期刊文献+
共找到10,038篇文章
< 1 2 250 >
每页显示 20 50 100
Design of a compact beam transport system for laser-driven proton therapy
1
作者 Yangfan LI Xiaofei SHEN +1 位作者 Yilin YAO Bin QIAO 《Plasma Science and Technology》 2025年第1期1-6,共6页
We put forward a new design of a compact beam transport system for intense laser-driven proton therapy,where instead of using conventional pulsed solenoids,our design relies on a helical coil irradiated by a nanosecon... We put forward a new design of a compact beam transport system for intense laser-driven proton therapy,where instead of using conventional pulsed solenoids,our design relies on a helical coil irradiated by a nanosecond laser pulse to generate strong magnetic fields for focusing protons.A pair of dipole magnets and apertures are employed to further filter protons with large divergences and low energies.Our numerical studies combine particle-in-cell simulations for laser-plasma interaction to generate high-energy monoenergetic proton beams,finite element analysis for evaluating the magnetic field distribution inside the coil,and MonteCarlo simulations for beam transport and energy deposition.Our results show that with this design,a spread-out Bragg peak in a range of several centimeters to a deep-seated tumor with a dose of approximately 16.5 cGy and fluctuation around 2% can be achieved.The instantaneous dose rate reaches up to 10^(9)Gy/s,holding the potential for future FLASH radiotherapy research. 展开更多
关键词 intense laser-plasma interaction laser-driven ion acceleration laser-driven proton acceleration PARTICLE-IN-CELL proton radiotherapy
在线阅读 下载PDF
Boosting high-performance in Zr-rich side protonic solid oxide electrolysis cells by optimizing functional interlayer
2
作者 Chunmei Tang Ning Wang +3 位作者 Sho Kitano Hiroki Habazaki Yoshitaka Aoki Siyu Ye 《Green Energy & Environment》 SCIE EI CAS 2025年第1期150-160,共11页
Protonic solid oxide electrolysis cells(P-SOECs)are a promising technology for water electrolysis to produce green hydrogen.However,there are still challenges related key materials and anode/electrolyte interface.P-SO... Protonic solid oxide electrolysis cells(P-SOECs)are a promising technology for water electrolysis to produce green hydrogen.However,there are still challenges related key materials and anode/electrolyte interface.P-SOECs with Zr-rich electrolyte,called Zr-rich side P-SOECs,possess high thermodynamically stability under high steam concentrations but the large reaction resistances and the current leakage,thus the inferior performances.In this study,an efficient functional interlayer Ba_(0.95)La_(0.05)Fe_(0.8)Zn_(0.2)O_(3-δ)(BLFZ)in-between the anode and the electrolyte is developed.The electrochemical performances of P-SOECs are greatly enhanced because the BLFZ can greatly increase the interface contact,boost anode reaction kinetics,and increase proton injection into electrolyte.As a result,the P-SOEC yields high current density of 0.83 A cm^(-2) at 600℃ in 1.3 Vamong all the reported Zr-rich side cells.This work not only offers an efficient functional interlayer for P-SOECs but also holds the potential to achieve P-SOECs with high performances and long-term stability. 展开更多
关键词 Functional interlayer Zr-rich side electrolyte protonic solid oxide electrolysis cells Current density Faradaic efficiency
在线阅读 下载PDF
Proton pump inhibitors and all-cause mortality risk among cancer patients
3
作者 Arunkumar Krishnan Carolin Victoria Schneider Declan Walsh 《World Journal of Clinical Oncology》 2025年第1期34-42,共9页
BACKGROUND Proton pump inhibitors(PPIs)are widely used,including among cancer patients,to manage gastroesophageal reflux and other gastric acid-related disorders.Recent evidence suggests associations between long-term... BACKGROUND Proton pump inhibitors(PPIs)are widely used,including among cancer patients,to manage gastroesophageal reflux and other gastric acid-related disorders.Recent evidence suggests associations between long-term PPI use and higher risks for various adverse health outcomes,including greater mortality.AIM To investigate the association between PPI use and all-cause mortality among cancer patients by a comprehensive analysis after adjustment for various confounders and a robust methodological approach to minimize bias.METHODS This retrospective cohort study used data from the TriNetX research network,with electronic health records from multiple healthcare organizations.The study employed a new-user,active comparator design,which compared newly treated PPI users with non-users and newly treated histamine2 receptor antagonists(H2RA)users among adult cancer patients.Newly prescribed PPIs(esomeprazole,lansoprazole,omeprazole,pantoprazole,or rabeprazole)users were compared to non-users or newly prescribed H2RAs(cimetidine,famotidine,nizatidine,or ranitidine)users.The primary outcome was all-cause mortality.Each patient in the main group was matched to a patient in the control group using 1:1 propensity score matching to reduce confounding effects.Multivariable Cox regression models were used to estimate hazard ratios(HRs)and 95% confidence interval(CI).RESULTS During the follow-up period(median 5.4±1.8 years for PPI users and 6.5±1.0 years for non-users),PPI users demonstrated a higher all-cause mortality rate than non-users after 1 year,2 years,and at the end of follow up(HRs:2.34-2.72).Compared with H2RA users,PPI users demonstrated a