This paper proposes a theoretical method using finite element analysis(FEA) to calculate the plastic collapse loads of pressure vessels under internal pressure,and compares the analytical methods according to three cr...This paper proposes a theoretical method using finite element analysis(FEA) to calculate the plastic collapse loads of pressure vessels under internal pressure,and compares the analytical methods according to three criteria stated in the ASME Boiler Pressure Vessel Code. First,a finite element technique using the arc-length algorithm and the restart analysis is developed to conduct the plastic collapse analysis of vessels,which includes the material and geometry non-linear properties of vessels. Second,as the mechanical properties of vessels are assumed to be elastic-perfectly plastic,the limit load analysis is performed by em-ploying the Newton-Raphson algorithm,while the limit pressure of vessels is obtained by the twice-elastic-slope method and the tangent intersection method respectively to avoid excessive deformation. Finally,the elastic stress analysis under working pressure is conducted and the stress strength of vessels is checked by sorting the stress results. The results are compared with those obtained by experiments and other existing models. This work provides a reference for the selection of the failure criteria and the calculation of the plastic collapse load.展开更多
According to the Mohr-Coulomb yield criterion, the stress field of the infinite slope is derived under a vertical uniform load q on the top of the slope. It is indicated that elastic and elasto-plastic states would oc...According to the Mohr-Coulomb yield criterion, the stress field of the infinite slope is derived under a vertical uniform load q on the top of the slope. It is indicated that elastic and elasto-plastic states would occur in the slope. When q is smaller than the critical load, q(p), the slope is in the elastic state. If q equals q(p), the slope is in the critical state, and the plastic deformation would occur along the critical angle. With the increase of q, the plastic zone would extend, and the slope is in the elasto-plastic State. If q equals limit load, the slope is in the limit equilibrium state. The slope may be divided into three zones. Some charts of the critical angle, the critical and limit load coefficients are presented in this paper.展开更多
This paper analyzes the peculiarities of plastic flow of metals for the case of non-proportional loading when the loading path consists of two portions—uniaxial tension and subsequent infinitesimal pure shear (torsio...This paper analyzes the peculiarities of plastic flow of metals for the case of non-proportional loading when the loading path consists of two portions—uniaxial tension and subsequent infinitesimal pure shear (torsion). The issue is discussed from the point of view of the hardening rules governing the kinetics of loading surface. Three cases are considered, flow plasticity theory with isotropic and kinematic hardening rule, as well as the synthetic theory of plastic deformation. As a result, the synthetic theory leads to the results that correlate with experiments, whereas the former two theories associated with smooth loading surfaces give a principal discrepancy with experimental data.展开更多
Experimental investigations were pedermed on the plastic deformation along bilinear strain paths with various values of corner-angle by subjecting thin-walled tubular specimens of type 302 stainless steel to combined ...Experimental investigations were pedermed on the plastic deformation along bilinear strain paths with various values of corner-angle by subjecting thin-walled tubular specimens of type 302 stainless steel to combined axial and torsional loads. Variations of scalar and vectorial behavior of the stress response are discnssed in the vector space of plastic strain. It is found that the intrinsic geometry of loading path, the plastic strain history and the coapled effect among strain components effect effectively the stress response of the material. The experimental results also show that these effects will disappear gradually with increasing strain.展开更多
The computer simulation of Al three-dimensional crystallite containing grain boundary of special type was carried out and its behaviour under high rate loading was investigated. The molecular dynamics method was used ...The computer simulation of Al three-dimensional crystallite containing grain boundary of special type was carried out and its behaviour under high rate loading was investigated. The molecular dynamics method was used and interaction betwen atoms was described based on pseudopotential method. Vortical character of the atom movements in the grain boundary region is realized under shear loading in certain directions. Back and forth movements of atoms in the direction which is perpendicular to the shear also arise. Amplitude of such movements is approximately equal to an interplanar distance in this direction.展开更多
