The optimum design method based on the reliability is presented to the stochastic structure systems (i. e., the sectional area, length, elastic module and strength of the structural member are random variables ) und...The optimum design method based on the reliability is presented to the stochastic structure systems (i. e., the sectional area, length, elastic module and strength of the structural member are random variables ) under the random loads. The sensitivity expression of system reliability index and the safety margins were presented in the stochastic structure systems. The optimum vector method was given. First, the expressions of the reliability index of the safety margins with the improved first-order second-moment and the stochastic finite element method were deduced, and then the expressions of the systemic failure probability by probabilistic network evaluation technique(PNET) method were obtained. After derivation calculus ,the expressions of the sensitivity analysis for the system reliability were obtained. Moreover, the optimum design with the optimum vector algorithm was undertaken. In the optimum iterative procedure, the gradient step and the optimum vector step were adopted to calculate. At the last, a numerical example was provided to illustrate that the method is efficient in the calculation, stably converges and fits the application in engineering.展开更多
In mould design, it is necessary for a designer to ensure that the cylinder has enough intensity in both the prestressed and synthesis states. An individual layer cylindrical mould cannot withstand a very high pressur...In mould design, it is necessary for a designer to ensure that the cylinder has enough intensity in both the prestressed and synthesis states. An individual layer cylindrical mould cannot withstand a very high pressure needed in polycrystalline diamond composite (PDC) production. So, multi-layer prepressure combination assemble moulds are often used. The analysis conducted here is to study the interaction of cylindrical layers and to explain how to obtain enough load capability with the lowest requirement of material performance. The ratio of the pressure cylinder radius of synthetic diamond is 3.27, which is close to the optimal value and can be used as structure size in a design for PDC bit compact die. There is a linear relationship between the internal and external pressures under a special tangent stress on the inner wall of the pressure cylinder. So, when two of the three parameters (the internal pressure, external pressure, and the requirement value of the tangent stress on the inner wall of the pressure cylinder) are given, the third can be obtained. The sleeve acts as a bridge?between the pressure cylinder and the steel belts. The optimum model developed in this paper can be used in PDC bit compact die design and other similar prestressed cold extrusion die design.展开更多
The maximum internal tangential stress is a critical parameter for the design of the PDC (polycrystalline diamond compact) die that has been widely applied to offshore oil drilling. A new simple equation for the cal...The maximum internal tangential stress is a critical parameter for the design of the PDC (polycrystalline diamond compact) die that has been widely applied to offshore oil drilling. A new simple equation for the calculation of the stress is developed, and verified by the test data from Kingdream Corp. of China, the largest bit Company in China. An opti- mum method for the design of the PDC die is presented and demonstrated in detail, and software for the design and FEM analysis of the die is developed on the basis of the method. This software has been used in oil industry in recent years.展开更多
This paper describes the robust optimum design which combines the geometrical optimization method proposed by Hashimoto and statistical method. Recently, 2.5″ hard disk drives (HDDs) are widely used for mobile device...This paper describes the robust optimum design which combines the geometrical optimization method proposed by Hashimoto and statistical method. Recently, 2.5″ hard disk drives (HDDs) are widely used for mobile devices such as laptops, video cameras and car navigation systems. In mobile applications, high durability towards external vibrations and shocks are essentials to the bearings of HDD spindle motor. In addition, the bearing characteristics are influenced by manufacturing error because of small size of the bearings of HDD. In this paper, the geometrical optimization is carried out to maximize the bearing stiffness using sequential quadratic programming to improve vibration characteristics. Additionally, the bearing stiffness is analyzed considering dimensional tolerance of the bearing using statistical method. The dimensional tolerance is assumed to distribute according to the Gaussian distribution, and then the bearing stiffness is estimated by combining the expectation and standard deviation. As a result, in the robust optimum design, new groove geometry of bearing can be obtained in which the bearing stiffness is four times higher than the stiffness of conventional spiral groove bearing. Moreover, the bearing has lower variability compared with the result of optimum design neglecting dimensional tolerance.展开更多
In this paper, the main problems concerning reliability design of offshore platform structure are described and the general steps for the use of Safety Coefficient Method are presented.
Welding transformer is widely used in industry manufacturing, depleting a large portion of electricity energy.Based on modern computer technology and mathematical programming, optimum design of electro-magnetic device...Welding transformer is widely used in industry manufacturing, depleting a large portion of electricity energy.Based on modern computer technology and mathematical programming, optimum design of electro-magnetic devices leads to highly efficient use of energy and materials. Are welding transformer is optimized here. A mathematical model,considering both productive cost and operating losses, which is called or Economical-through-Life transformer, is established. Mixed penalty function method, mixed dispersing variable method and improved orthogonal method have been applied to carry out the optimization calculations. Result shows that the power factor is quite important in an Economi-cal-through-Life transformer, and that some principles must be followed in the design work. Also discussed are the advantages and disadvantages of the three methods. In the end, the prospect of optimum design of welding transformer is forecast.展开更多
A fully automated optimization process is provided for the design of ducted propellers under open water conditions, including 3D geometry modeling, meshing, optimization algorithm and CFD analysis techniques. The deve...A fully automated optimization process is provided for the design of ducted propellers under open water conditions, including 3D geometry modeling, meshing, optimization algorithm and CFD analysis techniques. The developed process allows the direct integration of a RANSE solver in the design stage. A practical ducted propeller design case study is carried out for validation. Numerical simulations and open water tests are fulfilled and proved that the optimum ducted propeller improves hydrodynamic performance as predicted.展开更多
A method for determining symbolic and all numerical solutions in design optimization based on monotonicity analysis and solving polynomial systems is presented in this paper. Groebner Bases of the algebraic system equ...A method for determining symbolic and all numerical solutions in design optimization based on monotonicity analysis and solving polynomial systems is presented in this paper. Groebner Bases of the algebraic system equivalent to the subproblem of the design optimization is taken as the symbolic (analytical) expression of the optimum solution for the symbolic optimization, i.e. the problem with symbolic coefficients. A method based on substituting and eliminating for determining Groebner Bases is also proposed, and method for finding all numerical optimum solutions is discussed. Finally an example is given, demonstrating the strategy and efficiency of the method.展开更多
文摘The optimum design method based on the reliability is presented to the stochastic structure systems (i. e., the sectional area, length, elastic module and strength of the structural member are random variables ) under the random loads. The sensitivity expression of system reliability index and the safety margins were presented in the stochastic structure systems. The optimum vector method was given. First, the expressions of the reliability index of the safety margins with the improved first-order second-moment and the stochastic finite element method were deduced, and then the expressions of the systemic failure probability by probabilistic network evaluation technique(PNET) method were obtained. After derivation calculus ,the expressions of the sensitivity analysis for the system reliability were obtained. Moreover, the optimum design with the optimum vector algorithm was undertaken. In the optimum iterative procedure, the gradient step and the optimum vector step were adopted to calculate. At the last, a numerical example was provided to illustrate that the method is efficient in the calculation, stably converges and fits the application in engineering.
