In fast Z-pinches,rise time of drive current plays an important role in development of magneto-Rayleigh–Taylor(MRT)instabilities.It is essential for applications of Z-pinch dynamic hohlraum(ZPDH),which could be used ...In fast Z-pinches,rise time of drive current plays an important role in development of magneto-Rayleigh–Taylor(MRT)instabilities.It is essential for applications of Z-pinch dynamic hohlraum(ZPDH),which could be used for driving inertial confinement fusion(ICF),to understand the scaling of rise time on MRTs.Therefore,a theoretical model for nonlinear development of MRTs is developed according to the numerical analysis.It is found from the model that the implosion distance L=r_(0)-r_(mc)determines the development of MRTs,where r_(0)is the initial radius and rmc is the position of the accelerating shell.The current rise timeτwould affect the MRT development because of its strong coupling with the r;.The amplitude of MRTs would increase with the rise time linearly if an implosion velocity is specified.The effects of the rise time on MRT,in addition,are studied by numerical simulation.The results are consistent with those of the theoretical model very well.Finally,the scaling of the rise time on amplitude of MRTs is obtained for a specified implosion velocity by the theoretical model and numerical simulations.展开更多
A two-dimensional, three-temperature radiation magneto-hydrodynamics model is applied to the investigation of evolutional trends in x-ray radiation power, energy, peak plasma temperature and density as functions of dr...A two-dimensional, three-temperature radiation magneto-hydrodynamics model is applied to the investigation of evolutional trends in x-ray radiation power, energy, peak plasma temperature and density as functions of drive current rise-time and initial load density distribution by using the typical experimental parameters of tungsten wire-array Z- pinch on the Qiangguang-I generator. The numerical results show that as the drive current rise-time is shortened, x-ray radiation peak power, energy, peak plasma density and peak ion temperature increase approximately linearly, but among them the x-ray radiation peak power increases more quickly. As the initial plasma density distribution in the radial direction becomes gradually flattened, the peak radiation power and the peak ion-temperature almost exponentially increase, while the radiation energy and the peak plasma density change only a little. The main effect of shortening drive current rise-time is to enhance compression of plasma, and the effect of flattening initial load density distribution in the radial direction is to raise the plasma temperature. Both of the approaches elevate the x-ray peak radiation power展开更多
Gas electron multiplier (GEM) detectors have been used in cosmic muon scattering tomography and neutron imaging over the last decade. In this work, a triple GEM device with an effective readout area of 10 cm × ...Gas electron multiplier (GEM) detectors have been used in cosmic muon scattering tomography and neutron imaging over the last decade. In this work, a triple GEM device with an effective readout area of 10 cm × 10 cm is developed, and a method of discriminating between cosmic muons and X-rays based on rise time is tested. The energy resolution of the GEM detector is tested by 55Fe ray source to prove the GEM detector has a good performance. Analysis of the complete signal-cycles allows us to get the rise time and pulse heights. The experiment result indicates that cosmic muons and X-rays can be discriminated with an appropriate rise time threshold.展开更多
Due to variable time for charge collection,energy resolution of nuclear detectors declines,especially compound semiconductor detectors like cadmium zinc telluride(CdZnTe) detector.To solve this problem,an analog rise-...Due to variable time for charge collection,energy resolution of nuclear detectors declines,especially compound semiconductor detectors like cadmium zinc telluride(CdZnTe) detector.To solve this problem,an analog rise-time discriminator based on charge comparison principle is designed.The reference charge signal after attenuation is compared with the deconvoluted and delayed current signal.It is found that the amplitude of delayed current signal is higher than that of the reference charge signal when rise time of the input signal is shorter than the discrimination time,thus generating gating signal and triggering DMCA(digital multi-channel analyzer) to receive the total integral charge signal.When rise time of the input signal is longer than discrimination time,DMCA remains inactivated and the corresponding total integral charge signal is abandoned.Test results show that combination of the designed rise-time discriminator and DMCA can reduce hole tailing of CdZnTe detector significantly.Energy resolution of the system is 0.98%@662 keV,and it is still excellent under high counting rates.展开更多
The electrostatic discharge(ESD)protection circuit widely exists in the input and output ports of CMOS digital circuits,and fast rising time electromagnetic pulse(FREMP)coupled into the device not only interacts with ...The electrostatic discharge(ESD)protection circuit widely exists in the input and output ports of CMOS digital circuits,and fast rising time electromagnetic pulse(FREMP)coupled into the device not only interacts with the CMOS circuit,but also acts on the protection circuit.This paper establishes a model of on-chip CMOS electrostatic discharge protection circuit and selects square pulse as the FREMP signals.Based on multiple physical parameter models,it depicts the distribution of the lattice temperature,current density,and electric field intensity inside the device.At the same time,this paper explores the changes of the internal devices in the circuit under the injection of fast rising time electromagnetic pulse and describes the relationship between the damage amplitude threshold and the pulse width.The results show that the ESD protection circuit has potential damage risk,and the injection of FREMP leads to irreversible heat loss inside the circuit.In addition,pulse signals with different attributes will change the damage threshold of the circuit.These results provide an important reference for further evaluation of the influence of electromagnetic environment on the chip,which is helpful to carry out the reliability enhancement research of ESD protection circuit.展开更多
