期刊文献+
共找到99,730篇文章
< 1 2 250 >
每页显示 20 50 100
Tailoring Light–Matter Interactions in Overcoupled Resonator for Biomolecule Recognition and Detection
1
作者 Dongxiao Li Hong Zhou +2 位作者 Zhihao Ren Cheng Xu Chengkuo Lee 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期262-280,共19页
Plasmonic nanoantennas provide unique opportunities for precise control of light–matter coupling in surface-enhanced infrared absorption(SEIRA)spectroscopy,but most of the resonant systems realized so far suffer from... Plasmonic nanoantennas provide unique opportunities for precise control of light–matter coupling in surface-enhanced infrared absorption(SEIRA)spectroscopy,but most of the resonant systems realized so far suffer from the obstacles of low sensitivity,narrow bandwidth,and asymmetric Fano resonance perturbations.Here,we demonstrated an overcoupled resonator with a high plasmon-molecule coupling coefficient(μ)(OC-Hμresonator)by precisely controlling the radiation loss channel,the resonator-oscillator coupling channel,and the frequency detuning channel.We observed a strong dependence of the sensing performance on the coupling state,and demonstrated that OC-Hμresonator has excellent sensing properties of ultra-sensitive(7.25%nm^(−1)),ultra-broadband(3–10μm),and immune asymmetric Fano lineshapes.These characteristics represent a breakthrough in SEIRA technology and lay the foundation for specific recognition of biomolecules,trace detection,and protein secondary structure analysis using a single array(array size is 100×100μm^(2)).In addition,with the assistance of machine learning,mixture classification,concentration prediction and spectral reconstruction were achieved with the highest accuracy of 100%.Finally,we demonstrated the potential of OC-Hμresonator for SARS-CoV-2 detection.These findings will promote the wider application of SEIRA technology,while providing new ideas for other enhanced spectroscopy technologies,quantum photonics and studying light–matter interactions. 展开更多
关键词 Plasmonic nanoantennas Light-matter interaction Surface-enhanced infrared absorption Overcoupled BIOSENSING
在线阅读 下载PDF
T cell interactions with microglia in immune-inflammatory processes of ischemic stroke
2
作者 Yuxiao Zheng Zilin Ren +8 位作者 Ying Liu Juntang Yan Congai Chen Yanhui He Yuyu Shi Fafeng Cheng Qingguo Wang Changxiang Li Xueqian Wang 《Neural Regeneration Research》 SCIE CAS 2025年第5期1277-1292,共16页
The primary mechanism of secondary injury after cerebral ischemia may be the brain inflammation that emerges after an ischemic stroke,which promotes neuronal death and inhibits nerve tissue regeneration.As the first i... The primary mechanism of secondary injury after cerebral ischemia may be the brain inflammation that emerges after an ischemic stroke,which promotes neuronal death and inhibits nerve tissue regeneration.As the first immune cells to be activated after an ischemic stroke,microglia play an important immunomodulatory role in the progression of the condition.After an ischemic stroke,peripheral blood immune cells(mainly T cells)are recruited to the central nervous system by chemokines secreted by immune cells in the brain,where they interact with central nervous system cells(mainly microglia)to trigger a secondary neuroimmune response.This review summarizes the interactions between T cells and microglia in the immune-inflammatory processes of ischemic stroke.We found that,during ischemic stroke,T cells and microglia demonstrate a more pronounced synergistic effect.Th1,Th17,and M1 microglia can co-secrete proinflammatory factors,such as interferon-γ,tumor necrosis factor-α,and interleukin-1β,to promote neuroinflammation and exacerbate brain injury.Th2,Treg,and M2 microglia jointly secrete anti-inflammatory factors,such as interleukin-4,interleukin-10,and transforming growth factor-β,to inhibit the progression of neuroinflammation,as well as growth factors such as brain-derived neurotrophic factor to promote nerve regeneration and repair brain injury.Immune interactions between microglia and T cells influence the direction of the subsequent neuroinflammation,which in turn determines the prognosis of ischemic stroke patients.Clinical trials have been conducted on the ways to modulate the interactions between T cells and microglia toward anti-inflammatory communication using the immunosuppressant fingolimod or overdosing with Treg cells to promote neural tissue repair and reduce the damage caused by ischemic stroke.However,such studies have been relatively infrequent,and clinical experience is still insufficient.In summary,in ischemic stroke,T cell subsets and activated microglia act synergistically to regulate inflammatory progression,mainly by secreting inflammatory factors.In the future,a key research direction for ischemic stroke treatment could be rooted in the enhancement of anti-inflammatory factor secretion by promoting the generation of Th2 and Treg cells,along with the activation of M2-type microglia.These approaches may alleviate neuroinflammation and facilitate the repair of neural tissues. 展开更多