The materials are made with a graded composition and microstructure in the thickness direction from the ceramic side to the metal side. The cyclic thermal loading and high temperasure gradient environment are simulate...The materials are made with a graded composition and microstructure in the thickness direction from the ceramic side to the metal side. The cyclic thermal loading and high temperasure gradient environment are simulated by heating the ceramic surface with a cyclic hear flux input and cooling the metal surface with a flowing liquid niterogen. The thermal and themo-elastic-plastic response of the materials is calculated using the isotropic hardening model and kinetic hardening model. Emphasis is placed on the response analysis under the different graded compositional distributions. Through the response analysis, the optimum design process of the graded composition under the dynamic case is established, which is bused on a unified viewpoint of the heat insulation property, thermal stress relaxation property and stress history feature.展开更多
Fatigue damage of materials includes static damage and cyclic damage.Static damage is a ratio of the plastic energy in first static loading to the statictoughness, while cyclic damage is the ratio of the cyclic plasti...Fatigue damage of materials includes static damage and cyclic damage.Static damage is a ratio of the plastic energy in first static loading to the statictoughness, while cyclic damage is the ratio of the cyclic plastic hysteresis energy to thefatigue toughness. In the calculation, cyclic hardening (or softening) of a material istaken into account, which results in the increase (or decrease) of the yield stress. Forsimplification, it is assumed that stress and strain in cyclic loading vary in accordancewith the hysteresis loop. Fatigue toughness of a material can be detennined bysymmetric cyclic stress controlled fatigue test. A method, rational and convenient forengineering, is proposed to estimate the fatigue life under random loading based onplastic hysteresis energy theorem. Preliminary verification by test is satisfactory.展开更多
An experimental investigation was carried out on the flow characteristic and hardening of steel 40 subjected to complex combined axial-torsional cyclic straining. For a specific cyclic strain path, the steel has mainl...An experimental investigation was carried out on the flow characteristic and hardening of steel 40 subjected to complex combined axial-torsional cyclic straining. For a specific cyclic strain path, the steel has mainly cyclic softening behavior when the strain amplitude is small. While with an increase of the effective strain amplitude, the softening becomes small, but there is the cyclic softening even though the steel is subjected to the cyclic loading by a square strain path. However, the steel has cyclic additional hardening by a nonproportional path, compared with the proportional cycling. Generally, the additional hardening is small and its historical effect is not obvious at small strain amplitude. The additional hardening is remarkable by a cross-triangular strain path of large strain amplitude. The memory of the history of nonproportional cyclic loading, the direction of plastic flow and the plastic modulus of the steel were also studied.展开更多
By analyzing some mechanical quantities and typical dynamic testing results for similar models, this paper studies the scale effect pertaining to similar models made of strain-rate dependent materials, and also descri...By analyzing some mechanical quantities and typical dynamic testing results for similar models, this paper studies the scale effect pertaining to similar models made of strain-rate dependent materials, and also describes the effect of plastic strain rate on the mechanical behavior of similar models under dynamic loading. It has been pointed out that the strain-rate sensitivity for dynamic behavior increases with the decrease of the characteristic dimension.展开更多
An experimental study was carried out of the cyclic behavior of U71Mn rail steel subjected to uniaxial strain and stress. The effects of cyclic struin amplitude, mean struin,strain loading rate and their histories on ...An experimental study was carried out of the cyclic behavior of U71Mn rail steel subjected to uniaxial strain and stress. The effects of cyclic struin amplitude, mean struin,strain loading rate and their histories on the strain cyclic characteristics were studied.Under the asymmetrical stress cycling, the effects of stress amplitude, mean stress,stress loading rate and their histories on the ratcheting were analyzed. The interaction between strain cycling and stress cycling was also discussed. It is shown that either the cyclic characteristics under strain cycling or the ratcheting under asymmetrical stress cycling depends not only on the cumnt loading state, but also on the previous loading history. Some significant results are obtained.展开更多
A theoretical rigid-plastic analysis for the dynamic shear failure of beams under impulsive loading is presented when using a travelling plastic shear hinge model which tabes into account material strain hardening. Th...A theoretical rigid-plastic analysis for the dynamic shear failure of beams under impulsive loading is presented when using a travelling plastic shear hinge model which tabes into account material strain hardening. The maximum dynamic shear strain and shear strain-rate can be predicted in addition to the permanent transverse deflections and other parameters. The conditions for the three modes of shear failure, i.e., excess deflection failure, excess shear strain failure and adiabatic shear failure are analyzed. The special case of an infinitesimally small plastic zone is discussed and compared with Nonaka's solution for a rigid, perfectly plastic material. The results can also be generalized to examine the dynamic response of fibre-reinforced beams.展开更多
