期刊文献+
共找到43,900篇文章
< 1 2 250 >
每页显示 20 50 100
A Fuzzy Multi-Objective Framework for Energy Optimization and Reliable Routing in Wireless Sensor Networks via Particle Swarm Optimization
1
作者 Medhat A.Tawfeek Ibrahim Alrashdi +1 位作者 Madallah Alruwaili Fatma M.Talaat 《Computers, Materials & Continua》 2025年第5期2773-2792,共20页
Wireless Sensor Networks(WSNs)are one of the best technologies of the 21st century and have seen tremendous growth over the past decade.Much work has been put into its development in various aspects such as architectu... Wireless Sensor Networks(WSNs)are one of the best technologies of the 21st century and have seen tremendous growth over the past decade.Much work has been put into its development in various aspects such as architectural attention,routing protocols,location exploration,time exploration,etc.This research aims to optimize routing protocols and address the challenges arising from conflicting objectives in WSN environments,such as balancing energy consumption,ensuring routing reliability,distributing network load,and selecting the shortest path.Many optimization techniques have shown success in achieving one or two objectives but struggle to achieve the right balance between multiple conflicting objectives.To address this gap,this paper proposes an innovative approach that integrates Particle Swarm Optimization(PSO)with a fuzzy multi-objective framework.The proposed method uses fuzzy logic to effectively control multiple competing objectives to represent its major development beyond existing methods that only deal with one or two objectives.The search efficiency is improved by particle swarm optimization(PSO)which overcomes the large computational requirements that serve as a major drawback of existing methods.The PSO algorithm is adapted for WSNs to optimize routing paths based on fuzzy multi-objective fitness.The fuzzy logic framework uses predefined membership functions and rule-based reasoning to adjust routing decisions.These adjustments influence PSO’s velocity updates,ensuring continuous adaptation under varying network conditions.The proposed multi-objective PSO-fuzzy model is evaluated using NS-3 simulation.The results show that the proposed model is capable of improving the network lifetime by 15.2%–22.4%,increasing the stabilization time by 18.7%–25.5%,and increasing the residual energy by 8.9%–16.2% compared to the state-of-the-art techniques.The proposed model also achieves a 15%–24% reduction in load variance,demonstrating balanced routing and extended network lifetime.Furthermore,analysis using p-values obtained from multiple performance measures(p-values<0.05)showed that the proposed approach outperforms with a high level of confidence.The proposed multi-objective PSO-fuzzy model provides a robust and scalable solution to improve the performance of WSNs.It allows stable performance in networks with 100 to 300 nodes,under varying node densities,and across different base station placements.Computational complexity analysis has shown that the method fits well into large-scale WSNs and that the addition of fuzzy logic controls the power usage to make the system practical for real-world use. 展开更多
关键词 Wireless sensor networks particle swarm optimization fuzzy multi-objective framework routing stability
在线阅读 下载PDF
A Multi-Objective Particle Swarm Optimization Algorithm Based on Decomposition and Multi-Selection Strategy
2
作者 Li Ma Cai Dai +1 位作者 Xingsi Xue Cheng Peng 《Computers, Materials & Continua》 SCIE EI 2025年第1期997-1026,共30页
The multi-objective particle swarm optimization algorithm(MOPSO)is widely used to solve multi-objective optimization problems.In the article,amulti-objective particle swarm optimization algorithmbased on decomposition... The multi-objective particle swarm optimization algorithm(MOPSO)is widely used to solve multi-objective optimization problems.In the article,amulti-objective particle swarm optimization algorithmbased on decomposition and multi-selection strategy is proposed to improve the search efficiency.First,two update strategies based on decomposition are used to update the evolving population and external archive,respectively.Second,a multiselection strategy is designed.The first strategy is for the subspace without a non-dominated solution.Among the neighbor particles,the particle with the smallest penalty-based boundary intersection value is selected as the global optimal solution and the particle far away fromthe search particle and the global optimal solution is selected as the personal optimal solution to enhance global search.The second strategy is for the subspace with a non-dominated solution.In the neighbor particles,two particles are randomly selected,one as the global optimal solution and the other as the personal optimal solution,to enhance local search.The third strategy is for Pareto optimal front(PF)discontinuity,which is identified by the cumulative number of iterations of the subspace without non-dominated solutions.In the subsequent iteration,a new probability distribution is used to select from the remaining subspaces to search.Third,an adaptive inertia weight update strategy based on the dominated degree is designed to further improve the search efficiency.Finally,the proposed algorithmis compared with fivemulti-objective particle swarm optimization algorithms and five multi-objective evolutionary algorithms on 22 test problems.The results show that the proposed algorithm has better performance. 展开更多
