With the increment of the number of Gaussian components, the computation cost increases in the Gaussian mixture probability hypothesis density(GM-PHD) filter. Based on the theory of Chen et al, we propose an improved ...With the increment of the number of Gaussian components, the computation cost increases in the Gaussian mixture probability hypothesis density(GM-PHD) filter. Based on the theory of Chen et al, we propose an improved pruning algorithm for the GM-PHD filter, which utilizes not only the Gaussian components’ means and covariance, but their weights as a new criterion to improve the estimate accuracy of the conventional pruning algorithm for tracking very closely proximity targets. Moreover, it solves the end-less while-loop problem without the need of a second merging step. Simulation results show that this improved algorithm is easier to implement and more robust than the formal ones.展开更多
Probability Hypothesis Density (PHD) filtering approach has shown its advantages in tracking time varying number of targets even when there are noise,clutter and misdetection. For linear Gaussian Mixture (GM) system,P...Probability Hypothesis Density (PHD) filtering approach has shown its advantages in tracking time varying number of targets even when there are noise,clutter and misdetection. For linear Gaussian Mixture (GM) system,PHD filter has a closed form recursion (GMPHD). But PHD filter cannot estimate the trajectories of multi-target because it only provides identity-free estimate of target states. Existing data association methods still remain a big challenge mostly because they are com-putationally expensive. In this paper,we proposed a new data association algorithm using GMPHD filter,which significantly alleviated the heavy computing load and performed multi-target trajectory tracking effectively in the meantime.展开更多
In order to improve the performance of the probability hypothesis density(PHD) algorithm based particle filter(PF) in terms of number estimation and states extraction of multiple targets, a new probability hypothesis ...In order to improve the performance of the probability hypothesis density(PHD) algorithm based particle filter(PF) in terms of number estimation and states extraction of multiple targets, a new probability hypothesis density filter algorithm based on marginalized particle and kernel density estimation is proposed, which utilizes the idea of marginalized particle filter to enhance the estimating performance of the PHD. The state variables are decomposed into linear and non-linear parts. The particle filter is adopted to predict and estimate the nonlinear states of multi-target after dimensionality reduction, while the Kalman filter is applied to estimate the linear parts under linear Gaussian condition. Embedding the information of the linear states into the estimated nonlinear states helps to reduce the estimating variance and improve the accuracy of target number estimation. The meanshift kernel density estimation, being of the inherent nature of searching peak value via an adaptive gradient ascent iteration, is introduced to cluster particles and extract target states, which is independent of the target number and can converge to the local peak position of the PHD distribution while avoiding the errors due to the inaccuracy in modeling and parameters estimation. Experiments show that the proposed algorithm can obtain higher tracking accuracy when using fewer sampling particles and is of lower computational complexity compared with the PF-PHD.展开更多
As to the fact that it is difficult to obtain analytical form of optimal sampling density and tracking performance of standard particle probability hypothesis density(P-PHD) filter would decline when clustering algori...As to the fact that it is difficult to obtain analytical form of optimal sampling density and tracking performance of standard particle probability hypothesis density(P-PHD) filter would decline when clustering algorithm is used to extract target states,a free clustering optimal P-PHD(FCO-P-PHD) filter is proposed.This method can lead to obtainment of analytical form of optimal sampling density of P-PHD filter and realization of optimal P-PHD filter without use of clustering algorithms in extraction target states.Besides,as sate extraction method in FCO-P-PHD filter is coupled with the process of obtaining analytical form for optimal sampling density,through decoupling process,a new single-sensor free clustering state extraction method is proposed.By combining this method with standard P-PHD filter,FC-P-PHD filter can be obtained,which significantly improves the tracking performance of P-PHD filter.In the end,the effectiveness of proposed algorithms and their advantages over other algorithms are validated through several simulation experiments.展开更多
The GM-PHD framework as recursion realization of PHD filter is extensively applied to multitarget tracking system. A new idea of improving the estimation precision of time-varying multi-target in non-linear system is ...The GM-PHD framework as recursion realization of PHD filter is extensively applied to multitarget tracking system. A new idea of improving the estimation precision of time-varying multi-target in non-linear system is proposed due to the advantage of computation efficiency in this paper. First,a novel cubature Kalman probability hypothesis density filter is designed for single sensor measurement system under the Gaussian mixture framework. Second,the consistency fusion strategy for multi-sensor measurement is proposed through constructing consistency matrix. Furthermore,to take the advantage of consistency fusion strategy,fused measurement is introduced in the update step of cubature Kalman probability hypothesis density filter to replace the single-sensor measurement. Then a cubature Kalman probability hypothesis density filter based on multi-sensor consistency fusion is proposed. Capabilily of the proposed algorithm is illustrated through simulation scenario of multi-sensor multi-target tracking.展开更多