J ep -integral is derived for characterizing the frac- ture behavior of elastic-plastic materials. The J ep -integral differs from Rice’s J-integral in that the free energy density rather than the stress working dens...J ep -integral is derived for characterizing the frac- ture behavior of elastic-plastic materials. The J ep -integral differs from Rice’s J-integral in that the free energy density rather than the stress working density is employed to define energy-momentum tensor. The J ep -integral is proved to be path-dependent regardless of incremental plasticity and deformation plasticity. The J epintegral possesses clearly clear physical meaning: (1) the value J ep tip evaluated on the infinitely small contour surrounding the crack tip represents the crack tip energy dissipation; (2) when the global steadystate crack growth condition is approached, the value of J ep farss calculated along the boundary contour equals to the sum of crack tip dissipation and bulk dissipation of plastic zone. The theoretical results are verified by simulating mode I crack problems.展开更多
The shakedown behavior of structures subjected to a combined loading of constant and cyclic loads has been well researched.For some specified problems,shakedown limit loads have been obtained.However,the general effec...The shakedown behavior of structures subjected to a combined loading of constant and cyclic loads has been well researched.For some specified problems,shakedown limit loads have been obtained.However,the general effect of combined loading on the structural shakedown has not yet been presented.The general analytic solution of the elastic shakedown limit load is thus derived for a structure subjected to combined loading.Polizzotto's extended static shakedown theorem for combined loading is applied.The stress field in equilibrium with the external constant load required in Polizzotto's extended theorem is constructed by subtracting the reference elastic stress field of the peak cyclic load from the elastic-plastic stress field of the combined constant load and peak cyclic load.The shakedown condition of the stress field is then derived according to the extended theorem.Through the analytical analysis of the shakedown condition,the structural shakedown behavior under combined loading is investigated.A general solution of the shakedown limit load is then derived,and the effects of the combined loading on the shakedown behavior are proposed.The obtained general analytical result is applied to a hollow tension specimen under constant tension and alternating torsion and a plate with a central hole under constant and cyclic tension.The results are consistent with the solutions reported in the literature.展开更多
The stability and safety are very important issues for the dam structure which are built in seismic regions. The dam body consists of soil materials that behave nonlinearly modelled with finite elements. The numerical...The stability and safety are very important issues for the dam structure which are built in seismic regions. The dam body consists of soil materials that behave nonlinearly modelled with finite elements. The numerical investigation employs a fully nonlinear finite element analysis considering linear and elastic-plastic constitutive model to describe the material properties of the soil. In this paper, seismic analysis of an earthen dam is carried out using Geo-Studio software based on finite element method. Initially, the in-situ stress state analysis has been done before the earthquake established, and then its results are used in the seismic analysis as a parent analysis. A complete parametric study is carried out to identify the effects of input motion characteristics, soil behaviour and strength of the shell and core materials on the dynamic response of earthen dams. The real earthquake record is used as input motions. The analysis gives the overall pattern of the dam behaviour in terms of contours of displacements and stresses.展开更多
基金Project (Nos. 2006BAK04A02-02 and 2006BAK02B02-08) supported by the National Key Technology R&D Program, China
文摘This paper proposes a theoretical method using finite element analysis(FEA) to calculate the plastic collapse loads of pressure vessels under internal pressure,and compares the analytical methods according to three criteria stated in the ASME Boiler Pressure Vessel Code. First,a finite element technique using the arc-length algorithm and the restart analysis is developed to conduct the plastic collapse analysis of vessels,which includes the material and geometry non-linear properties of vessels. Second,as the mechanical properties of vessels are assumed to be elastic-perfectly plastic,the limit load analysis is performed by em-ploying the Newton-Raphson algorithm,while the limit pressure of vessels is obtained by the twice-elastic-slope method and the tangent intersection method respectively to avoid excessive deformation. Finally,the elastic stress analysis under working pressure is conducted and the stress strength of vessels is checked by sorting the stress results. The results are compared with those obtained by experiments and other existing models. This work provides a reference for the selection of the failure criteria and the calculation of the plastic collapse load.