关键词 multi-objective optimization multi-objective particle swarm optimization DECOMPOSITION multi-selection strategy
在线阅读 下载PDF
Optimal Scheduling of an Independent Electro-Hydrogen System with Hybrid Energy Storage Using a Multi-Objective Standardization Fusion Method
3
作者 Suliang Ma Zeqing Meng +1 位作者 Mingxuan Chen Yuan Jiang 《Energy Engineering》 EI 2025年第1期63-84,共22页
In the independent electro-hydrogen system(IEHS)with hybrid energy storage(HESS),achieving optimal scheduling is crucial.Still,it presents a challenge due to the significant deviations in values ofmultiple optimizatio... In the independent electro-hydrogen system(IEHS)with hybrid energy storage(HESS),achieving optimal scheduling is crucial.Still,it presents a challenge due to the significant deviations in values ofmultiple optimization objective functions caused by their physical dimensions.These deviations seriously affect the scheduling process.A novel standardization fusion method has been established to address this issue by analyzing the variation process of each objective function’s values.The optimal scheduling results of IEHS with HESS indicate that the economy and overall energy loss can be improved 2–3 times under different optimization methods.The proposed method better balances all optimization objective functions and reduces the impact of their dimensionality.When the cost of BESS decreases by approximately 30%,its participation deepens by about 1 time.Moreover,if the price of the electrolyzer is less than 15¥/kWh or if the cost of the fuel cell drops below 4¥/kWh,their participation will increase substantially.This study aims to provide a more reasonable approach to solving multi-objective optimization problems. 展开更多
关键词 Electro-hydrogen system multi-objective optimization standardization method hybrid energy storage system
在线阅读 下载PDF
Algorithm and Application in Vehicle Routing Problem: A Review
4
作者 Zhenyu Chen 《Journal of Electronic Research and Application》 2025年第2期166-174,共9页
This paper systematically reviews the latest research developments in Vehicle Routing Problems(VRP).It examines classical VRP models and their classifications across different dimensions,including load capacity,operat... This paper systematically reviews the latest research developments in Vehicle Routing Problems(VRP).It examines classical VRP models and their classifications across different dimensions,including load capacity,operational characteristics,optimization objectives,vehicle types,and time constraints.Based on literature retrieval results from the Web of Science database,the paper analyzes the current state and trends in VRP research,providing detailed explanations of VRP models and algorithms applied to various scenarios in recent years.Additionally,the article discusses limitations in existing research and provides perspectives on future development trends in VRP research.This review offers researchers in the VRP field a comprehensive overview while identifying future research directions. 展开更多
关键词 Vehicle routing problem VRP Delivery route optimization Logistics planning
在线阅读 下载PDF
Resource Optimization in Elastic Optical Networks Using Threshold-Based Routing and Fragmentation-Aware Spectrum Allocation
5
作者 Kamagaté Beman Hamidja Kanga Koffi +2 位作者 Coulibaly Kpinan Tiekoura Konaté Adama Michel Babri 《Open Journal of Applied Sciences》 2025年第1期168-186,共19页
This paper proposes an efficient strategy for resource utilization in Elastic Optical Networks (EONs) to minimize spectrum fragmentation and reduce connection blocking probability during Routing and Spectrum Allocatio... This paper proposes an efficient strategy for resource utilization in Elastic Optical Networks (EONs) to minimize spectrum fragmentation and reduce connection blocking probability during Routing and Spectrum Allocation (RSA). The proposed method, Dynamic Threshold-Based Routing and Spectrum Allocation with Fragmentation Awareness (DT-RSAF), integrates rerouting and spectrum defragmentation as needed. By leveraging Yen’s shortest path algorithm, DT-RSAF enhances resource utilization while ensuring improved service continuity. A dynamic threshold mechanism enables the algorithm to adapt to varying network conditions, while its fragmentation awareness effectively mitigates spectrum fragmentation. Simulation results on NSFNET and COST 239 topologies demonstrate that DT-RSAF significantly outperforms methods such as K-Shortest Path Routing and Spectrum Allocation (KSP-RSA), Load Balanced and Fragmentation-Aware (LBFA), and the Invasive Weed Optimization-based RSA (IWO-RSA). Under heavy traffic, DT-RSAF reduces the blocking probability by up to 15% and achieves lower Bandwidth Fragmentation Ratios (BFR), ranging from 74% to 75%, compared to 77% - 80% for KSP-RSA, 75% - 77% for LBFA, and approximately 76% for IWO-RSA. DT-RSAF also demonstrated reasonable computation times compared to KSP-RSA, LBFA, and IWO-RSA. On a small-sized network, its computation time was 8710 times faster than that of Integer Linear Programming (ILP) on the same network topology. Additionally, it achieved a similar execution time to LBFA and outperformed IWO-RSA in terms of efficiency. These results highlight DT-RSAF’s capability to maintain large contiguous frequency blocks, making it highly effective for accommodating high-bandwidth requests in EONs while maintaining reasonable execution times. 展开更多