关键词 BRAIN IMMUNE INFLAMMATION interaction ischemic stroke mechanism MICROGLIA NEURON secondary injury T cells
在线阅读 下载PDF
Generating Social Interactions with Adolescents with Autism Spectrum Disorder, through a Gesture Imitation Game Led by a Humanoid Robot, in Collaboration with a Human Educator
3
作者 Linda Vallée Malik Koné Olivier Asseu 《Open Journal of Psychiatry》 2025年第1期55-71,共17页
This article describes a pilot study aiming at generating social interactions between a humanoid robot and adolescents with autism spectrum disorder (ASD), through the practice of a gesture imitation game. The partici... This article describes a pilot study aiming at generating social interactions between a humanoid robot and adolescents with autism spectrum disorder (ASD), through the practice of a gesture imitation game. The participants were a 17-year-old young lady with ASD and intellectual deficit, and a control participant: a preadolescent with ASD but no intellectual deficit (Asperger syndrome). The game is comprised of four phases: greetings, pairing, imitation, and closing. Field educators were involved, playing specific roles: visual or physical inciter. The use of a robot allows for catching the participants’ attention, playing the imitation game for a longer period of time than with a human partner, and preventing the game partner’s negative facial expressions resulting from tiredness, impatience, or boredom. The participants’ behavior was observed in terms of initial approach towards the robot, positioning relative to the robot in terms of distance and orientation, reactions to the robot’s voice or moves, signs of happiness, and imitation attempts. Results suggest a more and more natural approach towards the robot during the sessions, as well as a higher level of social interaction, based on the variations of the parameters listed above. We use these preliminary results to draw the next steps of our research work as well as identify further perspectives, with this aim in mind: improving social interactions with adolescents with ASD and intellectual deficit, allowing for better integration of these people into our societies. 展开更多
关键词 Human-Robot interaction (HRI) Autism Spectrum Disorder (ASD) IMITATION Artificial Intelligence Gesture Recognition Social interaction
在线阅读 下载PDF
Interactions between Zn, Fe, Cu and Mn in Various Organs of Bread Wheat at Deficiency and Adequate of Absorbable Zinc
4
作者 Mohsen Niazkhani Azita Navvabi 《American Journal of Plant Sciences》 2025年第2期232-244,共13页
Deficiency or restriction of Zn absorption in soils is one of the most common micronutrients deficient in cereal plants. To investigate critical micronutrient interaction in zinc deficiency and zinc sufficient in soil... Deficiency or restriction of Zn absorption in soils is one of the most common micronutrients deficient in cereal plants. To investigate critical micronutrient interaction in zinc deficiency and zinc sufficient in soil, a factorial experiment based on completely randomized design (CRD) with three replications was conducted in 2023. Six wheat cultivars with different Zn efficiency were used. The cultivars were grown under Zn deficiency and adequate conditions. Results showed that in Zn deficiency conditions, with increasing Zn concentration in the roots, Fe concentrations were increased too, while the Cu and Mn concentrations decreased. In the same condition and with increasing Zn concentration in shoots, the concentrations of Fe and Mn decreased, while Cu were increased. However, by increasing Zn concentration, Fe, Cu, and Mn concentrations were increased in Zn deficiency condition in grains, as well as Zn sufficient conditions. RST (root to shoot micronutrient translocation) comparison of cultivars showed that in lack of Zn, the ability of translocation of Zn, Fe, and Mn in Zn-inefficient cultivar from root to shoot was higher than inefficient cultivar. In the same conditions, the capability of Zn-inefficient cultivar in Cu translocation from root to shoot was lower than other cultivars. In general, it seems that in Zn deficiency conditions, there are antagonistic effects among Zn, Cu and Mn and synergistic effects between Zn and Fe in the root. Also, in Zn sufficient conditions, there were synergistic effects among all studies micronutrients which include Zn, Fe, Cu, and Mn. 展开更多
关键词 interaction MICRONUTRIENT Translocation Ratio Zn Deficiency Zn-Efficient
在线阅读 下载PDF
The Crossroads of Neurology and Immunology: Exploring the Intricacies of Neuroimmune Interactions
5
作者 Isra Omar Ahmed Alakhras +1 位作者 Samahir Mutwali Moiz Bakhiet 《World Journal of Neuroscience》 2025年第1期42-57,共16页