文摘According to the Mohr-Coulomb yield criterion, the stress field of the infinite slope is derived under a vertical uniform load q on the top of the slope. It is indicated that elastic and elasto-plastic states would occur in the slope. When q is smaller than the critical load, q(p), the slope is in the elastic state. If q equals q(p), the slope is in the critical state, and the plastic deformation would occur along the critical angle. With the increase of q, the plastic zone would extend, and the slope is in the elasto-plastic State. If q equals limit load, the slope is in the limit equilibrium state. The slope may be divided into three zones. Some charts of the critical angle, the critical and limit load coefficients are presented in this paper.
文摘This paper analyzes the peculiarities of plastic flow of metals for the case of non-proportional loading when the loading path consists of two portions—uniaxial tension and subsequent infinitesimal pure shear (torsion). The issue is discussed from the point of view of the hardening rules governing the kinetics of loading surface. Three cases are considered, flow plasticity theory with isotropic and kinematic hardening rule, as well as the synthetic theory of plastic deformation. As a result, the synthetic theory leads to the results that correlate with experiments, whereas the former two theories associated with smooth loading surfaces give a principal discrepancy with experimental data.
文摘Experimental investigations were pedermed on the plastic deformation along bilinear strain paths with various values of corner-angle by subjecting thin-walled tubular specimens of type 302 stainless steel to combined axial and torsional loads. Variations of scalar and vectorial behavior of the stress response are discnssed in the vector space of plastic strain. It is found that the intrinsic geometry of loading path, the plastic strain history and the coapled effect among strain components effect effectively the stress response of the material. The experimental results also show that these effects will disappear gradually with increasing strain.
文摘The computer simulation of Al three-dimensional crystallite containing grain boundary of special type was carried out and its behaviour under high rate loading was investigated. The molecular dynamics method was used and interaction betwen atoms was described based on pseudopotential method. Vortical character of the atom movements in the grain boundary region is realized under shear loading in certain directions. Back and forth movements of atoms in the direction which is perpendicular to the shear also arise. Amplitude of such movements is approximately equal to an interplanar distance in this direction.
基金Supported by the National Natural Science foundation of China
文摘The materials are made with a graded composition and microstructure in the thickness direction from the ceramic side to the metal side. The cyclic thermal loading and high temperasure gradient environment are simulated by heating the ceramic surface with a cyclic hear flux input and cooling the metal surface with a flowing liquid niterogen. The thermal and themo-elastic-plastic response of the materials is calculated using the isotropic hardening model and kinetic hardening model. Emphasis is placed on the response analysis under the different graded compositional distributions. Through the response analysis, the optimum design process of the graded composition under the dynamic case is established, which is bused on a unified viewpoint of the heat insulation property, thermal stress relaxation property and stress history feature.
文摘Fatigue damage of materials includes static damage and cyclic damage.Static damage is a ratio of the plastic energy in first static loading to the statictoughness, while cyclic damage is the ratio of the cyclic plastic hysteresis energy to thefatigue toughness. In the calculation, cyclic hardening (or softening) of a material istaken into account, which results in the increase (or decrease) of the yield stress. Forsimplification, it is assumed that stress and strain in cyclic loading vary in accordancewith the hysteresis loop. Fatigue toughness of a material can be detennined bysymmetric cyclic stress controlled fatigue test. A method, rational and convenient forengineering, is proposed to estimate the fatigue life under random loading based onplastic hysteresis energy theorem. Preliminary verification by test is satisfactory.
基金The project supported by National Natural Science Foundation of China
文摘An experimental investigation was carried out on the flow characteristic and hardening of steel 40 subjected to complex combined axial-torsional cyclic straining. For a specific cyclic strain path, the steel has mainly cyclic softening behavior when the strain amplitude is small. While with an increase of the effective strain amplitude, the softening becomes small, but there is the cyclic softening even though the steel is subjected to the cyclic loading by a square strain path. However, the steel has cyclic additional hardening by a nonproportional path, compared with the proportional cycling. Generally, the additional hardening is small and its historical effect is not obvious at small strain amplitude. The additional hardening is remarkable by a cross-triangular strain path of large strain amplitude. The memory of the history of nonproportional cyclic loading, the direction of plastic flow and the plastic modulus of the steel were also studied.
基金National Natural Science Foundation of China (No.10072068)
文摘By analyzing some mechanical quantities and typical dynamic testing results for similar models, this paper studies the scale effect pertaining to similar models made of strain-rate dependent materials, and also describes the effect of plastic strain rate on the mechanical behavior of similar models under dynamic loading. It has been pointed out that the strain-rate sensitivity for dynamic behavior increases with the decrease of the characteristic dimension.