关键词 Elastic Optical Networks (EONs) Spectrum Fragmentation routing and Spectrum Allocation (RSA) Connection Rerouting HEURISTIC
在线阅读 下载PDF
CCHP-Type Micro-Grid Scheduling Optimization Based on Improved Multi-Objective Grey Wolf Optimizer
6
作者 Yu Zhang Sheng Wang +1 位作者 Fanming Zeng Yijie Lin 《Energy Engineering》 2025年第3期1137-1151,共15页
With the development of renewable energy technologies such as photovoltaics and wind power,it has become a research hotspot to improve the consumption rate of new energy and reduce energy costs through algorithm impro... With the development of renewable energy technologies such as photovoltaics and wind power,it has become a research hotspot to improve the consumption rate of new energy and reduce energy costs through algorithm improvement.To reduce the operational costs of micro-grid systems and the energy abandonment rate of renewable energy,while simultaneously enhancing user satisfaction on the demand side,this paper introduces an improvedmultiobjective Grey Wolf Optimizer based on Cauchy variation.The proposed approach incorporates a Cauchy variation strategy during the optimizer’s search phase to expand its exploration range and minimize the likelihood of becoming trapped in local optima.At the same time,adoptingmultiple energy storage methods to improve the consumption rate of renewable energy.Subsequently,under different energy balance orders,themulti-objective particle swarmalgorithm,multi-objective grey wolf optimizer,and Cauchy’s variant of the improvedmulti-objective grey wolf optimizer are used for example simulation,solving the Pareto solution set of the model and comparing.The analysis of the results reveals that,compared to the original optimizer,the improved optimizer decreases the daily cost by approximately 100 yuan,and reduces the energy abandonment rate to zero.Meanwhile,it enhances user satisfaction and ensures the stable operation of the micro-grid. 展开更多
关键词 multi-objective optimization algorithm hybrid energy storage MICRO-GRID CCHP
在线阅读 下载PDF
Multi-Objective Optimization of Swirling Impinging Air Jets with Genetic Algorithm and Weighted Sum Method
7
作者 Sudipta Debnath Zahir Uddin Ahmed +3 位作者 Muhammad Ikhlaq Md.Tanvir Khan Avneet Kaur Kuljeet Singh Grewal 《Frontiers in Heat and Mass Transfer》 2025年第1期71-94,共24页
Impinging jet arrays are extensively used in numerous industrial operations,including the cooling of electronics,turbine blades,and other high-heat flux systems because of their superior heat transfer capabilities.Opt... Impinging jet arrays are extensively used in numerous industrial operations,including the cooling of electronics,turbine blades,and other high-heat flux systems because of their superior heat transfer capabilities.Optimizing the design and operating parameters of such systems is essential to enhance cooling efficiency and achieve uniform pressure distribution,which can lead to improved system performance and energy savings.This paper presents two multi-objective optimization methodologies for a turbulent air jet impingement cooling system.The governing equations are resolved employing the commercial computational fluid dynamics(CFD)software ANSYS Fluent v17.The study focuses on four controlling parameters:Reynolds number(Re),swirl number(S),jet-to-jet separation distance(Z/D),and impingement height(H/D).The effects of these parameters on heat transfer and impingement pressure distribution are investigated.Non-dominated Sorting Genetic Algorithm(NSGA-II)and Weighted Sum Method(WSM)are employed to optimize the controlling parameters for maximum cooling performance.The aim is to identify optimal design parameters and system configurations that enhance heat transfer efficiency while achieving a uniform impingement pressure distribution.These findings have practical implications for applications requiring efficient cooling.The optimized design achieved a 12.28%increase in convective heat transfer efficiency with a local Nusselt number of 113.05 compared to 100.69 in the reference design.Enhanced convective cooling and heat flux were observed in the optimized configuration,particularly in areas of direct jet impingement.Additionally,the optimized design maintained lower wall temperatures,demonstrating more effective thermal dissipation. 展开更多
关键词 Jet impingement multi-objective optimization pareto front NSGA-Ⅱ WSM
在线阅读 下载PDF
Efficient Resource Allocation in Cloud IaaS: A Multi-Objective Strategy for Minimizing Workflow Makespan and Cloud Resource Costs
8
作者 Jean Edgard Gnimassoun Dagou Dangui Augustin Sylvain Legrand Koffi Akanza Konan Ricky N’dri 《Open Journal of Applied Sciences》 2025年第1期147-167,共21页