The concept of neuroimmune interactions has shown significant advancements over the years. Modern research has revealed many areas of connection between fields, which were previously viewed as distinct disciplines. Fo... The concept of neuroimmune interactions has shown significant advancements over the years. Modern research has revealed many areas of connection between fields, which were previously viewed as distinct disciplines. For example, the nervous system can sense changes in the external environment and convey these changes through molecules and mediators with receptors in the immune system to modulate immune responses. Neuromediators can act on different receptors in the same group of cells, producing antipodal effects. Identification of the anti-inflammatory role of glucocorticoids highlighted that the body functions properly in an integrated manner. These interactions and crosstalk are not unidirectional, as the immune system can also influence various aspects of the nervous system, such as synaptic plasticity and fever. Strict integration of neuro-immuno-endocrine circuits is indispensable for homeostasis. Understanding these circuits and molecules can lead to advances in the understanding of various immune diseases, which will offer promising therapeutic options. 展开更多
关键词 Neuroimmune interactions Neuromediators Synaptic Plasticity HOMEOSTASIS Immune Modulation
在线阅读 下载PDF
Deep learning identification of novel autophagic protein-protein interactions and experimental validation of Beclin 2-Ubiquilin 1 axis in triple-negative breast cancer
6
作者 XIANG LI WENKE JIN +4 位作者 LIFENG WU HUAN WANG XIN XIE WEI HUANG BO LIU 《Oncology Research》 SCIE 2025年第1期67-81,共15页
Background:Triple-negative breast cancer(TNBC),characterized by its lack of traditional hormone receptors and HER2,presents a significant challenge in oncology due to its poor response to conventional therapies.Autoph... Background:Triple-negative breast cancer(TNBC),characterized by its lack of traditional hormone receptors and HER2,presents a significant challenge in oncology due to its poor response to conventional therapies.Autophagy is an important process for maintaining cellular homeostasis,and there are currently autophagy biomarkers that play an effective role in the clinical treatment of tumors.In contrast to targeting protein activity,intervention with proteinprotein interaction(PPI)can avoid unrelated crosstalk and regulate the autophagy process with minimal interference pathways.Methods:Here,we employed Naive Bayes,Decision Tree,and k-Nearest Neighbors to elucidate the complex PPI network associated with autophagy in TNBC,aiming to uncover novel therapeutic targets.Meanwhile,the candidate proteins interacting with Beclin 2 were initially screened in MDA-MB-231 cells using Beclin 2 as bait protein by immunoprecipitation-mass spectrometry assay,and the interaction relationship was verified by molecular docking and CO-IP experiments after intersection.Colony formation,cellular immunofluorescence,cell scratch and 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide(MTT)tests were used to predict the clinical therapeutic effects of manipulating candidate PPI.Results:By developing three PPI classification models and analyzing over 13,000 datasets,we identified 3733 previously unknown autophagy-related PPIs.Our network analysis revealed the central role of Beclin 2 in autophagy regulation,uncovering its interactions with 39 newly identified proteins.Notably,the CO-IP studies identified the substantial interaction between Beclin 2 and Ubiquilin 1,which was anticipated by our model and discovered in immunoprecipitation-mass spectrometry assay results.Subsequently,in vitro investigations showed that overexpressing Beclin 2 increased Ubiquilin 1,promoted autophagy-dependent cell death,and inhibited proliferation and metastasis in MDA-MB-231 cells.Conclusions:This study not only enhances our understanding of autophagy regulation in TNBC but also identifies the Beclin 2-Ubiquilin 1 axis as a promising target for precision therapy.These findings open new avenues for drug discovery and offer inspiration for more effective treatments for this aggressive cancer subtype. 展开更多
关键词 Triple-negative breast cancer(TNBC) AUTOPHAGY Protein-protein interactions(PPI) Artificial intelligence(AI) Beclin 2 Ubiquilin 1
在线阅读 下载PDF
Biocharewateresoil interactions:Implications for soil desiccation cracking behavior in subtropical regions
7
作者 Yu Lu Kai Gu +4 位作者 Yuping Zhang Zhengtao Shen Chao-Sheng Tang Qiyou Zhou Bin Shi 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第3期1876-1888,共13页