The probability hypothesis density (PHD) propagates the posterior intensity in place of the poste- rior probability density of the multi-target state. The cardinalized PHD (CPHD) recursion is a generalization of P...The probability hypothesis density (PHD) propagates the posterior intensity in place of the poste- rior probability density of the multi-target state. The cardinalized PHD (CPHD) recursion is a generalization of PHD recursion, which jointly propagates the posterior intensity function and posterior cardinality distribution. A number of sequential Monte Carlo (SMC) implementations of PHD and CPHD filters (also known as SMC- PHD and SMC-CPHD filters, respectively) for general non-linear non-Gaussian models have been proposed. However, these approaches encounter the limitations when the observation variable is analytically unknown or the observation noise is null or too small. In this paper, we propose a convolution kernel approach in the SMC-CPHD filter. The simuIation results show the performance of the proposed filter on several simulated case studies when compared to the SMC-CPHD filter.展开更多
This paper studies the dynamic estimation problem for multitarget tracking. A novel gat- ing strategy that is based on the measurement likelihood of the target state space is proposed to improve the overall effectiven...This paper studies the dynamic estimation problem for multitarget tracking. A novel gat- ing strategy that is based on the measurement likelihood of the target state space is proposed to improve the overall effectiveness of the probability hypothesis density (PHD) filter. Firstly, a measurement-driven mechanism based on this gating technique is designed to classify the measure- ments. In this mechanism, only the measurements for the existing targets are considered in the update step of the existing targets while the measurements of newborn targets are used for exploring newborn targets. Secondly, the gating strategy enables the development of a heuristic state estima- tion algorithm when sequential Monte Carlo (SMC) implementation of the PHD filter is investi- gated, where the measurements are used to drive the particle clustering within the space gate. The resulting PHD filter can achieve a more robust and accurate estimation of the existing targets by reducing the interference from clutter. Moreover, the target birth intensity can be adaptive to detect newborn targets, which is in accordance with the birth measurements. Simulation results demonstrate the computational efficiency and tracking performance of the proposed algorithm.展开更多
The probability hypothesis density(PHD) filter has been recognized as a promising technique for tracking an unknown number of targets. The performance of the PHD filter, however, is sensitive to the available knowledg...The probability hypothesis density(PHD) filter has been recognized as a promising technique for tracking an unknown number of targets. The performance of the PHD filter, however, is sensitive to the available knowledge on model parameters such as the measurement noise variance and those associated with the changes in the maneuvering target trajectories. If these parameters are unknown in advance, the tracking performance may degrade greatly. To address this aspect, this paper proposes to incorporate the adaptive parameter estimation(APE) method in the PHD filter so that the model parameters, which may be static and/or time-varying, can be estimated jointly with target states. The resulting APE-PHD algorithm is implemented using the particle filter(PF), which leads to the PF-APE-PHD filter. Simulations show that the newly proposed algorithm can correctly identify the unknown measurement noise variances, and it is capable of tracking multiple maneuvering targets with abrupt changing parameters in a more robust manner, compared to the multi-model approaches.展开更多
In Bayesian multi-target fltering,knowledge of measurement noise variance is very important.Signifcant mismatches in noise parameters will result in biased estimates.In this paper,a new particle flter for a probabilit...In Bayesian multi-target fltering,knowledge of measurement noise variance is very important.Signifcant mismatches in noise parameters will result in biased estimates.In this paper,a new particle flter for a probability hypothesis density(PHD)flter handling unknown measurement noise variances is proposed.The approach is based on marginalizing the unknown parameters out of the posterior distribution by using variational Bayesian(VB)methods.Moreover,the sequential Monte Carlo method is used to approximate the posterior intensity considering non-linear and non-Gaussian conditions.Unlike other particle flters for this challenging class of PHD flters,the proposed method can adaptively learn the unknown and time-varying noise variances while fltering.Simulation results show that the proposed method improves estimation accuracy in terms of both the number of targets and their states.展开更多
It is understood that the forward-backward probability hypothesis density (PHD) smoothing algorithms proposed recently can significantly improve state estimation of targets. However, our analyses in this paper show ...It is understood that the forward-backward probability hypothesis density (PHD) smoothing algorithms proposed recently can significantly improve state estimation of targets. However, our analyses in this paper show that they cannot give a good cardinality (i.e., the number of targets) estimate. This is because backward smoothing ignores the effect of temporary track drop- ping caused by forward filtering and/or anomalous smoothing resulted from deaths of targets. To cope with such a problem, a novel PHD smoothing algorithm, called the variable-lag PHD smoother, in which a detection process used to identify whether the filtered cardinality varies within the smooth lag is added before backward smoothing, is developed here. The analytical results show that the proposed smoother can almost eliminate the influences of temporary track dropping and anomalous smoothing, while both the cardinality and the state estimations can significantly be improved. Simulation results on two multi-target tracking scenarios verify the effectiveness of the proposed smoother.展开更多