文摘In mould design, it is necessary for a designer to ensure that the cylinder has enough intensity in both the prestressed and synthesis states. An individual layer cylindrical mould cannot withstand a very high pressure needed in polycrystalline diamond composite (PDC) production. So, multi-layer prepressure combination assemble moulds are often used. The analysis conducted here is to study the interaction of cylindrical layers and to explain how to obtain enough load capability with the lowest requirement of material performance. The ratio of the pressure cylinder radius of synthetic diamond is 3.27, which is close to the optimal value and can be used as structure size in a design for PDC bit compact die. There is a linear relationship between the internal and external pressures under a special tangent stress on the inner wall of the pressure cylinder. So, when two of the three parameters (the internal pressure, external pressure, and the requirement value of the tangent stress on the inner wall of the pressure cylinder) are given, the third can be obtained. The sleeve acts as a bridge?between the pressure cylinder and the steel belts. The optimum model developed in this paper can be used in PDC bit compact die design and other similar prestressed cold extrusion die design.
文摘The maximum internal tangential stress is a critical parameter for the design of the PDC (polycrystalline diamond compact) die that has been widely applied to offshore oil drilling. A new simple equation for the calculation of the stress is developed, and verified by the test data from Kingdream Corp. of China, the largest bit Company in China. An opti- mum method for the design of the PDC die is presented and demonstrated in detail, and software for the design and FEM analysis of the die is developed on the basis of the method. This software has been used in oil industry in recent years.
文摘This paper describes the robust optimum design which combines the geometrical optimization method proposed by Hashimoto and statistical method. Recently, 2.5″ hard disk drives (HDDs) are widely used for mobile devices such as laptops, video cameras and car navigation systems. In mobile applications, high durability towards external vibrations and shocks are essentials to the bearings of HDD spindle motor. In addition, the bearing characteristics are influenced by manufacturing error because of small size of the bearings of HDD. In this paper, the geometrical optimization is carried out to maximize the bearing stiffness using sequential quadratic programming to improve vibration characteristics. Additionally, the bearing stiffness is analyzed considering dimensional tolerance of the bearing using statistical method. The dimensional tolerance is assumed to distribute according to the Gaussian distribution, and then the bearing stiffness is estimated by combining the expectation and standard deviation. As a result, in the robust optimum design, new groove geometry of bearing can be obtained in which the bearing stiffness is four times higher than the stiffness of conventional spiral groove bearing. Moreover, the bearing has lower variability compared with the result of optimum design neglecting dimensional tolerance.
文摘In this paper, the main problems concerning reliability design of offshore platform structure are described and the general steps for the use of Safety Coefficient Method are presented.
文摘Welding transformer is widely used in industry manufacturing, depleting a large portion of electricity energy.Based on modern computer technology and mathematical programming, optimum design of electro-magnetic devices leads to highly efficient use of energy and materials. Are welding transformer is optimized here. A mathematical model,considering both productive cost and operating losses, which is called or Economical-through-Life transformer, is established. Mixed penalty function method, mixed dispersing variable method and improved orthogonal method have been applied to carry out the optimization calculations. Result shows that the power factor is quite important in an Economi-cal-through-Life transformer, and that some principles must be followed in the design work. Also discussed are the advantages and disadvantages of the three methods. In the end, the prospect of optimum design of welding transformer is forecast.
基金financially supported by the National Natural Science Foundation of China(Grant No.51009090)the State Key Laboratory of Ocean Engineering(Grant No.GKZD010063)
文摘A fully automated optimization process is provided for the design of ducted propellers under open water conditions, including 3D geometry modeling, meshing, optimization algorithm and CFD analysis techniques. The developed process allows the direct integration of a RANSE solver in the design stage. A practical ducted propeller design case study is carried out for validation. Numerical simulations and open water tests are fulfilled and proved that the optimum ducted propeller improves hydrodynamic performance as predicted.
文摘A method for determining symbolic and all numerical solutions in design optimization based on monotonicity analysis and solving polynomial systems is presented in this paper. Groebner Bases of the algebraic system equivalent to the subproblem of the design optimization is taken as the symbolic (analytical) expression of the optimum solution for the symbolic optimization, i.e. the problem with symbolic coefficients. A method based on substituting and eliminating for determining Groebner Bases is also proposed, and method for finding all numerical optimum solutions is discussed. Finally an example is given, demonstrating the strategy and efficiency of the method.