In subtropical regions,soil desiccation cracking often exerts a significant impact on the interactions between soil water and the atmosphere,making it a subject of great interest in the fields of geotechnical and geoe... In subtropical regions,soil desiccation cracking often exerts a significant impact on the interactions between soil water and the atmosphere,making it a subject of great interest in the fields of geotechnical and geoenvironmental engineering.Despite the growing utilization of biochar as a sustainable soil amendment,there remains a lack of in-depth understanding of biocharewateresoil interactions,as well as its impact on soil desiccation cracking behavior.To address this gap,this study investigated the influence and mechanism of woody biochar dosages and particle sizes on the cracking behavior of three typical clayey soils in subtropical regions in China,namely Pukou expansive soil(PKE),Xiashu soil(XS),and Zhongshan lateritic soil(ZSL).The quantitative analysis of crack images revealed that the use of biochar was not consistently effective in preventing soil cracking.The application of biochar reduced the crack ratio in PKE and XS by up to 24.03%and 53.89%,respectively.In contrast,ZSL exhibited a 74.57%increase in crack ratio with the addition of 10%biochar.This influence can be further enhanced by increasing the dosage and reducing the particle size of biochar.The microstructural analysis demonstrated that biochar exerts an inhibitory effect on PKE and XS primarily through direct replacement,direct barrier,and indirect physical mechanisms.Moreover,an indirect chemical effect between biochar and clay particles was proposed to explain the exacerbated cracking observed in biochar-amended ZSL.To effectively utilize biochar for soil cracking mitigation in subtropical regions,it is essential to evaluate the initial mineral composition and cation type of the soil. 展开更多
关键词 Biocharewateresoil interactions Woody biochar Desiccation cracking Clayey soils Influencing factors
在线阅读 下载PDF
Oral secretions:A key molecular interface of plant–insect herbivore interactions
8
作者 Bin Li Wangpeng Shi +1 位作者 Shaoqun Zhou Guirong Wang 《Journal of Integrative Agriculture》 2025年第4期1342-1358,共17页
The oral secretions of insect herbivores are complex mixtures of organic and inorganic solutes and enzymes that are deposited onto plant tissues during the feeding process.Some specific components of insect oral secre... The oral secretions of insect herbivores are complex mixtures of organic and inorganic solutes and enzymes that are deposited onto plant tissues during the feeding process.Some specific components of insect oral secretions have been shown to confer important functions in mediating plant–insect interactions at the molecular level.In this review,we examined the biochemical studies of insect oral secretions to summarize the current knowledge of their compositions.We then moved beyond the functional studies of components of oral secretions,and focused on the literature that pinpointed specific molecular targets of these compounds.Finally,we highlighted the investigations of oral secretion components in the context of insect physiology,which shed light on the potential evolutionary trajectory of these multi-functional molecules. 展开更多
关键词 plant–insect interactions insect herbivores oral secretions plant defense
在线阅读 下载PDF
Improving performance of screening MM/PBSA in protein–ligand interactions via machine learning
9
作者 Yuan-Qiang Chen Yao Xu +1 位作者 Yu-Qiang Ma Hong-Ming Ding 《Chinese Physics B》 2025年第1期486-496,共11页
Accurately estimating protein–ligand binding free energy is crucial for drug design and biophysics, yet remains a challenging task. In this study, we applied the screening molecular mechanics/Poisson–Boltzmann surfa... Accurately estimating protein–ligand binding free energy is crucial for drug design and biophysics, yet remains a challenging task. In this study, we applied the screening molecular mechanics/Poisson–Boltzmann surface area(MM/PBSA)method in combination with various machine learning techniques to compute the binding free energies of protein–ligand interactions. Our results demonstrate that machine learning outperforms direct screening MM/PBSA calculations in predicting protein–ligand binding free energies. Notably, the random forest(RF) method exhibited the best predictive performance,with a Pearson correlation coefficient(rp) of 0.702 and a mean absolute error(MAE) of 1.379 kcal/mol. Furthermore, we analyzed feature importance rankings in the gradient boosting(GB), adaptive boosting(Ada Boost), and RF methods, and found that feature selection significantly impacted predictive performance. In particular, molecular weight(MW) and van der Waals(VDW) energies played a decisive role in the prediction. Overall, this study highlights the potential of combining machine learning methods with screening MM/PBSA for accurately predicting binding free energies in biosystems. 展开更多
关键词 molecular mechanics/Poisson-Boltzmann surface area(MM/PBSA) binding free energy machine learning protein-ligand interaction
在线阅读 下载PDF
The Essential Role of Jasmonic Acid in Plant-Herbivore Interactions-Using the Wild Tobacco Nicotiana attenuata as a Model 被引量:7
10
作者 Lei Wang Jianqiang Wu 《Journal of Genetics and Genomics》 SCIE CAS CSCD 2013年第12期597-606,共10页