An algorithm to track multiple sharply maneuvering targets without prior knowledge about new target birth is proposed. These targets are capable of achieving sharp maneuvers within a short period of time, such as dron...An algorithm to track multiple sharply maneuvering targets without prior knowledge about new target birth is proposed. These targets are capable of achieving sharp maneuvers within a short period of time, such as drones and agile missiles.The probability hypothesis density (PHD) filter, which propagates only the first-order statistical moment of the full target posterior, has been shown to be a computationally efficient solution to multitarget tracking problems. However, the standard PHD filter operates on the single dynamic model and requires prior information about target birth distribution, which leads to many limitations in terms of practical applications. In this paper,we introduce a nonzero mean, white noise turn rate dynamic model and generalize jump Markov systems to multitarget case to accommodate sharply maneuvering dynamics. Moreover, to adaptively estimate newborn targets’information, a measurement-driven method based on the recursive random sampling consensus (RANSAC) algorithm is proposed. Simulation results demonstrate that the proposed method achieves significant improvement in tracking multiple sharply maneuvering targets with adaptive birth estimation.展开更多
A new multi-target filtering algorithm, termed as the Gaussian sum probability hypothesis density (GSPHD) filter, is proposed for nonlinear non-Gaussian tracking models. Provided that the initial prior intensity of ...A new multi-target filtering algorithm, termed as the Gaussian sum probability hypothesis density (GSPHD) filter, is proposed for nonlinear non-Gaussian tracking models. Provided that the initial prior intensity of the states is Gaussian or can be identified as a Gaussian sum, the analytical results of the algorithm show that the posterior intensity at any subsequent time step remains a Gaussian sum under the assumption that the state noise, the measurement noise, target spawn intensity, new target birth intensity, target survival probability, and detection probability are all Gaussian sums. The analysis also shows that the existing Gaussian mixture probability hypothesis density (GMPHD) filter, which is unsuitable for handling the non-Gaussian noise cases, is no more than a special case of the proposed algorithm, which fills the shortage of incapability of treating non-Gaussian noise. The multi-target tracking simulation results verify the effectiveness of the proposed GSPHD.展开更多
Multi-range-false-target(MRFT) jamming is particularly challenging for tracking radar due to the dense clutter and the repeated multiple false targets. The conventional association-based multi-target tracking(MTT) met...Multi-range-false-target(MRFT) jamming is particularly challenging for tracking radar due to the dense clutter and the repeated multiple false targets. The conventional association-based multi-target tracking(MTT) methods suffer from high computational complexity and limited usage in the presence of MRFT jamming.In order to solve the above problems, an efficient and adaptable probability hypothesis density(PHD) filter is proposed. Based on the gating strategy, the obtained measurements are firstly classified into the generalized newborn target and the existing target measurements. The two categories of measurements are independently used in the decomposed form of the PHD filter. Meanwhile,an amplitude feature is used to suppress the dense clutter. In addition, an MRFT jamming suppression algorithm is introduced to the filter. Target amplitude information and phase quantization information are jointly used to deal with MRFT jamming and the clutter by modifying the particle weights of the generalized newborn targets. Simulations demonstrate the proposed algorithm can obtain superior correct discrimination rate of MRFT, and high-accuracy tracking performance with high computational efficiency in the presence of MRFT jamming in the dense clutter.展开更多
Detection and tracking of multi-target with unknown and varying number is a challenging issue, especially under the condition of low signal-to-noise ratio(SNR). A modified multi-target track-before-detect(TBD) method ...Detection and tracking of multi-target with unknown and varying number is a challenging issue, especially under the condition of low signal-to-noise ratio(SNR). A modified multi-target track-before-detect(TBD) method was proposed to tackle this issue using a nonstandard point observation model. The method was developed from sequential Monte Carlo(SMC)-based probability hypothesis density(PHD) filter, and it was implemented by modifying the original calculation in update weights of the particles and by adopting an adaptive particle sampling strategy. To efficiently execute the SMC-PHD based TBD method, a fast implementation approach was also presented by partitioning the particles into multiple subsets according to their position coordinates in 2D resolution cells of the sensor. Simulation results show the effectiveness of the proposed method for time-varying multi-target tracking using raw observation data.展开更多
In this paper, we consider the problem of irregular shapes tracking for multiple extended targets by introducing the Gaussian surface matrix(GSM) into the framework of the random finite set(RFS) theory. The Gaussi...In this paper, we consider the problem of irregular shapes tracking for multiple extended targets by introducing the Gaussian surface matrix(GSM) into the framework of the random finite set(RFS) theory. The Gaussian surface function is constructed first by the measurements, and it is used to define the GSM via a mapping function. We then integrate the GSM with the probability hypothesis density(PHD) filter, the Bayesian recursion formulas of GSM-PHD are derived and the Gaussian mixture implementation is employed to obtain the closed-form solutions. Moreover, the estimated shapes are designed to guide the measurement set sub-partition, which can cope with the problem of the spatially close target tracking. Simulation results show that the proposed algorithm can effectively estimate irregular target shapes and exhibit good robustness in cross extended target tracking.展开更多
