For a complex flow about multi-element airfoils a mixed grid method is set up. C-type grids are produced on each element′s body and in their wakes at first, O-type grids are given in the outmost area, and H-type grid...For a complex flow about multi-element airfoils a mixed grid method is set up. C-type grids are produced on each element′s body and in their wakes at first, O-type grids are given in the outmost area, and H-type grids are used in middle additional areas. An algebra method is used to produce the initial grids in each area. And the girds are optimized by elliptical differential equation method. Then C-O-H zonal patched grids around multi-element airfoils are produced automatically and efficiently. A time accurate finite-volume integration method is used to solve the compressible laminar and turbulent Navier-Stokes (N-S) equations on the grids. Computational results prove the method to be effective.展开更多
The paper is to integrate aerodynamic and aero-acoustic optimizatiom design of high lift devices,especially for two-element airfoils with slat.Aerodynamic analysis on flow field utilizes a high-order,high-resolution s...The paper is to integrate aerodynamic and aero-acoustic optimizatiom design of high lift devices,especially for two-element airfoils with slat.Aerodynamic analysis on flow field utilizes a high-order,high-resolution spatial differential method for large eddy simulation(LES),which can guarantee accuracy and efficiency.The aeroacoustic analysis for noise level is calculated with Ffowcs Williams-Hawkings(FW-H)integration formula.Fidelity of calculation is verified by standard models.Method of streamline-based Euler simulation(MSES)is used to obtain the aerodynamic characters.Based on the confirmation of numerical methods,detailed research has been conducted for the leading edge slat on multi-element airfoils.Various slot parameter influences on noise are analyzed.The results of the slot optimization parameters can be used in multi-element airfoil design.展开更多
A hybrid Cartesian grid/gridless method is developed for calculating viscous flows over multi-element airfoils.The method adopts an unstructured Cartesian grid to cover most areas of the computational domain and leave...A hybrid Cartesian grid/gridless method is developed for calculating viscous flows over multi-element airfoils.The method adopts an unstructured Cartesian grid to cover most areas of the computational domain and leaves only small region adjacent to the aerodynamic bodies to be filled with the cloud of points used in the gridless methods,which results in a better combination of the computational efficiency of the Cartesian grid and the flexibility of the gridless method in handling complex geometries.The clouds of points in the local gridless region are implemented in an anisotropic way according to the features of the thin boundary layer of the viscous flows over the airfoils,and the clouds of points at the vicinity of the interface between the grid and the gridless regions are also controlled by using an adaptive refinement technique during the generation of the unstructured Cartesian grid.An implementation of the resulting hybrid method is presented for solving two-dimensional compressible Navier-Stokes(NS)equations.The simulations of the viscous flows over a RAE2822airfoil or a two-element airfoil are successfully carried out,and the obtained results agree well with the available experimental data.展开更多
Almost half of all flight accidents caused by inflight icing occur at the approach and landing phases when high-lift devices are deployed.The present study focuses on the optimization of an ice-tolerant multi-element ...Almost half of all flight accidents caused by inflight icing occur at the approach and landing phases when high-lift devices are deployed.The present study focuses on the optimization of an ice-tolerant multi-element airfoil.Dual-objective optimization is carried out with critical hornshaped ice accumulated during the holding phase.The optimization results show that the present optimization method significantly enhances the iced-state and clean-state performance.The optimal multi-element airfoil has a larger deflection angle and wider gap at the slat and the flap compared with the baseline configuration.The sensitivity of each design parameter is analyzed,which verifies the robustness of the design.The design is further assessed when ice is accreted during the approach and landing phases,which also shows performance improvement.展开更多
The flow around the slat cove of a two-dimensional 30P30N multi-element airfoil is investigated with time-resolved particle image velocimetry(TR-PIV)at low Reynolds number(Rec=2.41×10^(4)and 4.61×10^(4)).The...The flow around the slat cove of a two-dimensional 30P30N multi-element airfoil is investigated with time-resolved particle image velocimetry(TR-PIV)at low Reynolds number(Rec=2.41×10^(4)and 4.61×10^(4)).The effects of angle of attack(α=8°,12°,and 16°)on the mean flow characteristics and vortex dynamics are discussed.The size of the recirculation within the slat cove and the intensity of the shed vortices originating from the slat cusp shear layer are found to generally decrease as the angle of attack increases.The joint time-frequency analyses show that disturbances of different frequencies exist in the slat cusp shear layer and they trigger the different vortex shedding patterns of the slat cusp shear layer.The self-sustained oscillation within the slat cove,normally observed at high Reynolds number(Re_(c)~10^(6)),is proved to be responsible for the disturbances of different frequencies and the related vortex dynamics in the current study.展开更多