higher rate of all-cause mortality HR:1.51(95%CI:1.41-1.69).Similar results were observed across sensitivity analyses by excluding deaths from the first 9 months and 1-year post-exposure,confirming the robustness of these findings.In a sensitivity analysis,we analyzed all-cause mortality outcomes between former PPI users and individuals who have never used PPIs,providing insights into the long-term effects of past PPI use.In addition,at 1-year follow-up,the analysis revealed a significant difference in mortality rates between former PPI users and non-users(HR:1.84;95%CI:1.82-1.96).CONCLUSION PPI use among cancer patients was associated with a higher risk of all-cause mortality compared to non-users or H2RA users.These findings emphasize the need for cautious use of PPIs in cancer patients and suggest that alternative treatments should be considered when clinically feasible.However,further studies are needed to corroborate our findings,given the significant adverse outcomes in cancer patients. 展开更多
关键词 All-cause mortality Cancer Histamine-2 receptor antagonists MORTALITY MALIGNANCY proton pump inhibitors CARCINOMA OUTCOME
在线阅读 下载PDF
Tackling the proton limit under industrial electrochemical CO_(2)reduction by a local proton shuttle
4
作者 Tianye Shao Kang Yang +4 位作者 Sheng Chen Min Zheng Ying Zhang Qiang Li Jingjing Duan 《Carbon Energy》 SCIE EI CAS CSCD 2024年第4期233-243,共11页
Industrial CO_(2)electroreduction has received tremendous attentions for resolution of the current energy and environmental crisis,but its performance is greatly limited by mass transport at high current density.In th... Industrial CO_(2)electroreduction has received tremendous attentions for resolution of the current energy and environmental crisis,but its performance is greatly limited by mass transport at high current density.In this work,an ion‐polymer‐modified gas‐diffusion electrode is used to tackle this proton limit.It is found that gas diffusion electrode‐Nafion shows an impressive performance of 75.2%Faradaic efficiency in multicarbon products at an industrial current density of 1.16 A/cm^(2).Significantly,in‐depth electrochemical characterizations combined with in situ Raman have been used to determine the full workflow of protons,and it is found that HCO_(3)^(−)acts as a proton pool near the reaction environment,and HCO_(3)^(−)and H_(3)O^(+)are local proton donors that interact with the proton shuttle−SO_(3)^(−)from Nafion.With rich proton hopping sites that decrease the activation energy,a“Grotthuss”mechanism for proton transport in the above system has been identified rather than the“Vehicle”mechanism with a higher energy barrier.Therefore,this work could be very useful in terms of the achievement of industrial CO_(2)reduction fundamentally and practically. 展开更多
关键词 industrial CO_(2)electroreduction proton donor proton pool proton shuttle proton transport mechanism
在线阅读 下载PDF
Inhibition of the microglial voltage-gated proton channel 1 channel ameliorates diabetes-associated cognitive dysfunction by regulating axon demyelination
5
作者 Chun-Yu Li Shu-Jun Zhang +3 位作者 Jia-Lu Xu Yan Yang Zhi-Xuan Zeng De-Lin Ma 《World Journal of Psychiatry》 2025年第3期288-301,共14页
BACKGROUND Diabetes is associated with increased cognitive decline and dementia due to the loss of myelinated nerve fiber function,which is linked to oligodendrocyte dysfunction.The voltage-gated proton channel 1(Hv1)... BACKGROUND Diabetes is associated with increased cognitive decline and dementia due to the loss of myelinated nerve fiber function,which is linked to oligodendrocyte dysfunction.The voltage-gated proton channel 1(Hv1)is important for the cellular proton extrusion machinery.However,its role in regulating diabetesinduced cognitive dysfunction is unclear.AIM To investigate the role of Hv1 in cognitive impairment induced by diabetes and its potential mechanisms,focusing on neuroinflammation,oligodendrocyte apoptosis,and axonal demyelination.METHODS A diabetes model was established by administering a high-fat diet and streptozotocin injections in mice.Hv1 knockout(KO)and wild-type mice were used to evaluate cognitive function via behavioral tests and neuroinflammation using immunofluorescence.Oligodendrocyte apoptosis was assessed with the terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick-end labeling assay, and axonal demyelination wasanalyzed using electron microscopy.RESULTSHv1 expression was significantly increased in the corpus callosum of diabetic mice. Hv1 KO alleviated cognitiveimpairment, reduced oligodendrocyte apoptosis, and decreased the expression of inflammatory factors, includinginterleukin-1 and tumor necrosis factor-α, in diabetic mice. Electron microscopy revealed a reduction in myelinthickness and an increased g-ratio in diabetic mice, which were reversed by Hv1 KO.CONCLUSIONHv1 plays a role in diabetes-induced cognitive dysfunction by modulating neuroinflammation and myelinintegrity. Hv1 KO demonstrates therapeutic potential in mitigating diabetes-related cognitive decline andassociated complications. 展开更多
关键词 Diabetes Cognitive dysfunction Voltage-gated proton channel 1 Neuroinflammation Myelin regeneration
在线阅读 下载PDF
Precision-Engineered Construction of Proton-Conducting Metal-Organic Frameworks
6
作者 Liyu Zhu Hongbin Yang +2 位作者 Ting Xu Feng Shen Chuanling Si 《Nano-Micro Letters》 2025年第4期230-274,共45页
