期刊文献+
共找到70,621篇文章
< 1 2 250 >
每页显示 20 50 100
基于light-oxygen-voltage(LOV)结构域光敏剂的细胞毒性研究
1
作者 许爽 万奔 +1 位作者 沙娜 赵开弘 《生物化学与生物物理进展》 北大核心 2025年第2期487-500,共14页
目的光敏剂被特定波长的光激发后,产生的活性氧类能破坏细胞组织,介导细胞死亡,对微生物感染、肿瘤等相关疾病的治疗具有重要意义。方法基于粳稻类向光素1B(Oryza sativa japonica phototropin-1B-like)的LOV(lightoxygen-voltage)结构... 目的光敏剂被特定波长的光激发后,产生的活性氧类能破坏细胞组织,介导细胞死亡,对微生物感染、肿瘤等相关疾病的治疗具有重要意义。方法基于粳稻类向光素1B(Oryza sativa japonica phototropin-1B-like)的LOV(lightoxygen-voltage)结构域,设计得到光敏剂LovPSO2及其突变体LovPRO2。在445 nm、70μmol·m^(-2)·s^(-1)蓝光照射下,每隔2 min测量LovPSO2和LovPRO2的单线态氧产量,持续10 min,每隔1 min测量其超氧阴离子产量,持续5 min,并研究温度、光照对其稳定性的影响,最后将其转入E.coli BL21(DE3)和HeLa细胞中表达并分析光毒性效果。结果在445 nm、70μmol·m^(-2)·s^(-1)蓝光照射下,LovPSO2是一种能产生大量单线态氧的Ⅱ型光敏剂(ΦΔ=0.61),LovPRO2是一种能够同时产生单线态氧和超氧阴离子的光敏剂。蛋白质稳定性分析结果表明,LovPSO2和LovPRO2具有较好的温度稳定性,其中LovPRO2的光稳定性更好。蛋白质的光毒性分析结果表明,445 nm、30 mW/cm^(2)蓝光照射30 min后,LovPSO2和LovPRO2对E.coli BL21(DE3)菌株有较好的光毒性,致死率高达90%。结论LovPSO2和LovPRO2可作为抗菌光敏剂,在食品和医疗等方面均有较为广阔的应用前景。 展开更多
关键词 光敏剂 活性氧类 单线态氧 超氧阴离子
在线阅读 下载PDF
Catalyst–Support Interaction in Polyaniline‑Supported Ni_(3)Fe Oxide to Boost Oxygen Evolution Activities for Rechargeable Zn‑Air Batteries
2
作者 Xiaohong Zou Qian Lu +8 位作者 Mingcong Tang Jie Wu Kouer Zhang Wenzhi Li Yunxia Hu Xiaomin Xu Xiao Zhang Zongping Shao Liang An 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期176-190,共15页
Catalyst–support interaction plays a crucial role in improving the catalytic activity of oxygen evolution reaction(OER).Here we modulate the catalyst–support interaction in polyaniline-supported Ni_(3)Fe oxide(Ni_(3... Catalyst–support interaction plays a crucial role in improving the catalytic activity of oxygen evolution reaction(OER).Here we modulate the catalyst–support interaction in polyaniline-supported Ni_(3)Fe oxide(Ni_(3)Fe oxide/PANI)with a robust hetero-interface,which significantly improves oxygen evolution activities with an overpotential of 270 mV at 10 mA cm^(-2)and specific activity of 2.08 mA cm_(ECSA)^(-2)at overpotential of 300 mV,3.84-fold that of Ni_(3)Fe oxide.It is revealed that the catalyst–support interaction between Ni_(3)Fe oxide and PANI support enhances the Ni–O covalency via the interfacial Ni–N bond,thus promoting the charge and mass transfer on Ni_(3)Fe oxide.Considering the excellent activity and stability,rechargeable Zn-air batteries with optimum Ni_(3)Fe oxide/PANI are assembled,delivering a low charge voltage of 1.95 V to cycle for 400 h at 10 mA cm^(-2).The regulation of the effect of catalyst–support interaction on catalytic activity provides new possibilities for the future design of highly efficient OER catalysts. 展开更多
关键词 Catalyst-support interaction Supported catalysts HETEROINTERFACE oxygen evolution reaction Zn-air batteries
在线阅读 下载PDF
Poly(lactic acid)/Poly(butylene adipate-co-terephthalate)films with simultaneous high oxygen barrier and fast degradation properties
3
作者 Mengjing Yang Yuxi Mao +4 位作者 Penghui Zhang Jie Li Zeming Tong Zhenguo Liu Yanhui Chen 《Green Energy & Environment》 SCIE EI CAS 2025年第1期1-10,共10页
Although poly(lactic acid)(PLA)is a good environmentally-friendly bio-degradable polymer which is used to substitute traditional petrochemical-based polymer packaging films,the barrier properties of PLA films are stil... Although poly(lactic acid)(PLA)is a good environmentally-friendly bio-degradable polymer which is used to substitute traditional petrochemical-based polymer packaging films,the barrier properties of PLA films are still insufficient for high-barrier packaging applications.In this study,oxygen scavenger hydroxyl-terminated polybutadiene(HTPB)and cobalt salt catalyst were incorporated into the PLA/poly(butylene adipate-co-terephthalate)(PLA/PBAT),followed by melting extrusion and three-layer co-extrusion blown film process to prepare the composite films.The oxygen permeability coefficient of the composite film combined with 6 wt%oxygen scavenger and 0.4 wt%catalyst was decreased significantly from 377.00 cc·mil·m^(-2)·day^(-1)·0.1 MPa^(-1) to 0.98 cc·mil·m^(-2)·day^(-1)·0.1 MPa^(-1),showing a remarkable enhancement of 384.69 times compared with the PLA/PBAT composite film.Meanwhile,the degradation behavior of the composite film was also accelerated,exhibiting a mass loss of nearly 60%of the original mass after seven days of degradation in an alkaline environment,whereas PLA/PBAT composite film only showed a mass loss of 32%.This work has successfully prepared PLA/PBAT composite films with simultaneously improved oxygen barrier property and degradation behavior,which has great potential for high-demanding green chemistry packaging industries,including food,agricultural,and military packaging. 展开更多
关键词 Barrier property oxygen scavenging Blow molding Eco-packaging Degradable composite film
在线阅读 下载PDF
Overview of in-situ oxygen production technologies for lunar resources
4
作者 Youpeng Xu Sheng Pang +5 位作者 Liangwei Cong Guoyu Qian Dong Wang Laishi Li Yusheng Wu Zhi Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第2期233-255,共23页