Winter jujube(Ziziphus jujuba'Dongzao')is greatly appreciated by consumers for its excellent quality,but brand infringement frequently occurs in the market.Here,we first determined a total of 38 elements in 16...Winter jujube(Ziziphus jujuba'Dongzao')is greatly appreciated by consumers for its excellent quality,but brand infringement frequently occurs in the market.Here,we first determined a total of 38 elements in 167 winter jujube samples from the main winter jujube producing areas of China by inductively coupled plasma mass spectrometer(ICP-MS).As a result,16 elements(Mg,K,Mn,Cu,Zn,Mo,Ba,Be,As,Se,Cd,Sb,Ce,Er,Tl,and Pb)exhibited significant differences in samples from different producing areas.Supervised linear discriminant analysis(LDA)and orthogonal projection to latent structures discriminant analysis(OPLS-DA)showed better performance in identifying the origin of samples than unsupervised principal component analysis(PCA).LDA and OPLS-DA had a mean identification accuracy of 87.84 and 94.64%in the testing set,respectively.By using the multilayer perceptron(MLP)and C5.0,the prediction accuracy of the models could reach 96.36 and 91.06%,respectively.Based on the above four chemometric methods,Cd,Tl,Mo and Se were selected as the main variables and principal markers for the origin identification of winter jujube.Overall,this study demonstrates that it is practical and precise to identify the origin of winter jujube through multi-element fingerprint analysis with chemometrics,and may also provide reference for establishing the origin traceability system of other fruits.展开更多
Under complex flight conditions,such as obstacle avoidance and extreme sea state,wing-in-ground(WIG)effect aircraft need to ascend to higher altitudes,resulting in the disappearance of the ground effect.A design of hi...Under complex flight conditions,such as obstacle avoidance and extreme sea state,wing-in-ground(WIG)effect aircraft need to ascend to higher altitudes,resulting in the disappearance of the ground effect.A design of high-speed WIG airfoil considering non-ground effect is carried out by a novel two-step inverse airfoil design method that combines conditional generative adversarial network(CGAN)and artificial neural network(ANN).The CGAN model is employed to generate a variety of airfoil designs that satisfy the desired lift-drag ratios in both ground effect and non-ground effect conditions.Subsequently,the ANN model is utilized to forecast aerodynamic parameters of the generated airfoils.The results indicate that the CGAN model contributes to a high accuracy rate for airfoil design and enables the creation of novel airfoil designs.Furthermore,it demonstrates high accuracy in predicting aerodynamic parameters of these airfoils due to the ANN model.This method eliminates the necessity for numerical simulations and experimental testing through the design procedure,showcasing notable efficiency.The analysis of airfoils generated by the CGAN model shows that airfoils exhibiting high lift-drag ratios under both flight conditions typically have cambers of among[0.08c,0.105c],with the positions of maximum camber occurring among[0.35c,0.5c]of the chord length,and the leading-edge radiuses of these airfoils primarily cluster among[0.008c,0.025c]展开更多
To study the effects of the gamma reflection of multi-element materials,gamma ray transport models of single-element materials,such as iron and lead,and multielement materials,such as polyethylene and ordinary concret...To study the effects of the gamma reflection of multi-element materials,gamma ray transport models of single-element materials,such as iron and lead,and multielement materials,such as polyethylene and ordinary concrete,were established in this study.Relationships among the albedo factors of the gamma photons and energies and average energy of the reflected gamma rays by material type,material thickness,incident gamma energy,and incidence angle of gamma rays were obtained by Monte Carlo simulation.The results show that the albedo factors of single-element and multi-element materials increase rapidly with an increase in the material thickness.When the thickness of the material increases to a certain value,the albedo factors do not increase further but rather tend to the saturation value.The saturation values for the albedo factors of the gamma photons,and energies and the reflection thickness are related not only to the type of material but also to the incident gamma energy and incidence angle of the gamma rays.At a given incident gamma energy,which is between 0.2 and 2.5 MeV,the smaller the effective atomic number of the multi-element material is,the higher the saturation values of the albedo factors are.The larger the incidence angle of the gamma ray is,the greater the saturation value of the gamma albedo factor,saturation reflection thickness,and average saturation energy of the reflected gamma photons are.展开更多