The ease of accessing a virtually unlimited pool of resources makes Infrastructure as a Service (IaaS) clouds an ideal platform for running data-intensive workflow applications comprising hundreds of computational tas... The ease of accessing a virtually unlimited pool of resources makes Infrastructure as a Service (IaaS) clouds an ideal platform for running data-intensive workflow applications comprising hundreds of computational tasks. However, executing scientific workflows in IaaS cloud environments poses significant challenges due to conflicting objectives, such as minimizing execution time (makespan) and reducing resource utilization costs. This study responds to the increasing need for efficient and adaptable optimization solutions in dynamic and complex environments, which are critical for meeting the evolving demands of modern users and applications. This study presents an innovative multi-objective approach for scheduling scientific workflows in IaaS cloud environments. The proposed algorithm, MOS-MWMC, aims to minimize total execution time (makespan) and resource utilization costs by leveraging key features of virtual machine instances, such as a high number of cores and fast local SSD storage. By integrating realistic simulations based on the WRENCH framework, the method effectively dimensions the cloud infrastructure and optimizes resource usage. Experimental results highlight the superiority of MOS-MWMC compared to benchmark algorithms HEFT and Max-Min. The Pareto fronts obtained for the CyberShake, Epigenomics, and Montage workflows demonstrate closer proximity to the optimal front, confirming the algorithm’s ability to balance conflicting objectives. This study contributes to optimizing scientific workflows in complex environments by providing solutions tailored to specific user needs while minimizing costs and execution times. 展开更多
关键词 Cloud Infrastructure multi-objective Scheduling Resource Cost Optimization Resource Utilization Scientific Workflows
在线阅读 下载PDF
Review on Multi-objective Dynamic Scheduling Methods for Flexible Job Shops and Application in Aviation Manufacturing
9
作者 MA Yajie JIANG Bin +3 位作者 GUAN Li CHEN Lijun HUANG Binda CHEN Zhi 《Transactions of Nanjing University of Aeronautics and Astronautics》 2025年第1期1-24,共24页
Intelligent production is an important development direction in intelligent manufacturing,with intelligent factories playing a crucial role in promoting intelligent production.Flexible job shops,as the main form of in... Intelligent production is an important development direction in intelligent manufacturing,with intelligent factories playing a crucial role in promoting intelligent production.Flexible job shops,as the main form of intelligent factories,constantly face dynamic disturbances during the production process,including machine failures and urgent orders.This paper discusses the basic models and research methods of job shop scheduling,emphasizing the important role of dynamic job shop scheduling and its response schemes in future research.A multi-objective flexible job shop dynamic scheduling mathematical model is established,highlighting its complex and multi-constraint characteristics under different interferences.A classification discussion is conducted on the dynamic response methods and optimization objectives under machine failures,emergency orders,fuzzy completion times,and mixed dynamic events.The development process of traditional scheduling rules and intelligent methods in dynamic scheduling are also analyzed.Finally,based on the current development status of job shop scheduling and the requirements of intelligent manufacturing,the future development trends of dynamic scheduling in flexible job shops are proposed. 展开更多
关键词 flexible job shop dynamic scheduling machine breakdown job insertion multi-objective optimization
在线阅读 下载PDF
Strength,Self-flowing,and Multi-objective Optimization of Cemented Paste Backfill Materials Base on RSM-DF
10
作者 LIU Chunkang WANG Hongjiang +2 位作者 WANG Hui SUN Jiaqi BAI Longjian 《Journal of Wuhan University of Technology(Materials Science)》 2025年第2期449-461,共13页
The multi-objective optimization of backfill effect based on response surface methodology and desirability function(RSM-DF)was conducted.Firstly,the test results show that the uniaxial compressive strength(UCS)increas... The multi-objective optimization of backfill effect based on response surface methodology and desirability function(RSM-DF)was conducted.Firstly,the test results show that the uniaxial compressive strength(UCS)increases with cement sand ratio(CSR),slurry concentration(SC),and curing age(CA),while flow resistance(FR)increases with SC and backfill flow rate(BFR),and decreases with CSR.Then the regression models of UCS and FR as response values were established through RSM.Multi-factor interaction found that CSR-CA impacted UCS most,while SC-BFR impacted FR most.By introducing the desirability function,the optimal backfill parameters were obtained based on RSM-DF(CSR is 1:6.25,SC is 69%,CA is 11.5 d,and BFR is 90 m^(3)/h),showing close results of Design Expert and high reliability for optimization.For a copper mine in China,RSM-DF optimization will reduce cement consumption by 4758 t per year,increase tailings consumption by about 6700 t,and reduce CO_(2)emission by about 4758 t.Thus,RSM-DF provides a new approach for backfill parameters optimization,which has important theoretical and practical values. 展开更多