The rich resources and unique environment of the Moon make it an ideal location for human expansion and the utilization of extraterrestrial resources.Oxygen,crucial for supporting human life on the Moon,can be extract... The rich resources and unique environment of the Moon make it an ideal location for human expansion and the utilization of extraterrestrial resources.Oxygen,crucial for supporting human life on the Moon,can be extracted from lunar regolith,which is highly rich in oxygen and contains polymetallic oxides.This oxygen and metal extraction can be achieved using existing metallurgical techniques.Furthermore,the ample reserves of water ice on the Moon offer another means for oxygen production.This paper offers a detailed overview of the leading technologies for achieving oxygen production on the Moon,drawing from an analysis of lunar resources and environmental conditions.It delves into the principles,processes,advantages,and drawbacks of water-ice electrolysis,two-step oxygen production from lunar regolith,and one-step oxygen production from lunar regolith.The two-step methods involve hydrogen reduction,carbothermal reduction,and hydrometallurgy,while the one-step methods encompass fluorination/chlorination,high-temperature decomposition,molten salt electrolysis,and molten regolith electrolysis(MOE).Following a thorough comparison of raw materials,equipment,technology,and economic viability,MOE is identified as the most promising approach for future in-situ oxygen production on the Moon.Considering the corrosion characteristics of molten lunar regolith at high temperatures,along with the Moon's low-gravity environment,the development of inexpensive and stable inert anodes and electrolysis devices that can easily collect oxygen is critical for promoting MOE technology on the Moon.This review significantly contributes to our understanding of in-situ oxygen production technologies on the Moon and supports upcoming lunar exploration initiatives. 展开更多
关键词 lunar resources in-situ oxygen production space metallurgy molten lunar regolith electrolysis
在线阅读 下载PDF
Boosting Oxygen Evolution Reaction Performance on NiFe‑Based Catalysts Through d‑Orbital Hybridization
5
作者 Xing Wang Wei Pi +3 位作者 Sheng Hu Haifeng Bao Na Yao Wei Luo 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期281-292,共12页
Anion-exchange membrane water electrolyzers(AEMWEs)for green hydrogen production have received intensive attention due to their feasibility of using earth-abundant NiFe-based catalysts.By introducing a third metal int... Anion-exchange membrane water electrolyzers(AEMWEs)for green hydrogen production have received intensive attention due to their feasibility of using earth-abundant NiFe-based catalysts.By introducing a third metal into NiFe-based catalysts to construct asymmetrical M-NiFe units,the d-orbital and electronic structures can be adjusted,which is an important strategy to achieve sufficient oxygen evolution reaction(OER)performance in AEMWEs.Herein,the ternary NiFeM(M:La,Mo)catalysts featured with distinct M-NiFe units and varying d-orbitals are reported in this work.Experimental and theoretical calculation results reveal that the doping of La leads to optimized hybridization between d orbital in NiFeM and 2p in oxygen,resulting in enhanced adsorption strength of oxygen intermediates,and reduced rate-determining step energy barrier,which is responsible for the enhanced OER performance.More critically,the obtained NiFeLa catalyst only requires 1.58 V to reach 1 A cm^(−2) in an anion exchange membrane electrolyzer and demonstrates excellent long-term stability of up to 600 h. 展开更多
关键词 NiFe-based catalysts d-orbital coupling oxygen evolution reaction Anion exchange membrane electrolyzer
在线阅读 下载PDF
Ru⁃doped Co_(3)O_(4)/reduced graphene oxide:Preparation and electrocatalytic oxygen evolution property
6
作者 TIAN Tian ZHOU Meng +5 位作者 WEI Jiale LIU Yize MO Yifan YE Yuhan JIA Wenzhi HE Bin 《无机化学学报》 北大核心 2025年第2期385-394,共10页
Binary composites(ZIF-67/rGO)were synthesized by one-step precipitation method using cobalt nitrate hexahydrate as metal source,2-methylimidazole as organic ligand,and reduced graphene oxide(rGO)as carbon carrier.Then... Binary composites(ZIF-67/rGO)were synthesized by one-step precipitation method using cobalt nitrate hexahydrate as metal source,2-methylimidazole as organic ligand,and reduced graphene oxide(rGO)as carbon carrier.Then Ru3+was introduced for ion exchange,and the porous Ru-doped Co_(3)O_(4)/rGO(Ru-Co_(3)O_(4)/rGO)composite electrocatalyst was prepared by annealing.The phase structure,morphology,and valence state of the catalyst were analyzed by X-ray powder diffraction(XRD),scanning electron microscope(SEM),transmission electron microscopy(TEM),and X-ray photoelectron spectroscopy(XPS).In 1 mol·L^(-1)KOH,the oxygen evolution reaction(OER)performance of the catalyst was measured by linear sweep voltammetry,cyclic voltammetry,and chronoamperometry.The results show that the combination of Ru doping and rGO provides a fast channel for collaborative electron transfer.At the same time,rGO as a carbon carrier can improve the electrical conductivity of Ru-Co_(3)O_(4)particles,and the uniformly dispersed nanoparticles enable the reactants to diffuse freely on the catalyst.The results showed that the electrochemical performance of Ru-Co_(3)O_(4)/rGO was much better than that of Co_(3)O_(4)/rGO,and the overpotential of Ru-Co_(3)O_(4)/rGO was 363.5 mV at the current density of 50 mA·cm^(-2). 展开更多