The plant hormone jasmonic acid (JA) plays a central role in plant defense against herbivores. Herbivore damage elicits a rapid and transient JA burst in the wounded leaves and JA functions as a signal to mediate th... The plant hormone jasmonic acid (JA) plays a central role in plant defense against herbivores. Herbivore damage elicits a rapid and transient JA burst in the wounded leaves and JA functions as a signal to mediate the accumulation of various secondary metabolites that confer resistance to herbivores. Nicotiana attenuata is a wild tobacco species that inhabits western North America. More than fifteen years of study and its unique interaction with the specialist herbivore insect Manduca sexta have made this plant one of the best models for studying plant-herbivore interactions. Here we review the recent progress in understanding the elicitation of JA accumulation by herbivore-specific elicitors, the regulation of JA biosynthesis, JA signaling, and the herbivore-defense traits in N. attenuata. 展开更多
关键词 Jasmonic acid DEFENSE Plant--herbivore interaction Nicotiana attenuata Manduca sexta
原文传递
Geographic patterns of plant-herbivore interactions are driven by soil fertility
11
作者 Joshua S.Lynn Jason D.Fridley 《Journal of Plant Ecology》 SCIE CSCD 2019年第4期653-661,共9页
Aims Geographic patterns of the intensity of plant herbivory in relation to climate factors have garnered little general support and appear to be species specific.However,plant-herbivore interactions are also driven b... Aims Geographic patterns of the intensity of plant herbivory in relation to climate factors have garnered little general support and appear to be species specific.However,plant-herbivore interactions are also driven by resource availability,such as soil nutrient content,and it remains unclear whether broad-scale variation in soil factors is reflected in herbivore consumption rates across species’ranges.Additionally,we know little of how intraspecific variation in tissue quality associates with edaphic and climatic factors,and how this variation controls herbivore consumption.The resource availability hypothesis(RAH)predicts that plant individuals growing in low-resource environments will have lower leaf nutritional quality and more constitutive defenses,which will result in lower rates of leaf consumption.Methods We collected leaves from the old-field dominant species,Solidago altissima L.,from 20 sites across 10 degrees of latitude in the Eastern USA to determine the percentage leaf area consumed by insect foli-vores.We obtained soil and climate data for each site,as well as plant functional and defensive traits,including specific leaf area(SLA),leaf carbon:nitrogen(C:N),and trichome density.Important Findings Although we found no significant latitudinal trend of leaf consump-tion rate,there was strong evidence that leaf herbivory decreased with leaf C:N and trichome density,which themselves decreased with soil N,supporting our hypothesis that the RAH applies for intraspecific variation across spatial gradients.Additionally,high precipitation seasonality and soil nitrogen predicted decreased her-bivory.The results suggest that spatial variation in herbivory can be driven by factors other than herbivore communities and climatic gradients,and that bottom-up processes,where plant traits and soil fertility control leaf consumption,must be incorporated into spatial predictions of herbivory. 展开更多
关键词 BIOGEOGRAPHY bottom-up controls old fields plant-insect interactions plant functional and defense traits
原文传递
Achieving asymmetric redox chemistry for oxygen evolution reaction through strong metal-support interactions 被引量:1
12
作者 Shihao Wang Meiling Fan +4 位作者 Hongfei Pan Jiahui Lyu Jinsong Wu Haolin Tang Haining Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期526-535,共10页
Water electrolysis poses a significant challenge for balancing catalytic activity and stability of oxygen evolution reaction(OER)electrocatalysts.In this study,we address this challenge by constructing asymmetric redo... Water electrolysis poses a significant challenge for balancing catalytic activity and stability of oxygen evolution reaction(OER)electrocatalysts.In this study,we address this challenge by constructing asymmetric redox chemistry through elaborate surface OO–Ru–OH and bulk Ru–O–Ni/Fe coordination moieties within single-atom Ru-decorated defective NiFe LDH nanosheets(Ru@d-NiFe LDH)in conjunction with strong metal-support interactions(SMSI).Rigorous spectroscopic characterization and theoretical calculations indicate that single-atom Ru can delocalize the O 2p electrons on the surface and optimize d-electron configurations of metal atoms in bulk through SMSI.The^(18)O isotope labeling experiment based on operando differential electrochemical mass spectrometry(DEMS),chemical probe experiments,and theoretical calculations confirm the encouraged surface lattice oxygen,stabilized bulk lattice oxygen,and enhanced adsorption of oxygen-containing intermediates for bulk metals in Ru@d-NiFe LDH,leading to asymmetric redox chemistry for OER.The Ru@d-NiFe LDH electrocatalyst exhibits exceptional performance with an overpotential of 230 mV to achieve 10 mA cm^(−2)and maintains high robustness under industrial current density.This approach for achieving asymmetric redox chemistry through SMSI presents a new avenue for developing high-performance electrocatalysts and instills confidence in its industrial applicability. 展开更多