As a typical implementation of the probability hypothesis density(PHD) filter, sequential Monte Carlo PHD(SMC-PHD) is widely employed in highly nonlinear systems. However, the particle impoverishment problem introduce...As a typical implementation of the probability hypothesis density(PHD) filter, sequential Monte Carlo PHD(SMC-PHD) is widely employed in highly nonlinear systems. However, the particle impoverishment problem introduced by the resampling step, together with the high computational burden problem, may lead to performance degradation and restrain the use of SMC-PHD filter in practical applications. In this work, a novel SMC-PHD filter based on particle compensation is proposed to solve above problems. Firstly, according to a comprehensive analysis on the particle impoverishment problem, a new particle generating mechanism is developed to compensate the particles. Then, all the particles are integrated into the SMC-PHD filter framework. Simulation results demonstrate that, in comparison with the SMC-PHD filter, proposed PC-SMC-PHD filter is capable of overcoming the particle impoverishment problem, as well as improving the processing rate for a certain tracking accuracy in different scenarios.展开更多
In this paper, we present a novel and efficient track-before-detect (TBD) algorithm based on multiple-model probability hypothesis density (MM-PHD) for tracking infrared maneuvering dim multi-target. Firstly, the ...In this paper, we present a novel and efficient track-before-detect (TBD) algorithm based on multiple-model probability hypothesis density (MM-PHD) for tracking infrared maneuvering dim multi-target. Firstly, the standard sequential Monte Carlo probability hypothesis density (SMC-PHD) TBD-based algorithm is introduced and sequentially improved by the adaptive process noise and the importance re-sampling on particle likelihood, which result in the improvement in the algorithm robustness and convergence speed. Secondly, backward recursion of SMC-PHD is derived in order to ameliorate the tracking performance especially at the time of the multi-target arising. Finally, SMC-PHD is extended with multiple-model to track maneuvering dim multi-target. Extensive experiments have proved the efficiency of the presented algorithm in tracking infrared maneuvering dim multi-target, which produces better performance in track detection and tracking than other TBD-based algorithms including SMC-PHD, multiple-model particle filter (MM-PF), histogram probability multi-hypothesis tracking (H-PMHT) and Viterbi-like.展开更多
In this paper, an improved implementation of multiple model Gaussian mixture probability hypothesis density (MM-GM-PHD) filter is proposed. For maneuvering target tracking, based on joint distribution, the existing ...In this paper, an improved implementation of multiple model Gaussian mixture probability hypothesis density (MM-GM-PHD) filter is proposed. For maneuvering target tracking, based on joint distribution, the existing MM-GM-PHD filter is relatively complex. To simplify the filter, model conditioned distribution and model probability are used in the improved MM-GM-PHD filter. In the algorithm, every Gaussian components describing existing, birth and spawned targets are estimated by multiple model method. The final results of the Gaussian components are the fusion of multiple model estimations. The algorithm does not need to compute the joint PHD distribution and has a simpler computation procedure. Compared with single model GM-PHD, the algorithm gives more accurate estimation on the number and state of the targets. Compared with the existing MM-GM-PHD algorithm, it saves computation time by more than 30%. Moreover, it also outperforms the interacting multiple model joint probabilistic data association (IMMJPDA) filter in a relatively dense clutter environment.展开更多
Cross-eye jamming is an electronic attack technique that induces an angular error in the monopulse radar by artificially creating a false target and deceiving the radar into detecting and tracking it.Presently,there i...Cross-eye jamming is an electronic attack technique that induces an angular error in the monopulse radar by artificially creating a false target and deceiving the radar into detecting and tracking it.Presently,there is no effective anti-jamming method to counteract cross-eye jamming.In our study,through detailed analysis of the jamming mechanism,a multi-target model for a cross-eye jamming scenario is established within a random finite set framework.A novel anti-jamming method based on multitarget tracking using probability hypothesis density filters is subsequently developed by combining the characteristic differences between target and jamming with the releasing process of jamming.The characteristic differences between target and jamming and the releasing process of jamming are used to optimize particle partitioning.Particle identity labels that represent the properties of target and jamming are introduced into the detection and tracking processes.The release of cross-eye jamming is detected by estimating the number of targets in the beam,and the distinction between true targets and false jamming is realized through correlation and transmission between labels and estimated states.Thus,accurate tracking of the true targets is achieved under severe jamming conditions.Simulation results showed that the proposed method achieves a minimum delay in detection of cross-eye jamming and an accurate estimation of the target state.展开更多
基金supported by the National Natural Science Foundation of China(61703228)
文摘With the increment of the number of Gaussian components, the computation cost increases in the Gaussian mixture probability hypothesis density(GM-PHD) filter. Based on the theory of Chen et al, we propose an improved pruning algorithm for the GM-PHD filter, which utilizes not only the Gaussian components’ means and covariance, but their weights as a new criterion to improve the estimate accuracy of the conventional pruning algorithm for tracking very closely proximity targets. Moreover, it solves the end-less while-loop problem without the need of a second merging step. Simulation results show that this improved algorithm is easier to implement and more robust than the formal ones.