Proton-conducting materials have attracted considerable interest because of their extensive application in energy storage and conversion devices.Among them,metal-organic frameworks(MOFs)present tremendous development ... Proton-conducting materials have attracted considerable interest because of their extensive application in energy storage and conversion devices.Among them,metal-organic frameworks(MOFs)present tremendous development potential and possibilities for constructing novel advanced proton conductors due to their special advantages in crystallinity,designability,and porosity.In particular,several special design strategies for the structure of MOFs have opened new doors for the advancement of MOF proton conductors,such as charged network construction,ligand functionalization,metal-center manipulation,defective engineering,vip molecule incorporation,and pore-space manipulation.With the implementation of these strategies,proton-conducting MOFs have developed significantly and profoundly within the last decade.Therefore,in this review,we critically discuss and analyze the fundamental principles,design strategies,and implementation methods targeted at improving the proton conductivity of MOFs through representative examples.Besides,the structural features,the proton conduction mechanism and the behavior of MOFs are discussed thoroughly and meticulously.Future endeavors are also proposed to address the challenges of proton-conducting MOFs in practical research.We sincerely expect that this review will bring guidance and inspiration for the design of proton-conducting MOFs and further motivate the research enthusiasm for novel proton-conducting materials. 展开更多
关键词 MOFS proton conduction Porous materials Fuel cells
在线阅读 下载PDF
Pulsed dynamic electrolysis enhanced PEMWE hydrogen production:Revealing the effects of pulsed electric fields on protons mass transport and hydrogen bubble escape
7
作者 Xuewei Zhang Wei Zhou +13 位作者 Yuming Huang Liang Xie Tonghui Li Huimin Kang Lijie Wang Yang Yu Yani Ding Junfeng Li Jiaxiang Chen Miaoting Sun Shuo Cheng Xiaoxiao Meng Jihui Gao Guangbo Zhao 《Journal of Energy Chemistry》 2025年第1期201-214,共14页
The transition of hydrogen sourcing from carbon-intensive to water-based methodologies is underway,with renewable energy-powered proton exchange membrane water electrolysis(PEMWE)emerging as the preeminent pathway for... The transition of hydrogen sourcing from carbon-intensive to water-based methodologies is underway,with renewable energy-powered proton exchange membrane water electrolysis(PEMWE)emerging as the preeminent pathway for hydrogen production.Despite remarkable advancements in this field,confronting the sluggish electrochemical kinetics and inherent high-energy consumption arising from deteriorated mass transport within PEMWE systems remains a formidable obstacle.This impediment stems primarily from the hindered protons mass transfer and the untimely hydrogen bubbles detachment.To address these challenges,we harness the inherent variability of electrical energy and introduce an innovative pulsed dynamic water electrolysis system.Compared to constant voltage electrolysis(hydrogen production rate:51.6 m L h^(-1),energy consumption:5.37 kWh Nm-^(3)H_(2)),this strategy(hydrogen production rate:66 m L h^(-1),energy consumption:3.83 kWh Nm-^(3)H_(2))increases the hydrogen production rate by approximately 27%and reduces the energy consumption by about 28%.Furthermore,we demonstrate the practicality of this system by integrating it with an off-grid photovoltaic(PV)system designed for outdoor operation,successfully driving a hydrogen production current of up to 500 mA under an average voltage of approximately 2 V.The combined results of in-situ characterization and finite element analysis reveal the performance enhancement mechanism:pulsed dynamic electrolysis(PDE)dramatically accelerates the enrichment of protons at the electrode/solution interface and facilitates the release of bubbles on the electrode surface.As such,PDE-enhanced PEMWE represents a synergistic advancement,concurrently enhancing both the hydrogen generation reaction and associated transport processes.This promising technology not only redefines the landscape of electrolysis-based hydrogen production but also holds immense potential for broadening its application across a diverse spectrum of electrocatalytic endeavors. 展开更多
关键词 Water electrolysis Hydrogen production Pulsed dynamic electrolysis proton exchange membrane water electrolysis Mass transport
在线阅读 下载PDF
Tailoring BaCe_(0.7)Zr_(0.1)(Dy_(0.1)|Yb_(0.1))_(0.2)O_(3-δ)electrolyte through strategic Cu doping for low temperature proton conducting fuel cells:Envisioned theoretically and experimentally
8
作者 Zaheer Ud Din Babar Muhammad Bilal Hanif +3 位作者 Yan'an Li Wan-Ting Wang Hanchen Tian Cheng-Xin Li 《Journal of Energy Chemistry》 2025年第2期692-701,I0015,共11页