关键词 metal-organic framework GRAPHENE ELECTROCATALYST oxygen evolution reaction
在线阅读 下载PDF
Impact of Oxygen Vacancy on Performance of Amorphous InGaZnO Based Schottky Barrier Diode
7
作者 JIA Bin TONG Xiaowen +3 位作者 HAN Zikang QIN Ming WANG Lifeng HUANG Xiaodong 《发光学报》 北大核心 2025年第3期412-420,共9页
Rectifying circuit,as a crucial component for converting alternating current into direct current,plays a pivotal role in energy harvesting microsystems.Traditional silicon-based or germanium-based rectifier diodes hin... Rectifying circuit,as a crucial component for converting alternating current into direct current,plays a pivotal role in energy harvesting microsystems.Traditional silicon-based or germanium-based rectifier diodes hinder system integration due to their specific manufacturing processes.Conversely,metal oxide diodes,with their simple fabrication techniques,offer advantages for system integration.The oxygen vacancy defect of oxide semiconductor will greatly affect the electrical performance of the device,so the performance of the diode can be effectively controlled by adjusting the oxygen vacancy concentration.This study centers on optimizing the performance of diodes by modulating the oxygen vacancy concentration within InGaZnO films through control of oxygen flows during the sputtering process.Experimental results demonstrate that the diode exhibits a forward current density of 43.82 A·cm^(−2),with a rectification ratio of 6.94×10^(4),efficiently rectifying input sine signals with 1 kHz frequency and 5 V magnitude.These results demonstrate its potential in energy conversion and management.By adjusting the oxygen vacancy,a methodology is provided for optimizing the performance of rectifying diodes. 展开更多
关键词 INGAZNO Schottky barrier diode oxygen vacancy rectifying performance
在线阅读 下载PDF
High-areal-capacity and long-life sulfde-based all-solid-state lithium battery achieved by regulating surface-to-bulk oxygen activity 被引量:1
8
作者 Yanchen Liu Yang Lu +6 位作者 Zongliang Zhang Bin Xu Fangbo He Yang Liu Yongle Chen Kun Zhang Fangyang Liu 《Journal of Energy Chemistry》 2025年第2期795-807,I0017,共14页
Sulfide-based all-solid-state lithium batteries(ASSLBs) with nickel-rich oxide cathodes are emerging as primary contenders for the next generation rechargeable batteries,owing to their superior safety and energy densi... Sulfide-based all-solid-state lithium batteries(ASSLBs) with nickel-rich oxide cathodes are emerging as primary contenders for the next generation rechargeable batteries,owing to their superior safety and energy density.However,the all-solid-state batteries with nickel-rich oxide cathodes suffer from performance degradation due to the reactions between the highly reactive surface oxygen of the cathode and the electrolyte,as well as the instability of the bulk oxygen structure in the cathode.Herein,we propose a synergistic modification design scheme to adjust the oxygen activity from surface to bulk.The LiBO_(2)coating inhibits the reactivity of surface lattice oxygen ions.Meanwhile,Zr doping in the bulk phase forms strong Zr-O covalent bonds that stabilize the bulk lattice oxygen structure.The synergistic effect of these modifications prevents the release of oxygen,thus avoiding the degradation of the cathode/SE interface.Additionally,the regulation of surface-to-bulk oxygen activity establishes a highly stable interface,thereby enhancing the lithium ion diffusion kinetics and mechanical stability of the cathode.Consequently,cathodes modified with this synergistic strategy exhibit outstanding performance in sulfide-based ASSLBs,including an ultra-long cycle life of 100,000 cycles,ultra-high rate capability at 45C,and 85% high active material content in the composite cathode.Additionally,ASSLB exhibits stable cycling under high loading conditions of 82.82 mg cm^(-2),achieving an areal capacity of 17.90 mA h cm^(-2).These encouraging results pave the way for practical applications of ASSLBs in fast charging,long cycle life,and high energy density in the future. 展开更多
关键词 Zr4+doping LiBO_(2)coating Surface-to-bulk oxygen activity Interface stability Nickel-rich oxide cathodes All-solid-state batteries
在线阅读 下载PDF
SEM Investigation of the Microstructure of Oxygen-Deficient Ca2FeGaO6-δ
9
作者 Ariella Fogel Mandy Guinn Ram Krishna Hona 《Journal of Materials Science and Chemical Engineering》 2025年第1期1-6,共6页