Traditional distributed denial of service(DDoS)detection methods need a lot of computing resource,and many of them which are based on single element have high missing rate and false alarm rate.In order to solve the pr...Traditional distributed denial of service(DDoS)detection methods need a lot of computing resource,and many of them which are based on single element have high missing rate and false alarm rate.In order to solve the problems,this paper proposes a DDoS attack information fusion method based on CNN for multi-element data.Firstly,according to the distribution,concentration and high traffic abruptness of DDoS attacks,this paper defines six features which are respectively obtained from the elements of source IP address,destination IP address,source port,destination port,packet size and the number of IP packets.Then,we propose feature weight calculation algorithm based on principal component analysis to measure the importance of different features in different network environment.The algorithm of weighted multi-element feature fusion proposed in this paper is used to fuse different features,and obtain multi-element fusion feature(MEFF)value.Finally,the DDoS attack information fusion classification model is established by using convolutional neural network and support vector machine respectively based on the MEFF time series.Experimental results show that the information fusion method proposed can effectively fuse multi-element data,reduce the missing rate and total error rate,memory resource consumption,running time,and improve the detection rate.展开更多
A multivariate statistical analysis was performed on multi-element soil geochemical data from the Koda Hill-Bulenga gold prospects in the Wa-Lawra gold belt, northwest Ghana. The objectives of the study were to define...A multivariate statistical analysis was performed on multi-element soil geochemical data from the Koda Hill-Bulenga gold prospects in the Wa-Lawra gold belt, northwest Ghana. The objectives of the study were to define gold relationships with other trace elements to determine possible pathfinder elements for gold from the soil geochemical data. The study focused on seven elements, namely, Au, Fe, Pb, Mn, Ag, As and Cu. Factor analysis and hierarchical cluster analysis were performed on the analyzed samples. Factor analysis explained 79.093% of the total variance of the data through three factors. This had the gold factor being factor 3, having associations of copper, iron, lead and manganese and accounting for 20.903% of the total variance. From hierarchical clustering, gold was also observed to be clustering with lead, copper, arsenic and silver. There was further indication that, gold concentrations were lower than that of its associations. It can be inferred from the results that, the occurrence of gold and its associated elements can be linked to both primary dispersion from underlying rocks and secondary processes such as lateritization. This data shows that Fe and Mn strongly associated with gold, and alongside Pb, Ag, As and Cu, these elements can be used as pathfinders for gold in the area, with ferruginous zones as targets.展开更多
A factor analysis was applied to soil geochemical data to define anomalies related to buried Pb-Zn mineralization.A favorable main factor with a strong association of the elements Zn,Cu and Pb,related to mineralizatio...A factor analysis was applied to soil geochemical data to define anomalies related to buried Pb-Zn mineralization.A favorable main factor with a strong association of the elements Zn,Cu and Pb,related to mineralization,was selected for interpretation.The median+2 MAD(median absolute deviation)method of exploratory data analysis(EDA)and C-A(concentration-area)fractal modeling were then applied to the Mahalanobis distance,as defined by Zn,Cu and Pb from the factor analysis to set the thresholds for defining multi-element anomalies.As a result,the median+2 MAD method more successfully identified the Pb-Zn mineralization than the C-A fractal model.The soil anomaly identified by the median+2 MAD method on the Mahalanobis distances defined by three principal elements(Zn,Cu and Pb)rather than thirteen elements(Co,Zn,Cu,V,Mo,Ni,Cr,Mn,Pb,Ba,Sr,Zr and Ti)was the more favorable reflection of the ore body.The identified soil geochemical anomalies were compared with the in situ economic Pb-Zn ore bodies for validation.The results showed that the median+2 MAD approach is capable of mapping both strong and weak geochemical anomalies related to buried Pb-Zn mineralization,which is therefore useful at the reconnaissance drilling stage.展开更多