关键词 Reaction redox chemistry Strong metal-support interactions Layered double hydroxides ELECTROCATALYSTS Water electrolysis
在线阅读 下载PDF
Molecular interaction network of plant-herbivorous insects
13
作者 Chao Hu Yu-Ting Li +2 位作者 Yu-Xi Liu Ge-Fei Hao Xue-Qing Yang 《Advanced Agrochem》 2024年第1期74-82,共9页
The interactions between plants and herbivorous insects are complex and involve multiple factors,driving species formation and leading to the beginning of co-evolution and diversification of plant and insect molecules... The interactions between plants and herbivorous insects are complex and involve multiple factors,driving species formation and leading to the beginning of co-evolution and diversification of plant and insect molecules.Various molecular processes regulate the interactions between plants and herbivorous insects.Here,we discuss the molecular patterns of plant perception of herbivorous insect feeding through activation of early signaling components,crosstalk of plant defense network composed of multiple plant hormones,and various adaptive changes in insect responses to plant defenses.Both plant defenses and insect counter-defenses are molecular adaptation processes to each other.Molecular models of plant-herbivorous insect interactions can more intuitively help us to understand the co-evolutionary arms race between plants and herbivorous insects.These results will provide detailed evidence to elucidate and enrich the interaction network of plant-herbivorous insects. 展开更多
关键词 plant-herbivorous insect interactions Plant hormone Plant defense Counter-defenses ADAPTATION
在线阅读 下载PDF
Ecological network analysis reveals complex responses of tree species life stage interactions to stand variables
14
作者 Hengchao Zou Huayong Zhang Tousheng Huang 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第1期29-43,共15页
Tree interactions are essential for the structure,dynamics,and function of forest ecosystems,but variations in the architecture of life-stage interaction networks(LSINs)across forests is unclear.Here,we constructed 16... Tree interactions are essential for the structure,dynamics,and function of forest ecosystems,but variations in the architecture of life-stage interaction networks(LSINs)across forests is unclear.Here,we constructed 16 LSINs in the mountainous forests of northwest Hebei,China based on crown overlap from four mixed forests with two dominant tree species.Our results show that LSINs decrease the complexity of stand densities and basal areas due to the interaction cluster differentiation.In addition,we found that mature trees and saplings play different roles,the first acting as“hub”life stages with high connectivity and the second,as“bridges”controlling information flow with high centrality.Across the forests,life stages with higher importance showed better parameter stability within LSINs.These results reveal that the structure of tree interactions among life stages is highly related to stand variables.Our efforts contribute to the understanding of LSIN complexity and provide a basis for further research on tree interactions in complex forest communities. 展开更多
关键词 Tree interactions Life stages interaction networks Ecological complexity
在线阅读 下载PDF
Enhanced bimetallic CuCo nanoparticles on nitrogen-doped carbon for selective hydrogenation of furfural to furfuryl alcohol through strong electronic interactions
15
作者 Antai Kang Jiangtao Li +8 位作者 Yubin Li Min Cao Li Qiu Bo Qin Yanze Du Feng Yu Sha Li Ruifeng Li Xiaoliang Yan 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第10期165-174,共10页
Bimetallic CuCo catalysts with different Cu to Co ratios on N-doped porous carbon materials(N-C)were achieved using impregnation method and applied in the hydrogenation of furfural(FAL)to furfuryl alcohol(FOL).The hig... Bimetallic CuCo catalysts with different Cu to Co ratios on N-doped porous carbon materials(N-C)were achieved using impregnation method and applied in the hydrogenation of furfural(FAL)to furfuryl alcohol(FOL).The high hydrogenation activity of FAL over Cu_(1)Co_(1)/N-C was originated from the synergistic interactions of Cu and Co species,where Co^(0)and Cu^(0)simultaneously adsorb and activate H_(2),and Cu^(+) served as Lewis acid sites to activate C]O.Meanwhile,electrons transfer from Cu to Co promoted the formation of Cu^(+).In situ Fourier transform infrared spectroscopy analysis indicated that Cu_(1)Co_(1)/N-C adsorbed FAL with a tilted η^(1)-(O)configuration.The superior Cu_(1)Co_(1)/N-C showed excellent adsorbed ability towards H_(2) and FAL,but weak adsorption for FOL.Therefore,Cu_(1)Co_(1)/N-C possessed 93.1%FAL conversion and 99.0% FOL selectivity after 5 h reaction,which also exhibited satisfactory reusability in FAL hydrogenation for five cycles. 展开更多