This study presents a detailed investigation of the microstructure of the oxygen-deficient perovskite material Ca2FeGaO6-δ using Scanning Electron Microscopy (SEM). The material exhibits significant porosity and irre... This study presents a detailed investigation of the microstructure of the oxygen-deficient perovskite material Ca2FeGaO6-δ using Scanning Electron Microscopy (SEM). The material exhibits significant porosity and irregular grain morphology, with variations in grain size and growth. Unlike conventional perovskite structures, Ca2FeGaO6-δ shows non-uniform grain development, which can be attributed to the presence of oxygen vacancies (δ). SEM analysis reveals that the irregularities in grain size and shape, coupled with the porous nature of the material, are likely to influence its functional properties. These findings provide valuable insights into the structural features of Ca2FeGaO6-δ, offering a foundation for understanding its potential applications in catalysis, sensors, and other technologies. The study highlights the critical role of microstructural characteristics in determining the material’s performance. 展开更多
关键词 XRD Solid-State Reaction Perovskite Oxides oxygen Deficiency SEM
在线阅读 下载PDF
Reactive Oxygen Species (ROS) Generated on the Surface of (100)-Plane Grain-Oriented Copper Thin-Film
10
作者 Ken Hirota Taika Maeda +4 位作者 Kazuhiko Tsukagoshi Yurika Taniguchi Hiroshi Kawakami Takashi Ozawa Masahiko Wada 《Materials Sciences and Applications》 2025年第1期27-45,共19页
This work aims to study the dependence of the antibacterial activity on the crystal plane of Cu. The generation of reactive oxygen species (ROS) on the thin film of Cu with grains oriented in the plane (100) was evalu... This work aims to study the dependence of the antibacterial activity on the crystal plane of Cu. The generation of reactive oxygen species (ROS) on the thin film of Cu with grains oriented in the plane (100) was evaluated by chemiluminescence (CL). The authors proposed the generation mechanism of these three ROS on the outermost surface consisting of Cu2O thin film, CuO layer and bulk Cu. 展开更多
关键词 COPPER Crystal Planes Antibacterial Activity Reactive oxygen Species CHEMILUMINESCENCE
在线阅读 下载PDF
The Effects of Mild-Hyperbaric Oxygen Therapy on Cognitive Function and Symptom Relief in a 35-Year-Old Male with Post-Concussive Symptoms Following a Motor Vehicle Accident: A Case Report
11
作者 Daniel Bricker William Sealy Hambright +1 位作者 Julian Alberto Syed Asad 《Case Reports in Clinical Medicine》 2025年第1期15-24,共10页
This case report examines the impact of mild hyperbaric oxygen therapy (mHBOT) on cognitive function and symptom relief in a 35-year-old male presenting with concussive symptoms (CS) following a motor vehicle accident... This case report examines the impact of mild hyperbaric oxygen therapy (mHBOT) on cognitive function and symptom relief in a 35-year-old male presenting with concussive symptoms (CS) following a motor vehicle accident (MVA). The patient underwent 10 mHBOT sessions over five weeks (40 minutes per session at 1.5 ATA with 32% oxygen). Post-treatment assessments revealed significant improvements, including an increase in P300 voltage from 4.2 µV to 9.2 µV, aligning with the normative range of 8 - 21 µV. Electroencephalogram (EEG) analysis demonstrated enhanced alpha and theta band activity, reflecting improved cognitive processing and attentional regulation. Clinically, the patient reported reduced headache severity, improved sleep quality, and decreased pain intensity. These findings suggest that mHBOT may support neuroplasticity, mitigate inflammation, and restore cognitive function in patients with CS. Further research, including randomized controlled trials (RCTs), is warranted to validate mHBOT’s efficacy and explore its long-term benefits in traumatic brain injury (TBI) rehabilitation. 展开更多
关键词 Mild-Hyperbaric oxygen Post-Concussion Syndrome Holistic Intervention Cognitive Recovery Traumatic Brain Injury
在线阅读 下载PDF
Inhibitory effect of ferroptosis inhibitor toxicity induced by cobalt nanoparticles through reactive oxygen species
12
作者 Wang Chen Zhang Weinan +3 位作者 Shen Jining Liu Fan Yuan Jishan Liu Yake 《中国组织工程研究》 北大核心 2025年第34期7310-7317,共7页
BACKGROUND:Soft tissue damage induced by cobalt nanoparticles is currently the most noticeable complication in patients with artificial joint prostheses.Therefore,an effective therapeutic strategy is needed to limit t... BACKGROUND:Soft tissue damage induced by cobalt nanoparticles is currently the most noticeable complication in patients with artificial joint prostheses.Therefore,an effective therapeutic strategy is needed to limit the toxicity of cobalt nanoparticles.OBJECTIVE:To investigate the protective effect of a ferroptosis inhibitor on cobalt nanoparticles-induced cytotoxicity.METHODS:To evaluate the detoxification effect of ferroptosis inhibitor on mouse fibroblasts(Balb/3T3),Balb/3T3 cells were treated with cobalt nanoparticles and ferroptosis inhibitor for 24 hours.The cell viabilities were measured by cell