关键词 cemented paste backfill response surface methodology desirability function multi-objective optimization
在线阅读 下载PDF
Multi-Objective Hybrid Sailfish Optimization Algorithm for Planetary Gearbox and Mechanical Engineering Design Optimization Problems
11
作者 Miloš Sedak Maja Rosic Božidar Rosic 《Computer Modeling in Engineering & Sciences》 2025年第2期2111-2145,共35页
This paper introduces a hybrid multi-objective optimization algorithm,designated HMODESFO,which amalgamates the exploratory prowess of Differential Evolution(DE)with the rapid convergence attributes of the Sailfish Op... This paper introduces a hybrid multi-objective optimization algorithm,designated HMODESFO,which amalgamates the exploratory prowess of Differential Evolution(DE)with the rapid convergence attributes of the Sailfish Optimization(SFO)algorithm.The primary objective is to address multi-objective optimization challenges within mechanical engineering,with a specific emphasis on planetary gearbox optimization.The algorithm is equipped with the ability to dynamically select the optimal mutation operator,contingent upon an adaptive normalized population spacing parameter.The efficacy of HMODESFO has been substantiated through rigorous validation against estab-lished industry benchmarks,including a suite of Zitzler-Deb-Thiele(ZDT)and Zeb-Thiele-Laumanns-Zitzler(DTLZ)problems,where it exhibited superior performance.The outcomes underscore the algorithm’s markedly enhanced optimization capabilities relative to existing methods,particularly in tackling highly intricate multi-objective planetary gearbox optimization problems.Additionally,the performance of HMODESFO is evaluated against selected well-known mechanical engineering test problems,further accentuating its adeptness in resolving complex optimization challenges within this domain. 展开更多
关键词 multi-objective optimization planetary gearbox gear efficiency sailfish optimization differential evolution hybrid algorithms
在线阅读 下载PDF
Blockchain-Based Trust Model for Inter-Domain Routing
12
作者 Qiong Yang Li Ma +3 位作者 Sami Ullah Shanshan Tu Hisham Alasmary Muhammad Waqas 《Computers, Materials & Continua》 2025年第3期4821-4839,共19页
Border Gateway Protocol(BGP),as the standard inter-domain routing protocol,is a distance-vector dynamic routing protocol used for exchanging routing information between distributed Autonomous Systems(AS).BGP nodes,com... Border Gateway Protocol(BGP),as the standard inter-domain routing protocol,is a distance-vector dynamic routing protocol used for exchanging routing information between distributed Autonomous Systems(AS).BGP nodes,communicating in a distributed dynamic environment,face several security challenges,with trust being one of the most important issues in inter-domain routing.Existing research,which performs trust evaluation when exchanging routing information to suppress malicious routing behavior,cannot meet the scalability requirements of BGP nodes.In this paper,we propose a blockchain-based trust model for inter-domain routing.Our model achieves scalability by allowing the master node of an AS alliance to transmit the trust evaluation data of its member nodes to the blockchain.The BGP nodes can expedite the trust evaluation process by accessing a global view of other BGP nodes through the master node of their respective alliance.We incorporate security service evaluation before direct evaluation and indirect recommendations to assess the security services that BGP nodes provide for themselves and prioritize to guarantee their security of routing service.We forward the trust evaluation for neighbor discovery and prioritize the nodes with high trust as neighbor nodes to reduce the malicious exchange routing behavior.We use simulation software to simulate a real BGP environments and employ a comparative experimental research approach to demonstrate the performance evaluation of our trust model.Compared with the classical trust model,our trust model not only saves more storage overhead,but also provides higher security,especially reducing the impact of collusion attacks. 展开更多
关键词 Inter-domain routing BGP security blockchain trust model trust mechanisms trust evaluation
在线阅读 下载PDF
A Novel Reliable and Trust Objective Function for RPL-Based IoT Routing Protocol
13
作者 Mariam A.Alotaibi Sami S.Alwakeel Aasem N.Alyahya 《Computers, Materials & Continua》 2025年第2期3467-3497,共31页
