraints of multiple performance indices are provided.Meanwhile,the consistency of the regional pole index,H∞ norm-bound constraint and cost performance indices is set up for fault-tolerant control.A simulation example shows the effectiveness of the proposed method. 展开更多
关键词 fault-tolerant control actuator failures consistency theory quadratic D stabilizability.
在线阅读 下载PDF
Fault-tolerant control of linear uncertain systems using H∞ robust predictive control 被引量:2
18
作者 Chen Xueqin Geng Yunhai Zhang Yingchun Wang Feng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第3期571-577,共7页
The robust fault-tolerant control problem of linear uncertain systems is studied. It is shown that a solution for this problem can be obtained from a H∞ robust predictive controller (RMPC) by the method of linear m... The robust fault-tolerant control problem of linear uncertain systems is studied. It is shown that a solution for this problem can be obtained from a H∞ robust predictive controller (RMPC) by the method of linear matrix inequality (LMI). This approach has the advantages of both H∞ control and MPC: the robustness and ability to handle constraints explicitly. The robust closed-loop stability of the linear uncertain system with input and output constraints is proven under an actuator and sensor faults condition. Finally, satisfactory results of simulation experiments verify the validity of this algorithm. 展开更多
关键词 RMPC linear matrix inequality H∞ control fault-tolerant control.
在线阅读 下载PDF
Sliding Mode Robust Fault-Tolerant Control for Uncertain Systems with Time Delay 被引量:1
19
作者 杨蒲 倪江帆 +1 位作者 潘旭 郭瑞诚 《Journal of Shanghai Jiaotong university(Science)》 EI 2017年第2期240-246,共7页
Considering the modeling uncertainties and external disturbance, a kind of sliding mode robust H∞fault-tolerant control method for time delay system with actuator fault is proposed. The upper-bound of the uncertainti... Considering the modeling uncertainties and external disturbance, a kind of sliding mode robust H∞fault-tolerant control method for time delay system with actuator fault is proposed. The upper-bound of the uncertainties is considered as a known constant, while the upper-bound of the actuator fault is unknown. A sufficient condition for the existence of an integral sliding mode dynamics is given in terms of linear matrix inequality (LMI). A novel adaptive law is given to estimate the unknown upper-bound of faults. On this basis, a type of sliding mode robust H∞fault-tolerant control law is designed to guarantee the asymptotic stability and the H∞performance index of the system. Finally, the simulation on quad-rotor semi-physical platform demonstrates the reliability and validity of the method. © 2017, Shanghai Jiaotong University and Springer-Verlag Berlin Heidelberg. 展开更多
关键词 fault-tolerant control sliding mode control time delay robust H_∞
原文传递
Robust and Active Fault-tolerant Control for a Class of Nonlinear Uncertain Systems 被引量:1
20
作者 You-Qing Wang Dong-Hua Zhou Li-Heng Liu 《International Journal of Automation and computing》 EI 2006年第3期309-313,共5页
A novel integrated design strategy for robust fault diagnosis and fault-tolerant control (FTC) of a class of nonlinear uncertain systems is proposed. The uncertainties considered in this paper are more general than ... A novel integrated design strategy for robust fault diagnosis and fault-tolerant control (FTC) of a class of nonlinear uncertain systems is proposed. The uncertainties considered in this paper are more general than those in other existing works, and faults are described in a new formulation. It is proven that the states of a closed-loop system converge asymptotically to zero even if there are uncertainties and faults in a system. Simulation results on a simple pendulum are presented for illustration. 展开更多
关键词 Nonlinear UNCERTAINTY fault diagnosis fault-tolerant control (FTC).
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部