viability assay.Based on the results of the cell viability assay,the concentrations of cobalt nanoparticles and deferiprone were determined.The experiment was divided into four groups:the cobalt nanoparticles group(400μmol/L cobalt nanoparticles),the cobalt nanoparticles+deferiprone group(400μmol/L cobalt nanoparticles and 25μmol/L deferiprone),the deferiprone group(25μmol/L deferiprone),and the control group.The expressions of glutathione peroxidase 4 and solute carrier family 7 member 11 protein were examined by western blot assay.RESULTS AND CONCLUSION:(1)The cell viability assay results showed that as the exposure time or the drug concentration increased,cell viability decreased further,indicating that the cytotoxic effect of cobalt nanoparticles was time-and dose-dependent.Additionally,after 24 hours of exposure,cobalt nanoparticles significantly reduced cell viability and glutathione levels compared with the control group(P<0.05).At the same time,compared with the control group,there was an increase in reactive oxygen species production,intracellular iron levels,and the expression of inflammatory cytokines such as tumor necrosis factorα,interleukin-1β,and interleukin-6.After the addition of deferiprone,compared with the cobalt nanoparticles group,cell viability significantly improved,and reactive oxygen species production,intracellular iron levels,and the expression of inflammatory cytokines(tumor necrosis factorα,interleukin-1β,and interleukin-6)significantly decreased(P<0.05).This demonstrated that deferiprone had a protective effect on cells exposed to cobalt nanoparticles.(2)Western blot assay results showed that cobalt nanoparticles reduced the expression of glutathione peroxidase 4 and solute carrier family 7 member 11 protein(P<0.05),while deferiprone inhibited this effect(P<0.05).(3)The above findings verify that cobalt nanoparticles are highly cytotoxic and ferroptosis inhibitor deferiprone has a detoxification effect on cytotoxicity induced by cobalt nanoparticles.Ferroptosis plays an important role in the process by which cobalt nanoparticles induce cytotoxicity.The inhibitory effect of ferroptosis inhibitors on the toxicity of cobalt nanoparticles may provide valuable insights for further research into the mechanisms of cobalt nanoparticle toxicity and potential detoxification strategies. 展开更多
关键词 cobalt nanoparticle ARTHROPLASTY ferroptosis inhibitor ferroptosis reactive oxygen species DEFERIPRONE metal implant detoxify nanobiomedicine pathway FIBROBLAST
在线阅读 下载PDF
De novo-design of highly exposed Co−N−C single-atom catalyst for oxygen reduction reaction
13
作者 ZHOU Dan ZHU Hongyue +1 位作者 ZHAO Yang LIU Yiming 《燃料化学学报(中英文)》 北大核心 2025年第1期128-137,共10页
The nitrogen-coordinated metal single-atom catalysts(M−N−C SACs)with an ultra-high metal loading synthetized by direct high-temperature pyrolysis have been widely reported.However,most of metal single atoms in these c... The nitrogen-coordinated metal single-atom catalysts(M−N−C SACs)with an ultra-high metal loading synthetized by direct high-temperature pyrolysis have been widely reported.However,most of metal single atoms in these catalysts were buried in the carbon matrix,resulting in a low metal utilization and inaccessibility for adsorption of reactants during the catalytic process.Herein,we reported a facile synthesis based on the hard-soft acid-base(HSAB)theory to fabricate Co single-atom catalysts with highly exposed metal atoms ligated to the external pyridinic-N sites of a nitrogen-doped carbon support.Benefiting from the highly accessible Co active sites,the prepared Co−N−C SAC exhibited a superior oxygen reduction reactivity comparable to that of the commercial Pt/C catalyst,showing a high turnover frequency(TOF)of 0.93 e^(−)·s^(-1)·site^(-1)at 0.85 V vs.RHE,far exceeding those of some representative SACs with a ultra-high metal content.This work provides a rational strategy to design and prepare M−N−C single-atom catalysts featured with high site-accessibility and site-density. 展开更多
关键词 hard-soft acid-base Co−N−C single-atom catalyst highly accessible active sites oxygen reduction reaction
在线阅读 下载PDF
Current role of extracorporeal membrane oxygenation for the management of trauma patients:Indications and results
14
作者 Mohammed Abdulrahman Maryam Makki +2 位作者 Malak Bentaleb Dana Khamis Altamimi Marcelo AF Ribeiro Junior 《World Journal of Critical Care Medicine》 2025年第1期42-48,共7页