关键词 Electronic interactions FURFURAL Selective hydrogenation Furfuryl alcohol ADSORPTION
在线阅读 下载PDF
Distance-dependent magnetization modulation induced by inter-superatomic interactions in Cr-doped Au_(6)Te_(12)Se_(8) dimers
16
作者 Yurou Guan Nanshu Liu +3 位作者 Cong Wang Fei Pang Zhihai Cheng Wei Ji 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第12期408-415,共8页
Individual superatoms are assembled into more complicated nanostructures to diversify their physical properties.Magnetism of assembled superatoms remains,however,ambiguous,particularly in terms of its distance depende... Individual superatoms are assembled into more complicated nanostructures to diversify their physical properties.Magnetism of assembled superatoms remains,however,ambiguous,particularly in terms of its distance dependence.Here,we report density functional theory calculations on the distance-dependent magnetism of transition metal embedded Au_(6)Te_(8)Se_(12)(ATS)superatomic dimers.Among the four considered transition metals,which include V,Cr,Mn and Fe,the Cr-embedded Au_(6)Te_(12)Se_(8)(Cr@ATS)is identified as the most suitable for exploring the inter-superatomic distancedependent magnetism.We thus focused on Cr@ATS superatomic dimers and found an inter-superatomic magnetizationdistance oscillation where three transitions occur for magnetic ordering and/or anisotropy at different inter-superatomic distances.As the inter-superatomic distance elongates,a ferromagnetism(FM)-to-antiferromagnetic(AFM)transition and a sequential AFM-to-FM transition occur,ascribed to competitions among Pauli repulsion and kinetic-energy-gains in formed inter-superatomic Cr-Au-Au-Cr covalent bonds and Te-Te quasi-covalent bonds.For the third transition,in-plane electronic hybridization contributes to the stabilization of the AFM configuration.This work unveils two mechanisms for tuning magnetism through non-covalent interactions and provides a strategy for manipulating magnetism in superatomic assemblies. 展开更多
关键词 low dimensional materials magnetic interactions
在线阅读 下载PDF
Molecular dynamics simulations on the interactions between nucleic acids and a phospholipid bilayer
17
作者 徐耀 黄舒伟 +1 位作者 丁泓铭 马余强 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第2期512-521,共10页
Recently,lipid nanoparticles(LNPs)have been extensively investigated as non-viral carriers of nucleic acid vaccines due to their high transport efficiency,safety,and straightforward production and scalability.However,... Recently,lipid nanoparticles(LNPs)have been extensively investigated as non-viral carriers of nucleic acid vaccines due to their high transport efficiency,safety,and straightforward production and scalability.However,the molecular mechanism underlying the interactions between nucleic acids and phospholipid bilayers within LNPs remains elusive.In this study,we employed the all-atom molecular dynamics simulation to investigate the interactions between single-stranded nucleic acids and a phospholipid bilayer.Our findings revealed that hydrophilic bases,specifically G in single-stranded RNA(ssRNA)and single-stranded DNA(ssDNA),displayed a higher propensity to form hydrogen bonds with phospholipid head groups.Notably,ssRNA exhibited stronger binding energy than ssDNA.Furthermore,divalent ions,particularly Ca2+,facilitated the binding of ssRNA to phospholipids due to their higher binding energy and lower dissociation rate from phospholipids.Overall,our study provides valuable insights into the molecular mechanisms underlying nucleic acidphospholipid interactions,with potential implications for the nucleic acids in biotherapies,particularly in the context of lipid carriers. 展开更多
关键词 RNA DNA lipid bilayer molecular dynamics interface interaction divalent cation
在线阅读 下载PDF
Strong metal-support interactions between highly dispersed Cu^(+) species and ceria via mix-MOF pyrolysis toward promoted water-gas shift reaction
18
作者 Xiao-Chen Sun Xing-Chi Li +7 位作者 Ze-Wei Xie Chen-Yue Yuan De-Jiu Wang Qian Zhang Xiao-Yu Guo Hao Dong Hai-Chao Liu Ya-Wen Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期475-483,共9页