基金Supported by the National Natural Science Foundation of China (No.60772154)the President Foundation of Graduate University of Chinese Academy of Sciences (No.085102GN00)
文摘Probability Hypothesis Density (PHD) filtering approach has shown its advantages in tracking time varying number of targets even when there are noise,clutter and misdetection. For linear Gaussian Mixture (GM) system,PHD filter has a closed form recursion (GMPHD). But PHD filter cannot estimate the trajectories of multi-target because it only provides identity-free estimate of target states. Existing data association methods still remain a big challenge mostly because they are com-putationally expensive. In this paper,we proposed a new data association algorithm using GMPHD filter,which significantly alleviated the heavy computing load and performed multi-target trajectory tracking effectively in the meantime.
基金Project(61101185) supported by the National Natural Science Foundation of ChinaProject(2011AA1221) supported by the National High Technology Research and Development Program of China
文摘In order to improve the performance of the probability hypothesis density(PHD) algorithm based particle filter(PF) in terms of number estimation and states extraction of multiple targets, a new probability hypothesis density filter algorithm based on marginalized particle and kernel density estimation is proposed, which utilizes the idea of marginalized particle filter to enhance the estimating performance of the PHD. The state variables are decomposed into linear and non-linear parts. The particle filter is adopted to predict and estimate the nonlinear states of multi-target after dimensionality reduction, while the Kalman filter is applied to estimate the linear parts under linear Gaussian condition. Embedding the information of the linear states into the estimated nonlinear states helps to reduce the estimating variance and improve the accuracy of target number estimation. The meanshift kernel density estimation, being of the inherent nature of searching peak value via an adaptive gradient ascent iteration, is introduced to cluster particles and extract target states, which is independent of the target number and can converge to the local peak position of the PHD distribution while avoiding the errors due to the inaccuracy in modeling and parameters estimation. Experiments show that the proposed algorithm can obtain higher tracking accuracy when using fewer sampling particles and is of lower computational complexity compared with the PF-PHD.
文摘As to the fact that it is difficult to obtain analytical form of optimal sampling density and tracking performance of standard particle probability hypothesis density(P-PHD) filter would decline when clustering algorithm is used to extract target states,a free clustering optimal P-PHD(FCO-P-PHD) filter is proposed.This method can lead to obtainment of analytical form of optimal sampling density of P-PHD filter and realization of optimal P-PHD filter without use of clustering algorithms in extraction target states.Besides,as sate extraction method in FCO-P-PHD filter is coupled with the process of obtaining analytical form for optimal sampling density,through decoupling process,a new single-sensor free clustering state extraction method is proposed.By combining this method with standard P-PHD filter,FC-P-PHD filter can be obtained,which significantly improves the tracking performance of P-PHD filter.In the end,the effectiveness of proposed algorithms and their advantages over other algorithms are validated through several simulation experiments.