Extracorporeal membrane oxygenation(ECMO)has emerged as a vital circulatory life support measure for patients with critical cardiac or pulmonary conditions unresponsive to conventional therapies.ECMO allows blood to b... Extracorporeal membrane oxygenation(ECMO)has emerged as a vital circulatory life support measure for patients with critical cardiac or pulmonary conditions unresponsive to conventional therapies.ECMO allows blood to be extracted from a patient and introduced to a machine that oxygenates blood and removes carbon dioxide.This blood is then reintroduced into the patient’s circulatory system.This process makes ECMO essential for treating various medical conditions,both as a standalone therapy and as adjuvant therapy.Veno-venous(VV)ECMO primarily supports respiratory function and indicates respiratory distress.Simultaneously,veno-arterial(VA)ECMO provides hemodynamic and respiratory support and is suitable for cardiac-related complications.This study reviews recent literature to elucidate the evolving role of ECMO in trauma care,considering its procedural intricacies,indications,contraindications,and associated complications.Notably,the use of ECMO in trauma patients,particularly for acute respiratory distress syndrome and cardiogenic shock,has demonstrated promising outcomes despite challenges such as anticoagulation management and complications such as acute kidney injury,bleeding,thrombosis,and hemolysis.Some studies have shown that VV ECMO was associated with significantly higher survival rates than conventional mechanical ventilation,whereas other studies have reported that VA ECMO was associated with lower survival rates than VV ECMO.ECMO plays a critical role in managing trauma patients,particularly those with acute respiratory failure.Further research is necessary to explore the full potential of ECMO in trauma care.Clinicians should have a clear understanding of the indications and contraindications for the use of ECMO to maximize its benefits in treating trauma patients. 展开更多
关键词 Extracorporeal membrane oxygenation treatments Multiple trauma Respiratory distress syndrome Cardiogenic shock CONTRAINDICATIONS ANTICOAGULANTS
在线阅读 下载PDF
Prognostic factors for acute central retinal artery occlusion treated with hyperbaric oxygen:The Hong Kong study report number five
15
作者 Sunny Chi Lik Au Steffi Shing Yee Chong 《World Journal of Methodology》 2025年第2期117-124,共8页
BACKGROUND Central retinal artery occlusion(CRAO)is a potentially blinding disease,and hyperbaric oxygen therapy(HBOT)is becoming increasingly popular with the support of scientific evidence.Despite the presence of va... BACKGROUND Central retinal artery occlusion(CRAO)is a potentially blinding disease,and hyperbaric oxygen therapy(HBOT)is becoming increasingly popular with the support of scientific evidence.Despite the presence of various acute management measures,there is no clear evidence on the gold standard treatment for CRAO.AIM To identify factors and imaging parameters associated with good visual outcome,which guide ophthalmologists in the triage of CRAO patients for HBOT.METHODS Patients who suffered from CRAO and had a symptom onset≤6 h were recruited for a course of HBOT in a tertiary hospital after failing bedside treatment.Patient demographics,onset time,CRAO eye parameters,and past medical history were prospectively collected.Visual outcomes after HBOT were also analyzed.RESULTS A total of 26 patients were included;the female-to-male ratio was 1:1.6,and the mean age was 67.5 years±13.3 years(range 44–89 years).The mean duration of follow-up and mean visual acuity(VA)improvement were 10.0 mo±5.3 mo and 0.48 logarithm of minimal angle of resolution(logMAR)±0.57 logMAR(approx-imately 9 letters in ETDRS)(P=0.0001,Z=-3.67),respectively.The 1 mm zone of central macular thickness(CMT)on optical coherence tomography was not associated with VA changes(P=0.119);however,the 1-to-3 mm circular rim of CMT was fairly associated(P=0.02,Spearman's coefficient=0.45).Complete retinal perfusion time during fundus fluorescein angiography(FFA)was mode-rately associated(P=0.01,Spearman's coefficient=0.58)with visual outcome. 展开更多
关键词 Central retinal artery occlusion Fundus fluorescein angiography Hyperbaric oxygen therapy Optical coherence tomography STROKE
在线阅读 下载PDF
Enhanced dynamics of Al^(3+)/H^(+) ions in aqueous aluminum ion batteries:Construction of metastable structures in vanadium pentoxide upon oxygen vacancies
16
作者 Zhibao Wang Hanqing Gu +2 位作者 Tianci Wu Wenming Zhang Zhanyu Li 《Journal of Energy Chemistry》 2025年第2期562-569,I0011,共9页
In recent years,aqueous aluminum ion batteries have been widely studied owing to their abundant energy storage and high theo retical capacity.An in-depth study of vanadium oxide materials is necessary to address the p... In recent years,aqueous aluminum ion batteries have been widely studied owing to their abundant energy storage and high theo retical capacity.An in-depth study of vanadium oxide materials is necessary to address the precipitation of insoluble products covered cathode surface and the slow reaction kinetics.Therefore,a method using a simple one-step hydrothermal preparation and oxalic acid to regulate oxygen vacancies has been reported.A high starting capacity(400 mAh g^(-1))can be achieved by Ov-V2O5,and it is capable of undergoing 200 cycles at 0.4 A g^(-1),with a termination discharge capacity of103 mAh g^(-1).Mechanism analysis demonstrated that metastable structures(AlxV2O5and HxV2O5)were constructed through