This study addresses the challenge of high sintering temperatures in proton-conducting fuel cells(PCFCs)with BaCeO_(3)-doped electrolytes.We demonstrate that 1 mol%copper(Cu)doping at the B-site of BaCe_(0.7)Zr_(0.1)(... This study addresses the challenge of high sintering temperatures in proton-conducting fuel cells(PCFCs)with BaCeO_(3)-doped electrolytes.We demonstrate that 1 mol%copper(Cu)doping at the B-site of BaCe_(0.7)Zr_(0.1)(Dy_(0.1)|Yb_(0.1))_(0.2)O_(3-δ)(BCZDYb)improves sintering behavior,enabling densification at1400℃.However,Cu doping disrupts stoichiometry,creating barium vacancies and reducing protonaccepting cations,affecting overall conductivity.This mechanism is confirmed through density functional theory(DFT)calculations and various experimental techniques,including crystal structure analysis using X-ray diffraction(XRD)and morphology and elemental analysis via field emission scanning electron microscopy(FESEM)and energy-dispersive X-ray spectroscopy(EDS).Electrochemical measurements are performed using the electrochemical impedance spectroscopy(EIS).The ionic conductivity of1 mol%Cu-doped BCZDYb(BCZDYb-1)is 1.49×10^(-2)S cm^(-1)at 650℃,which is~3.58 times higher than that of BCZDYb sintered at 1200℃.The BCZDYb-1 exhibits~16 times higher grain boundary conductivity when sintered at 1400℃,compared to undoped BCZDYb.The single cell employing BCZDYb-1 as the electrolyte achieved a power density of~606 mW cm^(-2)at 550℃.These results indicate that a controlled amount of Cu doping can enhance densification while maintaining high ionic co nductivity,making it suitable for practical applications in PCFCs operating at lower temperatures. 展开更多
关键词 proton conducting fuel cells(PCFCs) Sintering DENSIFICATION Cu-doping Electrical conductivity BaCe_(0.7)Z_(0.1)(Dy_(0.1)/Yb_(0.1))_(0.2)O_(3-δ)(BCZDYb)
在线阅读 下载PDF
New Strategy for Boosting Cathodic Performance of Protonic Ceramic Fuel Cells Through Incorporating a Superior Hydronation Second Phase 被引量:1
9
作者 Chuan Zhou Xixi Wang +12 位作者 Dongliang Liu Meijuan Fei Jie Dai Daqin Guan Zhiwei Hu Linjuan Zhang Yu Wang Wei Wang Ryan O'Hayre San Ping Jiang Wei Zhou Meilin Liu Zongping Shao 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第4期83-92,共10页
For protonic ceramic fuel cells,it is key to develop material with high intrinsic activity for oxygen activation and bulk proton conductivity enabling water formation at entire electrode surface.However,a higher water... For protonic ceramic fuel cells,it is key to develop material with high intrinsic activity for oxygen activation and bulk proton conductivity enabling water formation at entire electrode surface.However,a higher water content which benefitting for the increasing proton conductivity will not only dilute the oxygen in the gas,but also suppress the O_(2)adsorption on the electrode surface.Herein,a new electrode design concept is proposed,that may overcome this dilemma.By introducing a second phase with high-hydrating capability into a conventional cobalt-free perovskite to form a unique nanocomposite electrode,high proton conductivity/concentration can be reached at low water content in atmosphere.In addition,the hydronation creates additional fast proton transport channel along the two-phase interface.As a result,high protonic conductivity is reached,leading to a new breakthrough in performance for proton ceramic fuel cells and electrolysis cells devices among available air electrodes. 展开更多
关键词 CATHODE high-hydrating capability proton conductivity protonic ceramic fuel cells
在线阅读 下载PDF
Correlation between hydration properties and electrochemical performances on Ln cation size effect in layered perovskite for protonic ceramic fuel cells
10
作者 Inhyeok Cho Jiwon Yun +4 位作者 Boseok Seong Junseok Kim Sun Hee Choi Ho-Il Ji Sihyuk Choi 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期1-9,I0001,共10页
PrBa_(0.5)Sr_(0.5)Co_(1.5)Fe_(0.5)O_(5+δ)(PrBSCF) has attracted much research interest as a potential triple ionic and electronic conductor(TIEC) electrode for protonic ceramic fuel cells(PCFCs). The chemical formula... PrBa_(0.5)Sr_(0.5)Co_(1.5)Fe_(0.5)O_(5+δ)(PrBSCF) has attracted much research interest as a potential triple ionic and electronic conductor(TIEC) electrode for protonic ceramic fuel cells(PCFCs). The chemical formula for Pr BSCF is AA'B_(2)O_(5+δ), with Pr(A-site) and Ba/Sr(A'-site) alternately stacked along the c-axis. Due to these structural features, the bulk oxygen ion diffusivity is significantly enhanced through the disorder-free channels in the PrO layer;thus, the A site cations(lanthanide ions) play a pivotal role in determining the overall electrochemical properties of layered perovskites. Consequently, previous research has predominantly focused on the electrical properties and oxygen bulk/surface kinetics of Ln cation effects,whereas the hydration properties for PCFC systems remain unidentified. Here, we thoroughly examined the proton uptake behavior and thermodynamic parameters for the hydration reaction to conclusively determine the changes in the electrochemical performances depending on LnBa_(0.5)Sr_(0.5)Co_(1.5)Fe_(0.5)O_(5+δ)(LnBSCF,Ln=Pr, Nd, and Gd) cathodes. At 500 ℃, the quantitative proton concentration of PrBSCF was 2.04 mol% and progressively decreased as the Ln cation size decreased. Similarly, the Gibbs free energy indicated that less energy was required for the formation of protonic defects in the order of Pr BSCF < Nd BSCF < Gd BSCF. To elucidate the close relationship between hydration properties and electrochemical performances in LnBSCF cathodes, PCFC single cell measurements and analysis of the distribution of relaxation time were further investigated. 展开更多
关键词 protonic ceramic fuel cell Cathode Triple ionic and electronic conductor Hydration property proton uptake Gibbs free energy
在线阅读 下载PDF
Can the Hypothetical Protons Emitted by the Shroud’s Man Furnish an I(z) Correlation?