The Internet of Things (IoT) integrates diverse devices into the Internet infrastructure, including sensors, meters, and wearable devices. Designing efficient IoT networks with these heterogeneous devices requires the... The Internet of Things (IoT) integrates diverse devices into the Internet infrastructure, including sensors, meters, and wearable devices. Designing efficient IoT networks with these heterogeneous devices requires the selection of appropriate routing protocols, which is crucial for maintaining high Quality of Service (QoS). The Internet Engineering Task Force’s Routing Over Low Power and Lossy Networks (IETF ROLL) working group developed the IPv6 Routing Protocol for Low Power and Lossy Networks (RPL) to meet these needs. While the initial RPL standard focused on single-metric route selection, ongoing research explores enhancing RPL by incorporating multiple routing metrics and developing new Objective Functions (OFs). This paper introduces a novel Objective Function (OF), the Reliable and Secure Objective Function (RSOF), designed to enhance the reliability and trustworthiness of parent selection at both the node and link levels within IoT and RPL routing protocols. The RSOF employs an adaptive parent node selection mechanism that incorporates multiple metrics, including Residual Energy (RE), Expected Transmission Count (ETX), Extended RPL Node Trustworthiness (ERNT), and a novel metric that measures node failure rate (NFR). In this mechanism, nodes with a high NFR are excluded from the parent selection process to improve network reliability and stability. The proposed RSOF was evaluated using random and grid topologies in the Cooja Simulator, with tests conducted across small, medium, and large-scale networks to examine the impact of varying node densities. The simulation results indicate a significant improvement in network performance, particularly in terms of average latency, packet acknowledgment ratio (PAR), packet delivery ratio (PDR), and Control Message Overhead (CMO), compared to the standard Minimum Rank with Hysteresis Objective Function (MRHOF). 展开更多
关键词 IOT LLNs RPL objective function OF MRHOF OF0 routing metrics RELIABILITY trustworthiness
在线阅读 下载PDF
An Enhanced Fuzzy Routing Protocol for Energy Optimization in the Underwater Wireless Sensor Networks
14
作者 Mehran Tarif Mohammadhossein Homaei Amir Mosavi 《Computers, Materials & Continua》 2025年第5期1791-1820,共30页
Underwater Wireless Sensor Networks(UWSNs)are gaining popularity because of their potential uses in oceanography,seismic activity monitoring,environmental preservation,and underwater mapping.Yet,these networks are fac... Underwater Wireless Sensor Networks(UWSNs)are gaining popularity because of their potential uses in oceanography,seismic activity monitoring,environmental preservation,and underwater mapping.Yet,these networks are faced with challenges such as self-interference,long propagation delays,limited bandwidth,and changing network topologies.These challenges are coped with by designing advanced routing protocols.In this work,we present Under Water Fuzzy-Routing Protocol for Low power and Lossy networks(UWF-RPL),an enhanced fuzzy-based protocol that improves decision-making during path selection and traffic distribution over different network nodes.Our method extends RPL with the aid of fuzzy logic to optimize depth,energy,Received Signal Strength Indicator(RSSI)to Expected Transmission Count(ETX)ratio,and latency.Theproposed protocol outperforms other techniques in that it offersmore energy efficiency,better packet delivery,lowdelay,and no queue overflow.It also exhibits better scalability and reliability in dynamic underwater networks,which is of very high importance in maintaining the network operations efficiency and the lifetime of UWSNs optimized.Compared to other recent methods,it offers improved network convergence time(10%–23%),energy efficiency(15%),packet delivery(17%),and delay(24%). 展开更多
关键词 Underwater sensor networks(UWSNs) routing energy fuzzy logic MULTIPATH load balancing
在线阅读 下载PDF
Collaborative Decomposition Multi-Objective Improved Elephant Clan Optimization Based on Penalty-Based and Normal Boundary Intersection
15
作者 Mengjiao Wei Wenyu Liu 《Computers, Materials & Continua》 2025年第5期2505-2523,共19页
In recent years,decomposition-based evolutionary algorithms have become popular algorithms for solving multi-objective problems in real-life scenarios.In these algorithms,the reference vectors of the Penalty-Based bou... In recent years,decomposition-based evolutionary algorithms have become popular algorithms for solving multi-objective problems in real-life scenarios.In these algorithms,the reference vectors of the Penalty-Based boundary intersection(PBI)are distributed parallelly while those based on the normal boundary intersection(NBI)are distributed radially in a conical shape in the objective space.To improve the problem-solving effectiveness of multi-objective optimization algorithms in engineering applications,this paper addresses the improvement of the Collaborative Decomposition(CoD)method,a multi-objective decomposition technique that integrates PBI and NBI,and combines it with the Elephant Clan Optimization Algorithm,introducing the Collaborative Decomposition Multi-objective Improved Elephant Clan Optimization Algorithm(CoDMOIECO).Specifically,a novel subpopulation construction method with adaptive changes following the number of iterations and a novel individual merit ranking based onNBI and angle are proposed.,enabling the creation of subpopulations closely linked to weight vectors and the identification of diverse individuals within them.Additionally,new update strategies for the clan leader,male elephants,and juvenile elephants are introduced to boost individual exploitation capabilities and further enhance the algorithm’s convergence.Finally,a new CoD-based environmental selection method is proposed,introducing adaptive dynamically adjusted angle coefficients and individual angles on corresponding weight vectors,significantly improving both the convergence and distribution of the algorithm.Experimental comparisons on the ZDT,DTLZ,and WFG function sets with four benchmark multi-objective algorithms—MOEA/D,CAMOEA,VaEA,and MOEA/D-UR—demonstrate that CoDMOIECO achieves superior performance in both convergence and distribution. 展开更多