Multi-element analysis in historical sites is a major issue in archaeological studies;however,this approach is almost unknown among Iranian scholars.Geochemical multi-element analysis of soil is very important to eval...Multi-element analysis in historical sites is a major issue in archaeological studies;however,this approach is almost unknown among Iranian scholars.Geochemical multi-element analysis of soil is very important to evaluate anthropogenic activities.The aim of this study consists of assessing the potential usefulness of multi-elemental soil analysis,obtained by Analytical Jena atomic absorption spectrophotometer(AAS) and ICP-MS,to recognize ancient anthropogenic features on the territory of Tappe Rivi(North Khorasan,Iran).For that purpose,a total of 80 ancient soil samples were sampled from each soil horizon and cultural layer.The research involved Fe,Al,Cd,Cu,Ni,Co,Cr,Pb,and P which trace element samples were extracted according to the International Standard ISO 11466 and phosphorus samples by Olsen method.Besides,the contamination of the soils was assessed based on enrichment factors(EFs) by using Fe as a reference element.This geochemical/archaeological approach highlights that the content of most elements in the Parthian and Sassanid ages were significantly higher than the contents of the elements in other zones,which shows that by the development of the eras,the content of the elements has also increased.Also,the accumulation of metals in the Rivi site was significantly higher than in the control area.Among the sampled zones,enrichment factor(EF) indicated that the enrichment of Cu and phosphate at the Parthian and Sassanid had the highest content.This result is important because it shows that the amount of metals and human activities are directly related to each other during different ages.展开更多
The effects of Al and Sc on mechanical properties of FeCoNi multi-element alloys(MEAs) were investigated by compressive tests. The microstructures of FeCoNi MEAs with different contents of Al and Sc were characterized...The effects of Al and Sc on mechanical properties of FeCoNi multi-element alloys(MEAs) were investigated by compressive tests. The microstructures of FeCoNi MEAs with different contents of Al and Sc were characterized and the strengthening mechanisms were discussed. The results show that FeCoNi MEA with a low content of Al has a face-centered cubic(FCC) structure. The yield strength increases linearly with the increase of Al content, which is largely caused by solid solution hardening. Further addition of Sc can promote the formation of a new phase in(FeCoNi)1-xAlx MEAs. A minor addition of Sc can significantly increase the yield strengths of(FeCoNi)1-xAlx MEAs with a low Al content and improve the compressive plasticity of(FeCoNi)1-xAlx MEAs with a high Al content.展开更多
A set of serf-developed apparatus for foundation physical model were utilized to conduct model tests of the multi-element composite foundation with a steel pipe pile and several gravel piles. Some load-bearing charact...A set of serf-developed apparatus for foundation physical model were utilized to conduct model tests of the multi-element composite foundation with a steel pipe pile and several gravel piles. Some load-bearing characteristics of the multi-element Composite foundation, including the curves of foundation settlement, stresses of piles, pile-soil stress ratio, and load-sharing ratio of piles and soil, were obtained to study its working performances in silty sand soil. The experimental results revealed that the multi-element composite foundation with steel pipe pile and gravel pile contributed more than the gravel pile composite foundation in improving the bearing capacity of the silty fine sand.展开更多
To improve the cruise flight performance of aircraft, two new configurations of plasma actuators(grid-type and super-dense array) were investigated to reduce the turbulent skin friction drag of a low-speed airfoil. Th...To improve the cruise flight performance of aircraft, two new configurations of plasma actuators(grid-type and super-dense array) were investigated to reduce the turbulent skin friction drag of a low-speed airfoil. The induced jet characteristics of the two actuators in quiescent air were diagnosed with high-speed particle image velocimetry(PIV), and their drag reduction efficiencies were examined under different operating conditions in a wind tunnel. The results showed that the grid-type plasma actuator was capable of producing a wall-normal jet array(peak magnitude: 1.07 m/s) similar to that generated in a micro-blowing technique, while the superdense array plasma actuator created a wavy wall-parallel jet(magnitude: 0.94 m/s) due to the discrete spanwise electrostatic forces. Under a comparable electrical power consumption level,the super-dense array plasma actuator array significantly outperformed the grid-type configuration,reducing the total airfoil friction drag by approximately 22% at a free-stream velocity of 20 m/s.The magnitude of drag reduction was proportional to the dimensionless jet velocity ratio(r), and a threshold r = 0.014 existed under which little impact on airfoil drag could be discerned.展开更多