11
作者 Giovanni Fazio 《Open Journal of Applied Sciences》 2024年第8期1979-1984,共6页
Recently, we have investigated the hypothesis radiative demonstrating that the two penetrated thicknesses (in air and linen) are not compatible with a single energy of the protons. Furthermore, we deduced that the dis... Recently, we have investigated the hypothesis radiative demonstrating that the two penetrated thicknesses (in air and linen) are not compatible with a single energy of the protons. Furthermore, we deduced that the distribution of energy, released by the above particles, on the burial linen has not a linear trend when the body-burial linen distance changes. Now, in this article we want to deduce the I(z) relationship, between the Image Intensity of the colour produced by protons on a linen and the z distance from the source (of Protons) and the same linen. To achieve the result in an analytical form and make a comparison with the same function extracted from the Shroud, we used the empirical expression Range-Energy for protons in air of Wilson-Brobeck. Thus, we obtain a result I(z) = Im [1 − (z/R)5/9] that is different from the one extracted from the Turin Linen I(z) = IM (1 − z/R0). We have also the same information using the Range-Energy curves for protons of Rogozinski. The result is negative for the radiative hypothesis that is unable to produce the Shroud Body Image. Therefore, to investigate the above unknown process of formation, it is necessary to think about another one. 展开更多
关键词 Hypothesis Radiative protons in the Matter Energy Lost by protons I(z) Correlations Comparison
在线阅读 下载PDF
Enhancing proton exchange membrane water electrolysis by building electron/proton pathways
12
作者 Liyan Zhu Hao Zhang +5 位作者 Aojie Zhang Tian Tian Yuhan Shen Mingjuan Wu Neng Li Haolin Tang 《Advanced Powder Materials》 2024年第4期103-112,共10页
Proton exchange membrane water electrolysis(PEMWE)plays a critical role in practical hydrogen production.Except for the electrode activities,the widespread deployment of PEMWE is severely obstructed by the poor electr... Proton exchange membrane water electrolysis(PEMWE)plays a critical role in practical hydrogen production.Except for the electrode activities,the widespread deployment of PEMWE is severely obstructed by the poor electron-proton permeability across the catalyst layer(CL)and the inefficient transport structure.In this work,the PEDOT:F(Poly(3,4-ethylenedioxythiophene):perfluorosulfonic acid)ionomers with mixed proton-electron conductor(MPEC)were fabricated,which allows for a homogeneous anodic CL structure and the construction of a highly efficient triple-phase interface.The PEDOT:F exhibits strong perfluorosulfonic acid(PFSA)side chain extensibility,enabling the formation of large hydrophilic ion clusters that form proton-electron transport channels within the CL networks,thus contributing to the surface reactant water adsorption.The PEMWE device employing membrane electrode assembly(MEA)prepared by PEDOT:F-2 demonstrates a competitive voltage of 1.713 V under a water-splitting current of 2 A cm^(-2)(1.746 V at 2A cm^(-2) for MEA prepared by Nafion D520),along with exceptional long-term stability.Meanwhile,the MEA prepared by PEDOT:F-2 also exhibits lower ohmic resistance,which is reduced by 23.4%and 17.6%at 0.1 A cm^(-2) and 1.5 A cm^(-2),respectively,as compared to the MEA prepared by D520.The augmentation can be ascribed to the superior proton and electron conductivity inherent in PEDOT:F,coupled with its remarkable structural stability.This characteristic enables expeditious mass transfer during electrolytic reactions,thereby enhancing the performance of PEMWE devices. 展开更多
关键词 proton exchange membrane water electrolysis Oxygen evolution reaction Mixed proton-electron conductivity Triple-phase boundaries Membrane electrode assembly
在线阅读 下载PDF
Effects of proton pump inhibitors on inflammatory bowel disease:An updated review 被引量:2
13
作者 Yu Liang Zhen Meng +1 位作者 Xue-Li Ding Man Jiang 《World Journal of Gastroenterology》 SCIE CAS 2024年第21期2751-2762,共12页
Inflammatory bowel disease(IBD)is believed to be caused by various factors,including abnormalities in disease susceptibility genes,environmental factors,immune factors,and intestinal bacteria.Proton pump inhibitors(PP... Inflammatory bowel disease(IBD)is believed to be caused by various factors,including abnormalities in disease susceptibility genes,environmental factors,immune factors,and intestinal bacteria.Proton pump inhibitors(PPIs)are the primary drugs used to treat acid-related diseases.They are also commonly prescribed to patients with IBD.Recent studies have suggested a potential association between the use of certain medications,such as PPIs,and the occurrence and progression of IBD.In this review,we summarize the potential impact of PPIs on IBD and analyze the underlying mechanisms.Our findings may provide insights for conducting further investigations into the effects of PPIs on IBD and serve as an important reminder for physicians to exercise caution when prescribing PPIs to patients with IBD. 展开更多