基金Supported by the National Natural Science Foundation of China(No.61300214)the Science and Technology Innovation Team Support Plan of Education Department of Henan Province(No.13IRTSTHN021)+1 种基金the Post-doctoral Science Foundation of China(No.2014M551999) the Outstanding Young Cultivation Foundation of Henan University(No.0000A40366)
文摘The GM-PHD framework as recursion realization of PHD filter is extensively applied to multitarget tracking system. A new idea of improving the estimation precision of time-varying multi-target in non-linear system is proposed due to the advantage of computation efficiency in this paper. First,a novel cubature Kalman probability hypothesis density filter is designed for single sensor measurement system under the Gaussian mixture framework. Second,the consistency fusion strategy for multi-sensor measurement is proposed through constructing consistency matrix. Furthermore,to take the advantage of consistency fusion strategy,fused measurement is introduced in the update step of cubature Kalman probability hypothesis density filter to replace the single-sensor measurement. Then a cubature Kalman probability hypothesis density filter based on multi-sensor consistency fusion is proposed. Capabilily of the proposed algorithm is illustrated through simulation scenario of multi-sensor multi-target tracking.
基金Supported in Part by the Foundation of the Excellent State Key Laboratory under Grant 40523005,and the Ministry of Education of China
文摘The probability hypothesis density (PHD) propagates the posterior intensity in place of the poste- rior probability density of the multi-target state. The cardinalized PHD (CPHD) recursion is a generalization of PHD recursion, which jointly propagates the posterior intensity function and posterior cardinality distribution. A number of sequential Monte Carlo (SMC) implementations of PHD and CPHD filters (also known as SMC- PHD and SMC-CPHD filters, respectively) for general non-linear non-Gaussian models have been proposed. However, these approaches encounter the limitations when the observation variable is analytically unknown or the observation noise is null or too small. In this paper, we propose a convolution kernel approach in the SMC-CPHD filter. The simuIation results show the performance of the proposed filter on several simulated case studies when compared to the SMC-CPHD filter.
基金supported by the Aeronautical Science Foundation of China(No.201401P6001)
文摘This paper studies the dynamic estimation problem for multitarget tracking. A novel gat- ing strategy that is based on the measurement likelihood of the target state space is proposed to improve the overall effectiveness of the probability hypothesis density (PHD) filter. Firstly, a measurement-driven mechanism based on this gating technique is designed to classify the measure- ments. In this mechanism, only the measurements for the existing targets are considered in the update step of the existing targets while the measurements of newborn targets are used for exploring newborn targets. Secondly, the gating strategy enables the development of a heuristic state estima- tion algorithm when sequential Monte Carlo (SMC) implementation of the PHD filter is investi- gated, where the measurements are used to drive the particle clustering within the space gate. The resulting PHD filter can achieve a more robust and accurate estimation of the existing targets by reducing the interference from clutter. Moreover, the target birth intensity can be adaptive to detect newborn targets, which is in accordance with the birth measurements. Simulation results demonstrate the computational efficiency and tracking performance of the proposed algorithm.
基金supported by the National Natural Science Foundation of China (Nos. 61305017, 61304264)the Natural Science Foundation of Jiangsu Province (No. BK20130154)
文摘The probability hypothesis density(PHD) filter has been recognized as a promising technique for tracking an unknown number of targets. The performance of the PHD filter, however, is sensitive to the available knowledge on model parameters such as the measurement noise variance and those associated with the changes in the maneuvering target trajectories. If these parameters are unknown in advance, the tracking performance may degrade greatly. To address this aspect, this paper proposes to incorporate the adaptive parameter estimation(APE) method in the PHD filter so that the model parameters, which may be static and/or time-varying, can be estimated jointly with target states. The resulting APE-PHD algorithm is implemented using the particle filter(PF), which leads to the PF-APE-PHD filter. Simulations show that the newly proposed algorithm can correctly identify the unknown measurement noise variances, and it is capable of tracking multiple maneuvering targets with abrupt changing parameters in a more robust manner, compared to the multi-model approaches.
基金supported by National High-tech Research and Development Program of China (No.2011AA7014061)
文摘In Bayesian multi-target fltering,knowledge of measurement noise variance is very important.Signifcant mismatches in noise parameters will result in biased estimates.In this paper,a new particle flter for a probability hypothesis density(PHD)flter handling unknown measurement noise variances is proposed.The approach is based on marginalizing the unknown parameters out of the posterior distribution by using variational Bayesian(VB)methods.Moreover,the sequential Monte Carlo method is used to approximate the posterior intensity considering non-linear and non-Gaussian conditions.Unlike other particle flters for this challenging class of PHD flters,the proposed method can adaptively learn the unknown and time-varying noise variances while fltering.Simulation results show that the proposed method improves estimation accuracy in terms of both the number of targets and their states.