the insertion of Al^(3+)/H^(+)during discharging,which existed in the lattice intercalation with V2O5.The incorporation of oxygen vacancies lowers the reaction energy barrier while improving the ion transport efficiency.In addition,the metastable structure allows the electrostatic interaction between Al3+and the main backbone to establish protection and optimize the transport channel.In parallel,this work exploits ex-situ characterization and DFT to obtain a profound insight into the instrumental effect of oxygen vacancies in the construction of metastable structures during in-situ electrochemical activation,with a view to better understanding the mechanism of the synergistic participation of Al3+and H+in the reaction.This work not only reports a method for cathode materials to modulate oxygen vacancies,but also lays the foundation for a deeper understanding of the metastable structure of vanadium oxides. 展开更多
关键词 Vanadium pentoxide oxygen vacancies Electrochemical activation Metastable structure
在线阅读 下载PDF
Concurrently Boosting Activity and Stability of Oxygen Reduction Reaction Catalysts via Judiciously Crafting Fe-Mn Dual Atoms for Fuel Cells
17
作者 Lei Zhang Yuchen Dong +6 位作者 Lubing Li Yuchuan Shi Yan Zhang Liting Wei Chung-Li Dong Zhiqun Lin Jinzhan Su 《Nano-Micro Letters》 2025年第4期275-289,共15页
The ability to unlock the interplay between the activity and stability of oxygen reduction reaction(ORR)represents an important endeavor toward creating robust ORR catalysts for efficient fuel cells.Herein,we report a... The ability to unlock the interplay between the activity and stability of oxygen reduction reaction(ORR)represents an important endeavor toward creating robust ORR catalysts for efficient fuel cells.Herein,we report an effective strategy to concurrent enhance the activity and stability of ORR catalysts via constructing atomically dispersed Fe-Mn dualmetal sites on N-doped carbon(denoted(FeMn-DA)-N-C)for both anion-exchange membrane fuel cells(AEMFC)and proton exchange membrane fuel cells(PEMFC).The(FeMn-DA)-N-C catalysts possess ample dual-metal atoms consisting of adjacent Fe-N_(4)and Mn-N_(4)sites on the carbon surface,yielded via a facile doping-adsorption-pyrolysis route.The introduction of Mn carries several advantageous attributes:increasing the number of active sites,effectively anchoring Fe due to effective electron transfer to Mn(revealed by X-ray absorption spectroscopy and density-functional theory(DFT),thus preventing the aggregation of Fe),and effectively circumventing the occurrence of Fenton reaction,thus reducing the consumption of Fe.The(FeMn-DA)-N-C catalysts showcase half-wave potentials of 0.92 and 0.82 V in 0.1 M KOH and 0.1 M HClO_(4),respectively,as well as outstanding stability.As manifested by DFT calculations,the introduction of Mn affects the electronic structure of Fe,down-shifts the d-band Fe active center,accelerates the desorption of OH groups,and creates higher limiting potentials.The AEMFC and PEMFC with(FeMn-DA)-N-C as the cathode catalyst display high power densities of 1060 and 746 mW cm^(-2),respectively,underscoring their promising potential for practical applications.Our study highlights the robustness of designing Fe-containing dual-atom ORR catalysts to promote both activity and stability for energy conversion and storage materials and devices. 展开更多
关键词 Doping-adsorption-pyrolysis Dual-atom catalysts oxygen reduction reaction Fuel cells
在线阅读 下载PDF
Identifying the dynamic behaviors in complete reconstruction of Co-based complex precatalysts during electrocatalytic oxygen evolution
18
作者 Jingfang Zhang Danyang Wu +6 位作者 Linke Cai Youluan Lu Fanpeng Cheng Lijuan Shi Qun Yi Yao Liu Yi Huang 《Journal of Energy Chemistry》 2025年第1期226-233,共8页
Transition metal-based nanomaterials have emerged as promising electrocatalysts for oxygen evolution reaction(OER).Considerable research efforts have shown that self-reconstruction occurs on these nanomaterials under ... Transition metal-based nanomaterials have emerged as promising electrocatalysts for oxygen evolution reaction(OER).Considerable research efforts have shown that self-reconstruction occurs on these nanomaterials under operating conditions of OER process.However,most of them undergo incomplete reconstruction with limited thickness of reconstruction layer,leading to low component utilization and arduous exploration of real catalytic mechanism.Herein,we identify the dynamic behaviors in complete reconstruction of Co-based complexes during OER.The hollow phytic acid(PA)cross-linked CoFe-based complex nanoboxes with porous nanowalls are designed because of their good electrolyte penetration and mass transport ability,in favor of the fast and complete reconstruction.A series of experiment characterizations demonstrate that the reconstruction process includes the fast substitution of PA by OH-to form Co(Fe)(OH)xand subsequent potential-driven oxidation to Co(Fe)OOH.The obtained CoFeOOH delivers a low overpotential of 290 mV at a current density of 10 mA cm^(-2)and a long-term stability.The experiment results together with theory calculations reveal that the Fe incorporation can result in the electron rearrangement of reconstructed CoFeOOH and optimization of their electronic structure,accounting for the enhanced OER activity.The work provides new insights into complete reconstruction of metal-based complexes during OER and offers guidelines for rational design of high-performance electrocatalysts. 展开更多