关键词 Drug safety proton pump inhibitor Inflammatory bowel disease Ulcerative colitis Crohn’s disease
在线阅读 下载PDF
Rational Design of Ruddlesden-Popper Perovskite Ferrites as Air Electrode for Highly Active and Durable Reversible Protonic Ceramic Cells 被引量:1
14
作者 Na Yu Idris Temitope Bello +4 位作者 Xi Chen Tong Liu Zheng Li Yufei Song Meng Ni 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期308-324,共17页
Reversible protonic ceramic cells(RePCCs)hold promise for efficient energy storage,but their practicality is hindered by a lack of high-performance air electrode materials.Ruddlesden-Popper perovskite Sr_(3)Fe_(2)O_(7... Reversible protonic ceramic cells(RePCCs)hold promise for efficient energy storage,but their practicality is hindered by a lack of high-performance air electrode materials.Ruddlesden-Popper perovskite Sr_(3)Fe_(2)O_(7−δ)(SF)exhibits superior proton uptake and rapid ionic conduction,boosting activity.However,excessive proton uptake during RePCC operation degrades SF’s crystal structure,impacting durability.This study introduces a novel A/B-sites co-substitution strategy for modifying air electrodes,incorporating Sr-deficiency and Nb-substitution to create Sr_(2.8)Fe_(1.8)Nb_(0.2)O_(7−δ)(D-SFN).Nb stabilizes SF’s crystal,curbing excessive phase formation,and Sr-deficiency boosts oxygen vacancy concentration,optimizing oxygen transport.The D-SFN electrode demonstrates outstanding activity and durability,achieving a peak power density of 596 mW cm^(−2)in fuel cell mode and a current density of−1.19 A cm^(−2)in electrolysis mode at 1.3 V,650℃,with excellent cycling durability.This approach holds the potential for advancing robust and efficient air electrodes in RePCCs for renewable energy storage. 展开更多
关键词 Reversible protonic ceramic cells Air electrode Ruddlesden-Popper perovskite HYDRATION Oxygen reduction reaction
在线阅读 下载PDF
In-situ coating and surface partial protonation co-promoting performance of single-crystal nickel-rich cathode in all-solid-state batteries 被引量:1
15
作者 Maoyi Yi Jie Li +5 位作者 Mengran Wang Xinming Fan Bo Hong Zhian Zhang Aonan Wang Yanqing Lai 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期137-143,I0005,共8页
The poor electrochemical performance of all-solid-state batteries(ASSBs),which is assemblied by Ni-rich cathode and poly(ethylene oxide)(PEO)-based electrolytes,can be attributed to unstable cathodic interface and poo... The poor electrochemical performance of all-solid-state batteries(ASSBs),which is assemblied by Ni-rich cathode and poly(ethylene oxide)(PEO)-based electrolytes,can be attributed to unstable cathodic interface and poor crystal structure stability of Ni-rich cathode.Several coating strategies are previously employed to enhance the stability of the cathodic interface and crystal structure for Ni-rich cathode.However,these methods can hardly achieve simplicity and high efficiency simultaneously.In this work,polyacrylic acid(PAA)replaced traditional PVDF as a binder for cathode,which can achieve a uniform PAA-Li(LixPAA(0<x≤1))coating layer on the surface of single-crystal LiNi_(0.83)Co_(0.12)Mn_(0.05)O_(2)(SC-NCM83)due to H^(+)/Li^(+)exchange reaction during the initial charging-discharging process.The formation of PAA-Li coating layer on cathode can promote interfacial Li^(+)transport and enhance the stability of the cathodic interface.Furthermore,the partially-protonated surface of SC-NCM83 casued by H^(+)/Li^(+)exchange reaction can restrict Ni ions transport to enhance the crystal structure stability.The proposed SC-NCM83-PAA exhibits superior cycling performance with a retention of 92%compared with that(57.3%)of SC-NCM83-polyvinylidene difluoride(PVDF)after 200 cycles.This work provides a practical strategy to construct high-performance cathodes for ASSBs. 展开更多
关键词 Single-crystal LiNi_(0.83)Co_(0.12)Mn_(0.05)O_(2) In-situ coating PAA-Li Partial protonation
在线阅读 下载PDF
Application of proton magnetic resonance spectroscopy in metabolic alterations of prefrontal white and gray matter in depression adolescents 被引量:1
16
作者 Ying Zou Yu-Qin Wu +2 位作者 Yao-Jing Han Xiao-Ming He Jiang Zhao 《World Journal of Psychiatry》 SCIE 2024年第11期1652-1660,共9页