The nanosecond(ns) pulsed nitrogen dielectric barrier discharge(DBD) is employed to enhance the hydrophilicity of polypropylene(PP) surface and improve its application effect.The discharge characteristics of the ns pu...The nanosecond(ns) pulsed nitrogen dielectric barrier discharge(DBD) is employed to enhance the hydrophilicity of polypropylene(PP) surface and improve its application effect.The discharge characteristics of the ns pulsed nitrogen DBD with different pulse rise times(from 50to 500 ns) are investigated by electrical and optical diagnostic methods and the discharge uniformity is quantitatively analyzed by image processing method.To characterize the surface hydrophilicity,the water contact angle(WCA) is measured,and the physical morphology and chemical composition of PP before and after modification are analyzed to explore the effect of plasma on PP surface.It is found that with increasing pulse rise time from 50 to 500 ns,DBD uniformity becomes worse,energy efficiency decreases from 20% to 10.8%,and electron density decrease from 6.6 × 10^(11)to 5.5 × 10^(11)cm^(-3).The tendency of electron temperature is characterized with the intensity ratio of N_(2)/N_(2)^(+)emission spectrum,which decreases from 17.4 to15.9 indicating the decreasing of T_(e) with increasing pulse rise time from 50 to 500 ns.The PP surface treated with 50 ns pulse rise time DBD has a lower WCA(~47°),while the WCA of PP treated with 100 to 500 ns pulse rise time DBD expands gradually(~50°–57°).According to the study of the fixed-point WCA values,the DBD-treated PP surface has superior uniformity under50 ns pulse rise time(3° variation) than under 300 ns pulse rise time(8° variation).After DBD treatment,the increased surface roughness from 2.0 to 9.8 nm and hydrophilic oxygencontaining groups on the surface,i.e.hydroxyl(-OH) and carbonyl(C=O) have played the significant role to improve the sample’s surface hydrophilicity.The short pulse voltage rise time enhances the reduced electric field strength(E/n) in the discharge space and improves the discharge uniformity,which makes relatively sufficient physical and chemical reactions have taken place on the PP surface,resulting in better treatment uniformity.展开更多
In this paper,the influence of voltage rising time on a pulsed-dc helium-air plasma at atmospheric pressure is numerically simulated.Simulation results show that as the voltage rising time increases from 10 ns to 30 n...In this paper,the influence of voltage rising time on a pulsed-dc helium-air plasma at atmospheric pressure is numerically simulated.Simulation results show that as the voltage rising time increases from 10 ns to 30 ns,there is a decrease in the discharge current,namely 0.052 A when the voltage rising time is 10 ns and 0.038 A when the voltage rising time is 30 ns.Additionally,a shorter voltage rising time results in a faster breakdown,a more rapidly rising current waveform,and a higher breakdown voltage.Furthermore,the basic parameters of the streamer discharge also increase with voltage rise rate,which is ascribed to the fact that more energetic electrons are produced in a shorter voltage rising time.Therefore,a pulsed-dc voltage with a short rising time is desirable for efficient production of nonequilibrium atmospheric pressure plasma discharge.展开更多
In this work,a new hybrid MPGD consisting of two GEM foils and a metallic mesh was proposed.Based on the simulation studies,this design can significantly reduce the rise time of signal and has a better performance in ...In this work,a new hybrid MPGD consisting of two GEM foils and a metallic mesh was proposed.Based on the simulation studies,this design can significantly reduce the rise time of signal and has a better performance in respect of particle identification compared with the triple GEM design.The gain with various voltages setting was computed in order to provide us references for future experiment.The simulation results also show that the time and space resolution compared to the triple GEM detector are also improved.The time and space resolution of hybrid detector with Ar/CO_2(70/30) and Ar/isobutane(95/5) were investigated for various drift electric field intensities.This new hybrid detector shows excellent potential for both fundamental research and imaging applications.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.11975057,11605013,11775023,and 11705013)。
文摘In fast Z-pinches,rise time of drive current plays an important role in development of magneto-Rayleigh–Taylor(MRT)instabilities.It is essential for applications of Z-pinch dynamic hohlraum(ZPDH),which could be used for driving inertial confinement fusion(ICF),to understand the scaling of rise time on MRTs.Therefore,a theoretical model for nonlinear development of MRTs is developed according to the numerical analysis.It is found from the model that the implosion distance L=r_(0)-r_(mc)determines the development of MRTs,where r_(0)is the initial radius and rmc is the position of the accelerating shell.The current rise timeτwould affect the MRT development because of its strong coupling with the r;.The amplitude of MRTs would increase with the rise time linearly if an implosion velocity is specified.The effects of the rise time on MRT,in addition,are studied by numerical simulation.The results are consistent with those of the theoretical model very well.Finally,the scaling of the rise time on amplitude of MRTs is obtained for a specified implosion velocity by the theoretical model and numerical simulations.