基金co-supported by the National Natural Science Foundation of China(No.61171127)NSF of China(No.60972024)NSTMP of China(No.2011ZX03003-001-02 and No.2012ZX03001007-003)
文摘It is understood that the forward-backward probability hypothesis density (PHD) smoothing algorithms proposed recently can significantly improve state estimation of targets. However, our analyses in this paper show that they cannot give a good cardinality (i.e., the number of targets) estimate. This is because backward smoothing ignores the effect of temporary track drop- ping caused by forward filtering and/or anomalous smoothing resulted from deaths of targets. To cope with such a problem, a novel PHD smoothing algorithm, called the variable-lag PHD smoother, in which a detection process used to identify whether the filtered cardinality varies within the smooth lag is added before backward smoothing, is developed here. The analytical results show that the proposed smoother can almost eliminate the influences of temporary track dropping and anomalous smoothing, while both the cardinality and the state estimations can significantly be improved. Simulation results on two multi-target tracking scenarios verify the effectiveness of the proposed smoother.
基金supported by the National Natural Science Foundation of China (61773142)。
文摘An algorithm to track multiple sharply maneuvering targets without prior knowledge about new target birth is proposed. These targets are capable of achieving sharp maneuvers within a short period of time, such as drones and agile missiles.The probability hypothesis density (PHD) filter, which propagates only the first-order statistical moment of the full target posterior, has been shown to be a computationally efficient solution to multitarget tracking problems. However, the standard PHD filter operates on the single dynamic model and requires prior information about target birth distribution, which leads to many limitations in terms of practical applications. In this paper,we introduce a nonzero mean, white noise turn rate dynamic model and generalize jump Markov systems to multitarget case to accommodate sharply maneuvering dynamics. Moreover, to adaptively estimate newborn targets’information, a measurement-driven method based on the recursive random sampling consensus (RANSAC) algorithm is proposed. Simulation results demonstrate that the proposed method achieves significant improvement in tracking multiple sharply maneuvering targets with adaptive birth estimation.
基金National Natural Science Foundation of China (60572023)
文摘A new multi-target filtering algorithm, termed as the Gaussian sum probability hypothesis density (GSPHD) filter, is proposed for nonlinear non-Gaussian tracking models. Provided that the initial prior intensity of the states is Gaussian or can be identified as a Gaussian sum, the analytical results of the algorithm show that the posterior intensity at any subsequent time step remains a Gaussian sum under the assumption that the state noise, the measurement noise, target spawn intensity, new target birth intensity, target survival probability, and detection probability are all Gaussian sums. The analysis also shows that the existing Gaussian mixture probability hypothesis density (GMPHD) filter, which is unsuitable for handling the non-Gaussian noise cases, is no more than a special case of the proposed algorithm, which fills the shortage of incapability of treating non-Gaussian noise. The multi-target tracking simulation results verify the effectiveness of the proposed GSPHD.
基金supported by the National Natural Science Foundation of China (11472214)。
文摘Multi-range-false-target(MRFT) jamming is particularly challenging for tracking radar due to the dense clutter and the repeated multiple false targets. The conventional association-based multi-target tracking(MTT) methods suffer from high computational complexity and limited usage in the presence of MRFT jamming.In order to solve the above problems, an efficient and adaptable probability hypothesis density(PHD) filter is proposed. Based on the gating strategy, the obtained measurements are firstly classified into the generalized newborn target and the existing target measurements. The two categories of measurements are independently used in the decomposed form of the PHD filter. Meanwhile,an amplitude feature is used to suppress the dense clutter. In addition, an MRFT jamming suppression algorithm is introduced to the filter. Target amplitude information and phase quantization information are jointly used to deal with MRFT jamming and the clutter by modifying the particle weights of the generalized newborn targets. Simulations demonstrate the proposed algorithm can obtain superior correct discrimination rate of MRFT, and high-accuracy tracking performance with high computational efficiency in the presence of MRFT jamming in the dense clutter.
基金Projects(61002022,61471370)supported by the National Natural Science Foundation of China
文摘Detection and tracking of multi-target with unknown and varying number is a challenging issue, especially under the condition of low signal-to-noise ratio(SNR). A modified multi-target track-before-detect(TBD) method was proposed to tackle this issue using a nonstandard point observation model. The method was developed from sequential Monte Carlo(SMC)-based probability hypothesis density(PHD) filter, and it was implemented by modifying the original calculation in update weights of the particles and by adopting an adaptive particle sampling strategy. To efficiently execute the SMC-PHD based TBD method, a fast implementation approach was also presented by partitioning the particles into multiple subsets according to their position coordinates in 2D resolution cells of the sensor. Simulation results show the effectiveness of the proposed method for time-varying multi-target tracking using raw observation data.