BACKGROUND Cases of depression among adolescents are gradually increasing.The study of the physiological basis of cognitive function from a biochemical perspective has therefore been garnering increasing attention.Dep... BACKGROUND Cases of depression among adolescents are gradually increasing.The study of the physiological basis of cognitive function from a biochemical perspective has therefore been garnering increasing attention.Depression has been hypothesized to be associated with the brain biochemical metabolism of the anterior cingulate gyrus,frontal lobe white matter,and the thalamus.AIM To explore the application of proton magnetic resonance spectroscopy(1H-MRS)in the metabolic alterations in the prefrontal white matter(PWM)and gray matter(GM)in adolescents with depression.METHODS 1H-MRS was performed for semi-quantitative analysis of the biochemical metabolites N-acetylaspartate(NAA),choline(Cho)complexes,creatine(Cr),and myoinositol(mI)in bilateral PWM,anterior cingulate GM,and thalami of 31 adolescent patients with depression(research group)and 35 healthy adolescents(control group),and the NAA/Cr,Cho/Cr,and mI/Cr ratios were calculated.Meanwhile,Hamilton Depression Scale(HAMD)and Wechsler Memory Scale were used to assess the degree of depression and memory function in all adolescents.The correlation of brain metabolite levels with scale scores was also analyzed.RESULTS The research group had markedly higher HAMD-24 scores and lower memory quotient(MQ)compared with the control group(P<0.05).Adolescents with depression were found to have lower bilateral PWM NAA/Cr and Cho/Cr ratios compared with healthy adolescents(P<0.05).The mI/Cr ratios were found to be similar in both groups(P>0.05).The bilateral anterior cingulate GM NAA/Cr,Cho/Cr,and mI/Cr also did not demonstrate marked differences(P>0.05).No statistical inter-group difference was determined in NAA/Cr of the bilateral thalami(P>0.05),while bilateral thalamic Cho/Cr and mI/Cr were reduced in teenagers with depression compared with healthy adolescents(P<0.05).A significant negative correlation was observed between the HAMD-24 scores in adolescents with depression with bilateral PWM NAA/Cr and Cho/Cr and were inversely linked to bilateral thalamic Cho/Cr and mI/Cr(P<0.05).In adolescents with depressions,MQ positively correlated with right PWH NAA/Cr,left PWH Cho/Cr,and bilateral thalamic Cho/Cr and mI/Cr.CONCLUSION PWM and thalamic metabolic abnormalities might influence teen depression,and the reduction in bilateral PWM NAA/Cr and Cho/Cr could be related to the neuropathology of adolescents with depression suffering from memory impairment.There exists a possibility of dysfunction of nerve cell membrane phospholipids in the thalami of adolescent patients with depression. 展开更多
关键词 proton magnetic resonance spectroscopy Adolescent depression Prefrontal white matter Anterior cingulate gray matter METABOLISM
在线阅读 下载PDF
Performance Degradation Prediction of Proton Exchange Membrane Fuel Cell Based on CEEMDAN-KPCA and DA-GRU Networks 被引量:2
17
作者 Tingwei Zhao Juan Wang +2 位作者 Jiangxuan Che Yingjie Bian Tianyu Chen 《Instrumentation》 2024年第1期51-61,共11页
In order to improve the performance degradation prediction accuracy of proton exchange membrane fuel cell(PEMFC),a fusion prediction method(CKDG)based on adaptive noise complete ensemble empirical mode decomposition(C... In order to improve the performance degradation prediction accuracy of proton exchange membrane fuel cell(PEMFC),a fusion prediction method(CKDG)based on adaptive noise complete ensemble empirical mode decomposition(CEEMDAN),kernel principal component analysis(KPCA)and dual attention mechanism gated recurrent unit neural network(DA-GRU)was proposed.CEEMDAN and KPCA were used to extract the input feature data sequence,reduce the influence of random factors,and capture essential feature components to reduce the model complexity.The DA-GRU network helps to learn the feature mapping relationship of data in long time series and predict the changing trend of performance degradation data more accurately.The actual aging experimental data verify the performance of the CKDG method.The results show that under the steady-state condition of 20%training data prediction,the CKDA method can reduce the root mean square error(RMSE)by 52.7%and 34.6%,respectively,compared with the traditional LSTM and GRU neural networks.Compared with the simple DA-GRU network,RMSE is reduced by 15%,and the degree of over-fitting is reduced,which has higher accuracy.It also shows excellent prediction performance under the dynamic condition data set and has good universality. 展开更多
关键词 proton exchange membrane fuel cell dual-attention gated recurrent unit data-driven model time series prediction
在线阅读 下载PDF
Phase engineering of a donor-doped air electrode for reversible protonic ceramic electrochemical cells 被引量:1
18
作者 Kang Xu Hua Zhang +6 位作者 Yangsen Xu Dongliang Liu Feng Zhu Fan He Ying Liu Haobing Wang Yu Chen 《Advanced Powder Materials》 2024年第3期77-85,共9页