The modulation of metal-support interfacial interaction is significant but challenging in the design of high-efficiency and high-stability supported catalysts.Here,we report a synthetic strategy to upgrade Cu-CeO_(2)i... The modulation of metal-support interfacial interaction is significant but challenging in the design of high-efficiency and high-stability supported catalysts.Here,we report a synthetic strategy to upgrade Cu-CeO_(2)interfacial interaction by the pyrolysis of mixed metal-organic framework(MOF)structure.The obtained highly dispersed Cu/CeO_(2)-MOF catalyst via this strategy was used to catalyze water-gas shift reaction(WGSR),which exhibited high activity of 40.5μmolCOgcat^(-1).s^(-1)at 300℃and high stability of about 120 h.Based on comprehensive studies of electronic structure,pyrolysis strategy has significant effect on enhancing metal-support interaction and then stabilizing interfacial Cu^(+)species under reaction conditions.Abundant Cu^(+)species and generated oxygen vacancies over Cu/CeO_(2)-MOF catalyst played a key role in CO molecule activation and H2O molecule dissociation,respectively.Both collaborated closely and then promoted WGSR catalytic performance in comparison with traditio nal supported catalysts.This study shall offer a robust approach to harvest highly dispersed catalysts with finely-tuned metal-support interactions for stabilizing the most interfacial active metal species in diverse heterogeneous catalytic reactions. 展开更多
关键词 Cu-based catalyst MOF derivative Water-gas shift reaction Metal-support interaction
在线阅读 下载PDF
Light-Material Interactions Using Laser and Flash Sources for Energy Conversion and Storage Applications
19
作者 Jung Hwan Park Srinivas Pattipaka +10 位作者 Geon-Tae Hwang Minok Park Yu Mi Woo Young Bin Kim Han Eol Lee Chang Kyu Jeong Tiandong Zhang Yuho Min Kwi-Il Park Keon Jae Lee Jungho Ryu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第12期468-514,共47页
This review provides a comprehensive overview of the progress in light-material interactions(LMIs),focusing on lasers and flash lights for energy conversion and storage applications.We discuss intricate LMI parameters... This review provides a comprehensive overview of the progress in light-material interactions(LMIs),focusing on lasers and flash lights for energy conversion and storage applications.We discuss intricate LMI parameters such as light sources,interaction time,and fluence to elucidate their importance in material processing.In addition,this study covers various light-induced photothermal and photochemical processes ranging from melting,crystallization,and ablation to doping and synthesis,which are essential for developing energy materials and devices.Finally,we present extensive energy conversion and storage applications demonstrated by LMI technologies,including energy harvesters,sensors,capacitors,and batteries.Despite the several challenges associated with LMIs,such as complex mechanisms,and high-degrees of freedom,we believe that substantial contributions and potential for the commercialization of future energy systems can be achieved by advancing optical technologies through comprehensive academic research and multidisciplinary collaborations. 展开更多
关键词 LIGHT Light-material interaction NANOMATERIALS Energy conversion and storage devices
在线阅读 下载PDF
Effects of layer interactions on instantaneous stability of finite Stokes flows
20
作者 Chen ZHAO Zhenli CHEN +1 位作者 C.T.MUTASA Dong LI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第1期69-84,共16页
The stability analysis of a finite Stokes layer is of practical importance in flow control. In the present work, the instantaneous stability of a finite Stokes layer with layer interactions is studied via a linear sta... The stability analysis of a finite Stokes layer is of practical importance in flow control. In the present work, the instantaneous stability of a finite Stokes layer with layer interactions is studied via a linear stability analysis of the frozen phases of the base flow. The oscillations of two plates can have different velocity amplitudes, initial phases, and frequencies. The effects of the Stokes-layer interactions on the stability when two plates oscillate synchronously are analyzed. The growth rates of two most unstable modes when δ < 0.12 are almost equal, and δ = δ*/h*, where δ*and h*are the Stokes-layer thickness and the half height of the channel, respectively. However, their vorticities are different. The vorticity of the most unstable mode is symmetric, while the other is asymmetric. The Stokes-layer interactions have a destabilizing effect on the most unstable mode when δ < 0.68, and have a stabilizing effect when δ > 0.68. However, the interactions always have a stabilizing effect on the other unstable mode. It is explained that one of the two unstable modes has much higher dissipation than the other one when the Stokes-layer interactions are strong. We also find that the stability of the Stokes layer is closely related to the inflectional points of the base-flow velocity profile. The effects of inconsistent velocity-amplitude, initial phase, and frequency of the oscillations on the stability are analyzed. The energy of the most unstable eigenvector is mainly distributed near the plate of higher velocity amplitude or higher oscillation frequency. The effects of the initial phase difference are complicated because the base-flow velocity is extremely sensitive to the initial phase. 展开更多
关键词 finite Stokes layer instantaneous stability Stokes-layer interaction asynchronous oscillation
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部