基金supported by the National Natural Science Foundation of China(6130501761304264+1 种基金61402203)the Natural Science Foundation of Jiangsu Province(BK20130154)
文摘In this paper, we consider the problem of irregular shapes tracking for multiple extended targets by introducing the Gaussian surface matrix(GSM) into the framework of the random finite set(RFS) theory. The Gaussian surface function is constructed first by the measurements, and it is used to define the GSM via a mapping function. We then integrate the GSM with the probability hypothesis density(PHD) filter, the Bayesian recursion formulas of GSM-PHD are derived and the Gaussian mixture implementation is employed to obtain the closed-form solutions. Moreover, the estimated shapes are designed to guide the measurement set sub-partition, which can cope with the problem of the spatially close target tracking. Simulation results show that the proposed algorithm can effectively estimate irregular target shapes and exhibit good robustness in cross extended target tracking.
基金Projects(61671462,61471383,61671463,61304103)supported by the National Natural Science Foundation of ChinaProject(ZR2012FQ004)supported by the Natural Science Foundation of Shandong Province,China
文摘As a typical implementation of the probability hypothesis density(PHD) filter, sequential Monte Carlo PHD(SMC-PHD) is widely employed in highly nonlinear systems. However, the particle impoverishment problem introduced by the resampling step, together with the high computational burden problem, may lead to performance degradation and restrain the use of SMC-PHD filter in practical applications. In this work, a novel SMC-PHD filter based on particle compensation is proposed to solve above problems. Firstly, according to a comprehensive analysis on the particle impoverishment problem, a new particle generating mechanism is developed to compensate the particles. Then, all the particles are integrated into the SMC-PHD filter framework. Simulation results demonstrate that, in comparison with the SMC-PHD filter, proposed PC-SMC-PHD filter is capable of overcoming the particle impoverishment problem, as well as improving the processing rate for a certain tracking accuracy in different scenarios.
文摘In this paper, we present a novel and efficient track-before-detect (TBD) algorithm based on multiple-model probability hypothesis density (MM-PHD) for tracking infrared maneuvering dim multi-target. Firstly, the standard sequential Monte Carlo probability hypothesis density (SMC-PHD) TBD-based algorithm is introduced and sequentially improved by the adaptive process noise and the importance re-sampling on particle likelihood, which result in the improvement in the algorithm robustness and convergence speed. Secondly, backward recursion of SMC-PHD is derived in order to ameliorate the tracking performance especially at the time of the multi-target arising. Finally, SMC-PHD is extended with multiple-model to track maneuvering dim multi-target. Extensive experiments have proved the efficiency of the presented algorithm in tracking infrared maneuvering dim multi-target, which produces better performance in track detection and tracking than other TBD-based algorithms including SMC-PHD, multiple-model particle filter (MM-PF), histogram probability multi-hypothesis tracking (H-PMHT) and Viterbi-like.
文摘In this paper, an improved implementation of multiple model Gaussian mixture probability hypothesis density (MM-GM-PHD) filter is proposed. For maneuvering target tracking, based on joint distribution, the existing MM-GM-PHD filter is relatively complex. To simplify the filter, model conditioned distribution and model probability are used in the improved MM-GM-PHD filter. In the algorithm, every Gaussian components describing existing, birth and spawned targets are estimated by multiple model method. The final results of the Gaussian components are the fusion of multiple model estimations. The algorithm does not need to compute the joint PHD distribution and has a simpler computation procedure. Compared with single model GM-PHD, the algorithm gives more accurate estimation on the number and state of the targets. Compared with the existing MM-GM-PHD algorithm, it saves computation time by more than 30%. Moreover, it also outperforms the interacting multiple model joint probabilistic data association (IMMJPDA) filter in a relatively dense clutter environment.
基金Project supported by the National Natural Science Foundation of China(No.61401475)
文摘Cross-eye jamming is an electronic attack technique that induces an angular error in the monopulse radar by artificially creating a false target and deceiving the radar into detecting and tracking it.Presently,there is no effective anti-jamming method to counteract cross-eye jamming.In our study,through detailed analysis of the jamming mechanism,a multi-target model for a cross-eye jamming scenario is established within a random finite set framework.A novel anti-jamming method based on multitarget tracking using probability hypothesis density filters is subsequently developed by combining the characteristic differences between target and jamming with the releasing process of jamming.The characteristic differences between target and jamming and the releasing process of jamming are used to optimize particle partitioning.Particle identity labels that represent the properties of target and jamming are introduced into the detection and tracking processes.The release of cross-eye jamming is detected by estimating the number of targets in the beam,and the distinction between true targets and false jamming is realized through correlation and transmission between labels and estimated states.Thus,accurate tracking of the true targets is achieved under severe jamming conditions.Simulation results showed that the proposed method achieves a minimum delay in detection of cross-eye jamming and an accurate estimation of the target state.