Reversible protonic ceramic electrochemical cells(R-PCECs)demonstrate great feasibility for efficient energy storage and conversion.One critical challenge for the development of R-PCECs is the design of novel air elec... Reversible protonic ceramic electrochemical cells(R-PCECs)demonstrate great feasibility for efficient energy storage and conversion.One critical challenge for the development of R-PCECs is the design of novel air electrodes with the characteristics of high catalytic activity and acceptable durability.Here,we report a donor doping of Hf into the B-site of a cobalt-based double perovskite with a nominal formula of PrBa_(0.8)Ca_(0.2)Co_(1.9)Hf_(0.1)O_(5tδ)(PBCCHf_(0.1)),which is naturally reconfigured to a double perovskite PrBa_(0.8-x)Ca_(0.2)Co_(1.9)Hf_(0.1)-xO5tδ(PBCCHf_(0.1)-x)backbone and nano-sized BaHfO3(BHO)on the surface of PBCCHf_(0.1)x.The air electrode demonstrates enhanced catalytic activity and durability(a stable polarization resistance of 0.269Ωcm2 for~100 h at 600℃),due likely to the fast surface exchange process and bulk diffusion process.When employed as an air electrode of R-PCECs,a cell with PBCCHf_(0.1) air electrode demonstrates encouraging performances in modes of the fuel cell(FC)and electrolysis(EL)at 600℃:a peak power density of 0.998 W cm^(-2)and a current density of1.613 A cm^(-2)at 1.3 V(with acceptable Faradaic efficiencies).More importantly,the single-cell with PBCCHf_(0.1) air electrode demonstrates good cycling stability,switching back and forth from FC mode to EL mode0.5 A cm^(-2)for 200 h and 50 cycles. 展开更多
关键词 Reversible protonic ceramic electrochemical cells Donor doping Air electrode In situ reconfiguration Phase engineering
在线阅读 下载PDF
Conceptual design of a 714-MHz RFQ for compact proton injectors and development of a new tuning algorithm on its aluminium prototype
19
作者 Yi-Xing Lu Wen-Cheng Fang +1 位作者 Yu-Sen Guo Zhen-Tang Zhao 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第1期45-58,共14页
Radio frequency quadrupoles(RFQs),which are crucial components of proton injectors,significantly affect the performance of proton accelerator facilities.An RFQ with a high frequency of 714 MHz dedicated to compact pro... Radio frequency quadrupoles(RFQs),which are crucial components of proton injectors,significantly affect the performance of proton accelerator facilities.An RFQ with a high frequency of 714 MHz dedicated to compact proton injectors for medi-cal applications is designed in this study.The RFQ is designed to accelerate proton beams from 50 keV to 4 MeV within a short length of 2 m and can be matched closely with the downstream drift tube linac to capture more particles through a preliminary optimization.To develop an advanced RFQ,challenging techniques,including fabrication and tuning method,must be evaluated and verified using a prototype.An aluminium prototype is derived from the conceptual design of the RFQ and then redesigned to confirm the radio frequency performance,fabrication procedure,and feasibility of the tuning algorithm.Eventually,a new tuning algorithm based on the response matrix and least-squares method is developed,which yields favorable results based on the prototype,i.e.,the errors of the dipole and quadrupole components reduced to a low level after several tuning iterations.Benefiting from the conceptual design and techniques obtained from the prototype,the formal mechanical design of the 2-m RFQ is ready for the next manufacturing step. 展开更多
关键词 Compact proton injector RFQ IH-DTL High gradient Tuning
在线阅读 下载PDF
Proton conductivity performance and its correlation with physiochemical properties of proton exchange membrane(PEM)
20
作者 Mirza Nusrat Sweety Md Abdus Salam 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第10期100-116,共17页
Graphene oxide(GO)filler containing diversified Nafion-based proton exchange membrane(PEM)is studied to know the unique physical and chemical properties and performances of PEM.Nafion-SPEEK 1%-GO 0.75%(NSG-0.75%)compo... Graphene oxide(GO)filler containing diversified Nafion-based proton exchange membrane(PEM)is studied to know the unique physical and chemical properties and performances of PEM.Nafion-SPEEK 1%-GO 0.75%(NSG-0.75%)composite shows the highest proton conductivity of 0.327 S·cm^(-1) at 90℃ and 100%RH(relative humidity)among all the PEM investigated.The descending order of significant proton conductivity is found as;Nafion-sPGO(1%)0.306 S·cm^(-1)>Nafion/ZIF-8@GO 0.280 S·cm^(-1)>Nafion/PGO(2%)0.277 S·cm^(-1)>Nafion/GO-sulfur(3%)0.232 S·cm^(-1)>Nafion/GO-poly-SPM-co-PEGMEMA(1%)0.229 S·cm^(-1)>Nafion/Ce-sPGO(1%)0.215 S·cm^(-1).The proton conductivity,water uptake capacity and ion exchange capacity,hydration number,thermal and oxidative stability,mechanical integrity(tensile strength),maximum power,and current density are found to be increased while activation energy and fuel crossover show a decrement as GO or modified GO is incorporated in the Nafion matrix.Principal component analysis(PCA)predicted a significant correlation between the proton conductivity and the properties;the water uptake capacity,ion exchange capacity,hydration number,maximum power density,and maximum current density are 0.598%,0.688%,0.894%,0.980%,and 0.852%accordingly.A multiple linear model equation of proton conductivity is defined with the parameters of water uptake capacity,ion exchange capacity,hydration number,maximum power density,and maximum current density whereas the regression coefficient is 0.9923. 展开更多
关键词 Fuel cells Membranes NAFION GO-filler proton conductivity Principal component analysis
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部