关键词 Complete reconstruction Co-based complex PRECATALYSTS oxygen evolution reaction
在线阅读 下载PDF
A predictive model for intracranial hemorrhage in adult patients receiving extracorporeal membrane oxygenation
19
作者 Yi Zhu Lina Mao +7 位作者 Zhongman Zhang Sae Rom Lee Tianshi Li Hao Zhou Yanbin Dong Di An Wei Li Xufeng Chen 《World Journal of Emergency Medicine》 2025年第2期153-160,共8页
BACKGROUND:Intracranial hemorrhage (ICH),a severe complication among adults receiving extracorporeal membrane oxygenation (ECMO),is often related to poor outcomes.This study aimed to establish a predictive model for I... BACKGROUND:Intracranial hemorrhage (ICH),a severe complication among adults receiving extracorporeal membrane oxygenation (ECMO),is often related to poor outcomes.This study aimed to establish a predictive model for ICH in adults receiving ECMO treatment.METHODS:Adults who received ECMO between January 2017 and June 2022 were the subjects of a single-center retrospective study.Patients under the age of 18 years old,with acute ICH before ECMO,with less than 24 h of ECMO support,and with incomplete data were excluded.ICH was diagnosed by a head computed tomography scan.The outcomes included the incidence of ICH,in-hosptial mortality and 28-day mortality.Multivariate logistic regression analysis was used to identify relevant risk factors of ICH,and a predictive model of ICH with a nomogram was constructed.RESULTS:Among the 227 patients included,22 developed ICH during ECMO.Patients with ICH had higher in-hospital mortality (90.9%vs.47.8%,P=0.001) and higher 28-day mortality (81.8%vs.47.3%,P=0.001) than patients with non-ICH.ICH was associated with decreased grey-white-matter ratio (GWR)(OR=0.894,95%CI:0.841–0.951,P<0.001),stroke history (OR=4.265,95%CI:1.052–17.291,P=0.042),fresh frozen plasma (FFP) transfusion (OR=1.208,95%CI:1.037–1.408,P=0.015)and minimum platelet (PLT) count during ECMO support (OR=0.977,95%CI:0.958–0.996,P=0.019).The area under the receiver operating characteristic curve of the ICH predictive model was 0.843 (95%CI:0.762–0.924,P<0.001).CONCLUSION:ECMO-treated patients with ICH had a higher risk of death.GWR,stroke history,FFP transfusion,and the minimum PLT count were independently associated with ICH,and the ICH predictive model showed that these parameters performed well as diagnostic tools. 展开更多
关键词 Extracorporeal membrane oxygenation Intracranial hemorrhage Predictive model Grey-white-matter ratio
在线阅读 下载PDF
Mogroside V protects against acetaminophen-induced liver injury by reducing reactive oxygen species and c-jun-N-terminal kinase activation in mice
20
作者 Jia-Lin Shi Tian Sun +3 位作者 Qing Li Chun-Mei Li Jun-Fei Jin Chong Zhang 《World Journal of Hepatology》 2025年第3期170-179,共10页
BACKGROUND High levels of acetaminophen(APAP)consumption can result in significant liver toxicity.Mogroside V(MV)is a bioactive,plant-derived triterpenoid known for its various pharmacological activities.However,the i... BACKGROUND High levels of acetaminophen(APAP)consumption can result in significant liver toxicity.Mogroside V(MV)is a bioactive,plant-derived triterpenoid known for its various pharmacological activities.However,the impact of MV on acute liver injury(ALI)is unknown.AIM To investigate the hepatoprotective potential of MV against liver damage caused by APAP and to examine the underlying mechanisms.METHODS Mice were divided into three groups:Saline,APAP and APAP+MV.MV(10 mg/kg)was given intraperitoneally one hour before APAP(300 mg/kg)administration.Twenty-four hours after APAP exposure,serum transaminase levels,liver necrotic area,inflammatory responses,nitrotyrosine accumulation,and c-jun-N-terminal kinase(JNK)activation were assessed.Additionally,we analyzed reactive oxygen species(ROS)levels,JNK activation,and cell death in alpha mouse liver 12(AML12)cells.RESULTS MV pre-treatment in vivo led to a reduction in the rise of aspartate transaminase and alanine transaminase levels,mitigated liver damage,decreased nitrotyrosine accumulation,and blocked JNK phosphorylation resulting from APAP exposure,without affecting glutathione production.Similarly,MV diminished the APAP-induced increase in ROS,JNK phosphorylation,and cell death in vitro.CONCLUSION Our study suggests that MV treatment alleviates APAP-induced ALI by reducing ROS and JNK activation. 展开更多
关键词 ACETAMINOPHEN Mogroside V Reactive oxygen species Liver injury C-jun-N-terminal kinase
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部