基金Project supported by the National Natural Science Foundation of China (Grant No 10035020).
文摘A two-dimensional, three-temperature radiation magneto-hydrodynamics model is applied to the investigation of evolutional trends in x-ray radiation power, energy, peak plasma temperature and density as functions of drive current rise-time and initial load density distribution by using the typical experimental parameters of tungsten wire-array Z- pinch on the Qiangguang-I generator. The numerical results show that as the drive current rise-time is shortened, x-ray radiation peak power, energy, peak plasma density and peak ion temperature increase approximately linearly, but among them the x-ray radiation peak power increases more quickly. As the initial plasma density distribution in the radial direction becomes gradually flattened, the peak radiation power and the peak ion-temperature almost exponentially increase, while the radiation energy and the peak plasma density change only a little. The main effect of shortening drive current rise-time is to enhance compression of plasma, and the effect of flattening initial load density distribution in the radial direction is to raise the plasma temperature. Both of the approaches elevate the x-ray peak radiation power
基金Supported by National Natural Science Foundation of China(11135002,11275235,11405077,11575073)
文摘Gas electron multiplier (GEM) detectors have been used in cosmic muon scattering tomography and neutron imaging over the last decade. In this work, a triple GEM device with an effective readout area of 10 cm × 10 cm is developed, and a method of discriminating between cosmic muons and X-rays based on rise time is tested. The energy resolution of the GEM detector is tested by 55Fe ray source to prove the GEM detector has a good performance. Analysis of the complete signal-cycles allows us to get the rise time and pulse heights. The experiment result indicates that cosmic muons and X-rays can be discriminated with an appropriate rise time threshold.
基金supported by the Natural Science Foundation of China(NSFC)(No.41474159)National High-tech R&D Program of China(863 Program)(Nos.2012AA061803 and 2014AA093403)Open Foundation of Applied Nuclear Techniques in Geosciences Key Laboratory of Sichuan Province(No.gnzds2014006)
文摘Due to variable time for charge collection,energy resolution of nuclear detectors declines,especially compound semiconductor detectors like cadmium zinc telluride(CdZnTe) detector.To solve this problem,an analog rise-time discriminator based on charge comparison principle is designed.The reference charge signal after attenuation is compared with the deconvoluted and delayed current signal.It is found that the amplitude of delayed current signal is higher than that of the reference charge signal when rise time of the input signal is shorter than the discrimination time,thus generating gating signal and triggering DMCA(digital multi-channel analyzer) to receive the total integral charge signal.When rise time of the input signal is longer than discrimination time,DMCA remains inactivated and the corresponding total integral charge signal is abandoned.Test results show that combination of the designed rise-time discriminator and DMCA can reduce hole tailing of CdZnTe detector significantly.Energy resolution of the system is 0.98%@662 keV,and it is still excellent under high counting rates.