关键词 multi-objective optimization elephant clan optimization algorithm collaborative decomposition new individual selection mechanism diversity preservation
在线阅读 下载PDF
An Improved Chaotic Quantum Multi-Objective Harris Hawks Optimization Algorithm for Emergency Centers Site Selection Decision Problem
16
作者 Yuting Zhu Wenyu Zhang +3 位作者 Hainan Wang Junjie Hou Haining Wang Meng Wang 《Computers, Materials & Continua》 2025年第2期2177-2198,共22页
Addressing the complex issue of emergency resource distribution center site selection in uncertain environments, this study was conducted to comprehensively consider factors such as uncertainty parameters and the urge... Addressing the complex issue of emergency resource distribution center site selection in uncertain environments, this study was conducted to comprehensively consider factors such as uncertainty parameters and the urgency of demand at disaster-affected sites. Firstly, urgency cost, economic cost, and transportation distance cost were identified as key objectives. The study applied fuzzy theory integration to construct a triangular fuzzy multi-objective site selection decision model. Next, the defuzzification theory transformed the fuzzy decision model into a precise one. Subsequently, an improved Chaotic Quantum Multi-Objective Harris Hawks Optimization (CQ-MOHHO) algorithm was proposed to solve the model. The CQ-MOHHO algorithm was shown to rapidly produce high-quality Pareto front solutions and identify optimal site selection schemes for emergency resource distribution centers through case studies. This outcome verified the feasibility and efficacy of the site selection decision model and the CQ-MOHHO algorithm. To further assess CQ-MOHHO’s performance, Zitzler-Deb-Thiele (ZDT) test functions, commonly used in multi-objective optimization, were employed. Comparisons with Multi-Objective Harris Hawks Optimization (MOHHO), Non-dominated Sorting Genetic Algorithm II (NSGA-II), and Multi-Objective Grey Wolf Optimizer (MOGWO) using Generational Distance (GD), Hypervolume (HV), and Inverted Generational Distance (IGD) metrics showed that CQ-MOHHO achieved superior global search ability, faster convergence, and higher solution quality. The CQ-MOHHO algorithm efficiently achieved a balance between multiple objectives, providing decision-makers with satisfactory solutions and a valuable reference for researching and applying emergency site selection problems. 展开更多
关键词 Site selection triangular fuzzy theory chaotic quantum Harris Hawks optimization multi-objective optimization
在线阅读 下载PDF
Delay bounded routing with the maximum belief degree for dynamic uncertain networks
17
作者 MA Ji KANG Rui +3 位作者 LI Ruiying ZHANG Qingyuan LIU Liang WANG Xuewang 《Journal of Systems Engineering and Electronics》 2025年第1期127-138,共12页
Delay aware routing is now widely used to provide efficient network transmission. However, for newly developing or developed mobile communication networks(MCN), only limited delay data can be obtained. In such a netwo... Delay aware routing is now widely used to provide efficient network transmission. However, for newly developing or developed mobile communication networks(MCN), only limited delay data can be obtained. In such a network, the delay is with epistemic uncertainty, which makes the traditional routing scheme based on deterministic theory or probability theory not applicable. Motivated by this problem, the MCN with epistemic uncertainty is first summarized as a dynamic uncertain network based on uncertainty theory, which is widely applied to model epistemic uncertainties. Then by modeling the uncertain end-toend delay, a new delay bounded routing scheme is proposed to find the path with the maximum belief degree that satisfies the delay threshold for the dynamic uncertain network. Finally, a lowEarth-orbit satellite communication network(LEO-SCN) is used as a case to verify the effectiveness of our routing scheme. It is first modeled as a dynamic uncertain network, and then the delay bounded paths with the maximum belief degree are computed and compared under different delay thresholds. 展开更多
关键词 dynamic uncertain network uncertainty theory epistemic uncertainty delay bounded routing maximum belief degree
在线阅读 下载PDF
MOCBOA:Multi-Objective Chef-Based Optimization Algorithm Using Hybrid Dominance Relations for Solving Engineering Design Problems
18
作者 Nour Elhouda Chalabi Abdelouahab Attia +4 位作者 Abdulaziz S.Almazyad Ali Wagdy Mohamed Frank Werner Pradeep Jangir Mohammad Shokouhifar 《Computer Modeling in Engineering & Sciences》 2025年第4期967-1008,共42页