文摘An experimental study was carried out of the cyclic behavior of U71Mn rail steel subjected to uniaxial strain and stress. The effects of cyclic struin amplitude, mean struin,strain loading rate and their histories on the strain cyclic characteristics were studied.Under the asymmetrical stress cycling, the effects of stress amplitude, mean stress,stress loading rate and their histories on the ratcheting were analyzed. The interaction between strain cycling and stress cycling was also discussed. It is shown that either the cyclic characteristics under strain cycling or the ratcheting under asymmetrical stress cycling depends not only on the cumnt loading state, but also on the previous loading history. Some significant results are obtained.
文摘A theoretical rigid-plastic analysis for the dynamic shear failure of beams under impulsive loading is presented when using a travelling plastic shear hinge model which tabes into account material strain hardening. The maximum dynamic shear strain and shear strain-rate can be predicted in addition to the permanent transverse deflections and other parameters. The conditions for the three modes of shear failure, i.e., excess deflection failure, excess shear strain failure and adiabatic shear failure are analyzed. The special case of an infinitesimally small plastic zone is discussed and compared with Nonaka's solution for a rigid, perfectly plastic material. The results can also be generalized to examine the dynamic response of fibre-reinforced beams.
基金supported by the Program of Excellent Team in Harbin Institute of Technology and the National Natural Science Foundation of China (10502017, 10432030)
文摘J ep -integral is derived for characterizing the frac- ture behavior of elastic-plastic materials. The J ep -integral differs from Rice’s J-integral in that the free energy density rather than the stress working density is employed to define energy-momentum tensor. The J ep -integral is proved to be path-dependent regardless of incremental plasticity and deformation plasticity. The J epintegral possesses clearly clear physical meaning: (1) the value J ep tip evaluated on the infinitely small contour surrounding the crack tip represents the crack tip energy dissipation; (2) when the global steadystate crack growth condition is approached, the value of J ep farss calculated along the boundary contour equals to the sum of crack tip dissipation and bulk dissipation of plastic zone. The theoretical results are verified by simulating mode I crack problems.
基金Sponsored by the National Natural Science Foundation of China(Grant No.51575474)the College Innovation Team Leader Training Program of Province(Grant No.LJRC012)the Natural Science Foundation of Hebei Province,China(Grant No.E2015203220)
文摘The shakedown behavior of structures subjected to a combined loading of constant and cyclic loads has been well researched.For some specified problems,shakedown limit loads have been obtained.However,the general effect of combined loading on the structural shakedown has not yet been presented.The general analytic solution of the elastic shakedown limit load is thus derived for a structure subjected to combined loading.Polizzotto's extended static shakedown theorem for combined loading is applied.The stress field in equilibrium with the external constant load required in Polizzotto's extended theorem is constructed by subtracting the reference elastic stress field of the peak cyclic load from the elastic-plastic stress field of the combined constant load and peak cyclic load.The shakedown condition of the stress field is then derived according to the extended theorem.Through the analytical analysis of the shakedown condition,the structural shakedown behavior under combined loading is investigated.A general solution of the shakedown limit load is then derived,and the effects of the combined loading on the shakedown behavior are proposed.The obtained general analytical result is applied to a hollow tension specimen under constant tension and alternating torsion and a plate with a central hole under constant and cyclic tension.The results are consistent with the solutions reported in the literature.
文摘The stability and safety are very important issues for the dam structure which are built in seismic regions. The dam body consists of soil materials that behave nonlinearly modelled with finite elements. The numerical investigation employs a fully nonlinear finite element analysis considering linear and elastic-plastic constitutive model to describe the material properties of the soil. In this paper, seismic analysis of an earthen dam is carried out using Geo-Studio software based on finite element method. Initially, the in-situ stress state analysis has been done before the earthquake established, and then its results are used in the seismic analysis as a parent analysis. A complete parametric study is carried out to identify the effects of input motion characteristics, soil behaviour and strength of the shell and core materials on the dynamic response of earthen dams. The real earthquake record is used as input motions. The analysis gives the overall pattern of the dam behaviour in terms of contours of displacements and stresses.