This paper proposes a new multi-channel Medium Access Control (MAC) protocol named as Dual Reservation Code Division Multiple Access (CDMA) based MAC protocol with Power Control (DRCPC). The code channel is divided in...This paper proposes a new multi-channel Medium Access Control (MAC) protocol named as Dual Reservation Code Division Multiple Access (CDMA) based MAC protocol with Power Control (DRCPC). The code channel is divided into common channel,broadcast channel and several data chan-nels. And dynamic power control mechanism is implemented to reduce near-far interference. Compared with IEEE 802.11 Distributed Coordination Function (DCF) protocol,the results show that the pro-posed mechanism improves the average throughput and limits the transmission delay efficiently.展开更多
研究无线通信技术在电力变压器能效等级现场诊断中的应用,提出一种结合低功耗无线传感网络与边缘计算的智能诊断方法。通过远距离无线电(Long Range Radio,LoRa)通信协议实现电力变压器运行参数的高效传输,并利用深度学习模型对能效等...研究无线通信技术在电力变压器能效等级现场诊断中的应用,提出一种结合低功耗无线传感网络与边缘计算的智能诊断方法。通过远距离无线电(Long Range Radio,LoRa)通信协议实现电力变压器运行参数的高效传输,并利用深度学习模型对能效等级进行实时评估与分类。实验结果表明,该方法在复杂电网环境中表现出优越的诊断性能,诊断准确率达到98.7%,平均响应时间为1.2 s,显著优于传统人工测量技术和振动信号分析技术,为电力变压器的智能化管理提供可靠的技术支持。展开更多
Multi-hop device-to-device(D2D) communication can significantly improve the system performance. This paper studied the outage performance of D2 D communication assisted by another D2 D user using three-timeslot two-wa...Multi-hop device-to-device(D2D) communication can significantly improve the system performance. This paper studied the outage performance of D2 D communication assisted by another D2 D user using three-timeslot two-way amplify-and-forward relaying protocol over Rayleigh fading channels. Considering the co-channel interference from cellular user at the D2 D node,the approximate expression for the overall outage probability was derived. Furthermore,a power allocation optimum method to minimize the outage probability was developed,and the closed form expression for the optimal power allocation coefficient at the relay was derived. Simulation results demonstrate accuracy of the derived outage probability expressions. Simulation results also demonstrate that the outage performance can be improved using the proposed optimal power allocation method.展开更多
The symbol-error-rate(SER) and power allocation for hybrid cooperative(HC) transmission system are investigated.Closed-form SER expression is derived by using the moment generating function(MGF)-based approach.H...The symbol-error-rate(SER) and power allocation for hybrid cooperative(HC) transmission system are investigated.Closed-form SER expression is derived by using the moment generating function(MGF)-based approach.However,the resultant SER contains an MGF of the harmonic mean of two independent random variables(RVs),which is not tractable in SER analysis.We present a simple MGF expression of the harmonic mean of two independent RVs which avoids the hypergeometric functions used commonly in previous studies.Using the simple MGF,closed-form SER for HC system with M-ary phase shift keying(M-PSK) signals is provided.Further,an approximation as well as an upper bound of the SER is presented.It is shown that the SER approximation is asymptotically tight.Based on the tight SER approximation,the power allocation of the HC system is investigated.It is shown that the optimal power allocation does not depend on the fading parameters of the source-destination(SD) channel and it only depends on the source-relay(SR) and relay-destination(RD) channels.Moreover,the performance gain of the power allocation depends on the ratio of the channel quality between RD and SR.With the increase of this ratio,more performance gain can be acquired.展开更多
A study of wireless technologies for IoT applications in terms of power consumption has been presented in this paper. The study focuses on the importance of using low power wireless techniques and modules in IoT appli...A study of wireless technologies for IoT applications in terms of power consumption has been presented in this paper. The study focuses on the importance of using low power wireless techniques and modules in IoT applications by introducing a comparative between different low power wireless communication techniques such as ZigBee, Low Power Wi-Fi, 6LowPAN, LPWA and their modules to conserve power and longing the life for the IoT network sensors. The approach of the study is in term of protocol used and the particular module that achieve that protocol. The candidate protocols are classified according to the range of connectivity between sensor nodes. For short ranges connectivity the candidate protocols are ZigBee, 6LoWPAN and low power Wi-Fi. For long connectivity the candidate is LoRaWAN protocol. The results of the study demonstrate that the choice of module for each protocol plays a vital role in battery life due to the difference of power consumption for each module/protocol. So, the evaluation of protocols with each other depends on the module used.展开更多
Collision detection mechanisms in Wireless Sensor Networks (WSNs) have largely been revolving around direct demodulation and decoding of received packets and deciding on a collision based on some form of a frame error...Collision detection mechanisms in Wireless Sensor Networks (WSNs) have largely been revolving around direct demodulation and decoding of received packets and deciding on a collision based on some form of a frame error detection mechanism, such as a CRC check. The obvious drawback of full detection of a received packet is the need to expend a significant amount of energy and processing complexity in order to fully decode a packet, only to discover the packet is illegible due to a collision. In this paper, we propose a suite of novel, yet simple and power-efficient algorithms to detect a collision without the need for full-decoding of the received packet. Our novel algorithms aim at detecting collision through fast examination of the signal statistics of a short snippet of the received packet via a relatively small number of computations over a small number of received IQ samples. Hence, the proposed algorithms operate directly at the output of the receiver's analog-to-digital converter and eliminate the need to pass the signal through the entire. In addition, we present a complexity and power-saving comparison between our novel algorithms and conventional full-decoding (for select coding schemes) to demonstrate the significant power and complexity saving advantage of our algorithms.展开更多
基金Supported by the Science Foundation of Shanghai Mu-nicipal Commission of Science and Technology under contract 045115012.