Multi-objective optimization is critical for problem-solving in engineering,economics,and AI.This study introduces the Multi-Objective Chef-Based Optimization Algorithm(MOCBOA),an upgraded version of the Chef-Based Op... Multi-objective optimization is critical for problem-solving in engineering,economics,and AI.This study introduces the Multi-Objective Chef-Based Optimization Algorithm(MOCBOA),an upgraded version of the Chef-Based Optimization Algorithm(CBOA)that addresses distinct objectives.Our approach is unique in systematically examining four dominance relations—Pareto,Epsilon,Cone-epsilon,and Strengthened dominance—to evaluate their influence on sustaining solution variety and driving convergence toward the Pareto front.Our comparison investigation,which was conducted on fifty test problems from the CEC 2021 benchmark and applied to areas such as chemical engineering,mechanical design,and power systems,reveals that the dominance approach used has a considerable impact on the key optimization measures such as the hypervolume metric.This paper provides a solid foundation for determining themost effective dominance approach and significant insights for both theoretical research and practical applications in multi-objective optimization. 展开更多
关键词 multi-objective optimization chef-based optimization algorithm(CBOA) pareto dominance epsilon dominance cone-epsilon dominance strengthened dominance
在线阅读 下载PDF
State-Incomplete Intelligent Dynamic Multipath Routing Algorithm in LEO Satellite Networks
19
作者 Peng Liang Wang Xiaoxiang 《China Communications》 2025年第2期1-11,共11页
The low Earth orbit(LEO)satellite networks have outstanding advantages such as wide coverage area and not being limited by geographic environment,which can provide a broader range of communication services and has bec... The low Earth orbit(LEO)satellite networks have outstanding advantages such as wide coverage area and not being limited by geographic environment,which can provide a broader range of communication services and has become an essential supplement to the terrestrial network.However,the dynamic changes and uneven distribution of satellite network traffic inevitably bring challenges to multipath routing.Even worse,the harsh space environment often leads to incomplete collection of network state data for routing decision-making,which further complicates this challenge.To address this problem,this paper proposes a state-incomplete intelligent dynamic multipath routing algorithm(SIDMRA)to maximize network efficiency even with incomplete state data as input.Specifically,we model the multipath routing problem as a markov decision process(MDP)and then combine the deep deterministic policy gradient(DDPG)and the K shortest paths(KSP)algorithm to solve the optimal multipath routing policy.We use the temporal correlation of the satellite network state to fit the incomplete state data and then use the message passing neuron network(MPNN)for data enhancement.Simulation results show that the proposed algorithm outperforms baseline algorithms regarding average end-to-end delay and packet loss rate and performs stably under certain missing rates of state data. 展开更多
关键词 deep deterministic policy gradient LEO satellite network message passing neuron network multipath routing
在线阅读 下载PDF
Deep Reinforcement Learning-based Multi-Objective Scheduling for Distributed Heterogeneous Hybrid Flow Shops with Blocking Constraints
20
作者 Xueyan Sun Weiming Shen +3 位作者 Jiaxin Fan Birgit Vogel-Heuser Fandi Bi Chunjiang Zhang 《Engineering》 2025年第3期278-291,共14页
This paper investigates a distributed heterogeneous hybrid blocking flow-shop scheduling problem(DHHBFSP)designed to minimize the total tardiness and total energy consumption simultaneously,and proposes an improved pr... This paper investigates a distributed heterogeneous hybrid blocking flow-shop scheduling problem(DHHBFSP)designed to minimize the total tardiness and total energy consumption simultaneously,and proposes an improved proximal policy optimization(IPPO)method to make real-time decisions for the DHHBFSP.A multi-objective Markov decision process is modeled for the DHHBFSP,where the reward function is represented by a vector with dynamic weights instead of the common objectiverelated scalar value.A factory agent(FA)is formulated for each factory to select unscheduled jobs and is trained by the proposed IPPO to improve the decision quality.Multiple FAs work asynchronously to allocate jobs that arrive randomly at the shop.A two-stage training strategy is introduced in the IPPO,which learns from both single-and dual-policy data for better data utilization.The proposed IPPO is tested on randomly generated instances and compared with variants of the basic proximal policy optimization(PPO),dispatch rules,multi-objective metaheuristics,and multi-agent reinforcement learning methods.Extensive experimental results suggest that the proposed strategies offer significant improvements to the basic PPO,and the proposed IPPO outperforms the state-of-the-art scheduling methods in both convergence and solution quality. 展开更多
关键词 multi-objective Markov decision process Multi-agent deep reinforcement learning Proximal policy optimization Distributed hybrid flow-shop scheduling Blocking constraints
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部