基金National Natural Science Foundation of China(61974116)。
文摘The electrostatic discharge(ESD)protection circuit widely exists in the input and output ports of CMOS digital circuits,and fast rising time electromagnetic pulse(FREMP)coupled into the device not only interacts with the CMOS circuit,but also acts on the protection circuit.This paper establishes a model of on-chip CMOS electrostatic discharge protection circuit and selects square pulse as the FREMP signals.Based on multiple physical parameter models,it depicts the distribution of the lattice temperature,current density,and electric field intensity inside the device.At the same time,this paper explores the changes of the internal devices in the circuit under the injection of fast rising time electromagnetic pulse and describes the relationship between the damage amplitude threshold and the pulse width.The results show that the ESD protection circuit has potential damage risk,and the injection of FREMP leads to irreversible heat loss inside the circuit.In addition,pulse signals with different attributes will change the damage threshold of the circuit.These results provide an important reference for further evaluation of the influence of electromagnetic environment on the chip,which is helpful to carry out the reliability enhancement research of ESD protection circuit.
基金supported by National Natural Science Foundation of China (Nos. 52037004, 51777091 and52250410350)Postgraduate Research&Practice Innovation Program of Jiangsu Province (No.KYCX22_1314)。
文摘The nanosecond(ns) pulsed nitrogen dielectric barrier discharge(DBD) is employed to enhance the hydrophilicity of polypropylene(PP) surface and improve its application effect.The discharge characteristics of the ns pulsed nitrogen DBD with different pulse rise times(from 50to 500 ns) are investigated by electrical and optical diagnostic methods and the discharge uniformity is quantitatively analyzed by image processing method.To characterize the surface hydrophilicity,the water contact angle(WCA) is measured,and the physical morphology and chemical composition of PP before and after modification are analyzed to explore the effect of plasma on PP surface.It is found that with increasing pulse rise time from 50 to 500 ns,DBD uniformity becomes worse,energy efficiency decreases from 20% to 10.8%,and electron density decrease from 6.6 × 10^(11)to 5.5 × 10^(11)cm^(-3).The tendency of electron temperature is characterized with the intensity ratio of N_(2)/N_(2)^(+)emission spectrum,which decreases from 17.4 to15.9 indicating the decreasing of T_(e) with increasing pulse rise time from 50 to 500 ns.The PP surface treated with 50 ns pulse rise time DBD has a lower WCA(~47°),while the WCA of PP treated with 100 to 500 ns pulse rise time DBD expands gradually(~50°–57°).According to the study of the fixed-point WCA values,the DBD-treated PP surface has superior uniformity under50 ns pulse rise time(3° variation) than under 300 ns pulse rise time(8° variation).After DBD treatment,the increased surface roughness from 2.0 to 9.8 nm and hydrophilic oxygencontaining groups on the surface,i.e.hydroxyl(-OH) and carbonyl(C=O) have played the significant role to improve the sample’s surface hydrophilicity.The short pulse voltage rise time enhances the reduced electric field strength(E/n) in the discharge space and improves the discharge uniformity,which makes relatively sufficient physical and chemical reactions have taken place on the PP surface,resulting in better treatment uniformity.
基金supported by National Natural Science Foundation of China(NSFC) under Grant No.11465013the Natural Science Foundation of Jiangxi Province under Grant Nos.20151BAB212012 and 20161BAB201013part by the International Science and Technology Cooperation Program of China under Grant No.2015DFA61800
文摘In this paper,the influence of voltage rising time on a pulsed-dc helium-air plasma at atmospheric pressure is numerically simulated.Simulation results show that as the voltage rising time increases from 10 ns to 30 ns,there is a decrease in the discharge current,namely 0.052 A when the voltage rising time is 10 ns and 0.038 A when the voltage rising time is 30 ns.Additionally,a shorter voltage rising time results in a faster breakdown,a more rapidly rising current waveform,and a higher breakdown voltage.Furthermore,the basic parameters of the streamer discharge also increase with voltage rise rate,which is ascribed to the fact that more energetic electrons are produced in a shorter voltage rising time.Therefore,a pulsed-dc voltage with a short rising time is desirable for efficient production of nonequilibrium atmospheric pressure plasma discharge.
基金Supported by the National Natural Science Foundation of China(Nos.11135002,11275235,11405077 and 11575073)
文摘In this work,a new hybrid MPGD consisting of two GEM foils and a metallic mesh was proposed.Based on the simulation studies,this design can significantly reduce the rise time of signal and has a better performance in respect of particle identification compared with the triple GEM design.The gain with various voltages setting was computed in order to provide us references for future experiment.The simulation results also show that the time and space resolution compared to the triple GEM detector are also improved.The time and space resolution of hybrid detector with Ar/CO_2(70/30) and Ar/isobutane(95/5) were investigated for various drift electric field intensities.This new hybrid detector shows excellent potential for both fundamental research and imaging applications.