文摘This paper proposes a new multi-channel Medium Access Control (MAC) protocol named as Dual Reservation Code Division Multiple Access (CDMA) based MAC protocol with Power Control (DRCPC). The code channel is divided into common channel,broadcast channel and several data chan-nels. And dynamic power control mechanism is implemented to reduce near-far interference. Compared with IEEE 802.11 Distributed Coordination Function (DCF) protocol,the results show that the pro-posed mechanism improves the average throughput and limits the transmission delay efficiently.
文摘研究无线通信技术在电力变压器能效等级现场诊断中的应用,提出一种结合低功耗无线传感网络与边缘计算的智能诊断方法。通过远距离无线电(Long Range Radio,LoRa)通信协议实现电力变压器运行参数的高效传输,并利用深度学习模型对能效等级进行实时评估与分类。实验结果表明,该方法在复杂电网环境中表现出优越的诊断性能,诊断准确率达到98.7%,平均响应时间为1.2 s,显著优于传统人工测量技术和振动信号分析技术,为电力变压器的智能化管理提供可靠的技术支持。
基金supported by the National High Technology Research and Development Program of China(863 program) (No.2014AA01A705)partly supported by National Natural Science Foundation of China (No. 61271236)+1 种基金the Natural Science Foundation of Jiangsu Province (No. BK20130875)Project of Key Laboratory of Wireless Communications of Jiangsu Province (No.NK214001)
文摘Multi-hop device-to-device(D2D) communication can significantly improve the system performance. This paper studied the outage performance of D2 D communication assisted by another D2 D user using three-timeslot two-way amplify-and-forward relaying protocol over Rayleigh fading channels. Considering the co-channel interference from cellular user at the D2 D node,the approximate expression for the overall outage probability was derived. Furthermore,a power allocation optimum method to minimize the outage probability was developed,and the closed form expression for the optimal power allocation coefficient at the relay was derived. Simulation results demonstrate accuracy of the derived outage probability expressions. Simulation results also demonstrate that the outage performance can be improved using the proposed optimal power allocation method.
基金supported by the National Basic Research Program of China (973 Program) (2010CB731803)the National Science Foundation for Innovative Research Groups of China (60921001)
文摘The symbol-error-rate(SER) and power allocation for hybrid cooperative(HC) transmission system are investigated.Closed-form SER expression is derived by using the moment generating function(MGF)-based approach.However,the resultant SER contains an MGF of the harmonic mean of two independent random variables(RVs),which is not tractable in SER analysis.We present a simple MGF expression of the harmonic mean of two independent RVs which avoids the hypergeometric functions used commonly in previous studies.Using the simple MGF,closed-form SER for HC system with M-ary phase shift keying(M-PSK) signals is provided.Further,an approximation as well as an upper bound of the SER is presented.It is shown that the SER approximation is asymptotically tight.Based on the tight SER approximation,the power allocation of the HC system is investigated.It is shown that the optimal power allocation does not depend on the fading parameters of the source-destination(SD) channel and it only depends on the source-relay(SR) and relay-destination(RD) channels.Moreover,the performance gain of the power allocation depends on the ratio of the channel quality between RD and SR.With the increase of this ratio,more performance gain can be acquired.
文摘A study of wireless technologies for IoT applications in terms of power consumption has been presented in this paper. The study focuses on the importance of using low power wireless techniques and modules in IoT applications by introducing a comparative between different low power wireless communication techniques such as ZigBee, Low Power Wi-Fi, 6LowPAN, LPWA and their modules to conserve power and longing the life for the IoT network sensors. The approach of the study is in term of protocol used and the particular module that achieve that protocol. The candidate protocols are classified according to the range of connectivity between sensor nodes. For short ranges connectivity the candidate protocols are ZigBee, 6LoWPAN and low power Wi-Fi. For long connectivity the candidate is LoRaWAN protocol. The results of the study demonstrate that the choice of module for each protocol plays a vital role in battery life due to the difference of power consumption for each module/protocol. So, the evaluation of protocols with each other depends on the module used.
文摘Collision detection mechanisms in Wireless Sensor Networks (WSNs) have largely been revolving around direct demodulation and decoding of received packets and deciding on a collision based on some form of a frame error detection mechanism, such as a CRC check. The obvious drawback of full detection of a received packet is the need to expend a significant amount of energy and processing complexity in order to fully decode a packet, only to discover the packet is illegible due to a collision. In this paper, we propose a suite of novel, yet simple and power-efficient algorithms to detect a collision without the need for full-decoding of the received packet. Our novel algorithms aim at detecting collision through fast examination of the signal statistics of a short snippet of the received packet via a relatively small number of computations over a small number of received IQ samples. Hence, the proposed algorithms operate directly at the output of the receiver's analog-to-digital converter and eliminate the need to pass the signal through the entire. In addition, we present a complexity and power-saving comparison between our novel algorithms and conventional full-decoding (for select coding schemes) to demonstrate the significant power and complexity saving advantage of our algorithms.