A numerical method has been used to analyze the flow field related to a NACA 0015 airfoil with and without a flap and assess the influence of the flap height and angle on the surface pressure coefficient,lift coeffici...A numerical method has been used to analyze the flow field related to a NACA 0015 airfoil with and without a flap and assess the influence of the flap height and angle on the surface pressure coefficient,lift coefficient,and drag coefficient.The numerical results demonstrate that the flap can effectively improve the lift coefficient of the airfoil;however,at small attack angles,its influence is significantly reduced.When the angle of attack exceeds the critical stall angle and the flap height is 1.5%of the chord length,the influence of the flap becomes very evident.As the flap height increases,the starting point of the separation vortex gradually moves forward and generates a larger wake vortex.Optimal aerodynamic characteristics are obtained for 1.5%(of the chord length)flap height and a 45°flap angle;in this case,the separation vortex is effectively reduced.展开更多
The aerodynamic performance of wind turbine needs to be improved day by day.In this paper,the bionic airfoil of wind turbine and the traditional airfoil are combined to optimize the aerodynamic performance.The new air...The aerodynamic performance of wind turbine needs to be improved day by day.In this paper,the bionic airfoil of wind turbine and the traditional airfoil are combined to optimize the aerodynamic performance.The new airfoil is synthesized by the method of the mean camber line superposition thickness synthesis.The flow field characteristics of 4 synthetic airfoils were calculated by using the numerical simulation of CFD commercial software Fluent,and compared with 3 original airfoils,new airfoils of different shapes were obtained,and an incomplete synthetic parameterization method for airfoils optimization was proved,which has certain engineering practical value.展开更多
The effects of the erosion present on the leading edge of a wind turbine airfoil(DU 96-W-180)on its aerodynamic performances have been investigated numerically in the framework of a SST k–ωturbulence model based on ...The effects of the erosion present on the leading edge of a wind turbine airfoil(DU 96-W-180)on its aerodynamic performances have been investigated numerically in the framework of a SST k–ωturbulence model based on the Reynolds Averaged Navier-Stokes equations(RANS).The results indicate that when sand-induced holes and small pits are involved as leading edge wear features,they have a minimal influence on the lift and drag coefficients of the airfoil.However,if delamination occurs in the same airfoil region,it significantly impacts the lift and resistance characteristics of the airfoil.Specifically,as the angle of attack grows,there is a significant decrease in the lift coefficient accompanied by a sharp increase in the drag coefficient.As wear intensifies,these effects gradually increase.Moreover,the leading edge wear can exacerbate flow separation near the trailing edge suction surface of the airfoil and cause forward displacement of the separation point.展开更多
文摘For a complex flow about multi-element airfoils a mixed grid method is set up. C-type grids are produced on each element′s body and in their wakes at first, O-type grids are given in the outmost area, and H-type grids are used in middle additional areas. An algebra method is used to produce the initial grids in each area. And the girds are optimized by elliptical differential equation method. Then C-O-H zonal patched grids around multi-element airfoils are produced automatically and efficiently. A time accurate finite-volume integration method is used to solve the compressible laminar and turbulent Navier-Stokes (N-S) equations on the grids. Computational results prove the method to be effective.
文摘The paper is to integrate aerodynamic and aero-acoustic optimizatiom design of high lift devices,especially for two-element airfoils with slat.Aerodynamic analysis on flow field utilizes a high-order,high-resolution spatial differential method for large eddy simulation(LES),which can guarantee accuracy and efficiency.The aeroacoustic analysis for noise level is calculated with Ffowcs Williams-Hawkings(FW-H)integration formula.Fidelity of calculation is verified by standard models.Method of streamline-based Euler simulation(MSES)is used to obtain the aerodynamic characters.Based on the confirmation of numerical methods,detailed research has been conducted for the leading edge slat on multi-element airfoils.Various slot parameter influences on noise are analyzed.The results of the slot optimization parameters can be used in multi-element airfoil design.
基金Supported by the National Natural Science Foundation of China(11172134)the Funding of Jiangsu Innovation Program for Graduate Education(CXZZ110192)the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘A hybrid Cartesian grid/gridless method is developed for calculating viscous flows over multi-element airfoils.The method adopts an unstructured Cartesian grid to cover most areas of the computational domain and leaves only small region adjacent to the aerodynamic bodies to be filled with the cloud of points used in the gridless methods,which results in a better combination of the computational efficiency of the Cartesian grid and the flexibility of the gridless method in handling complex geometries.The clouds of points in the local gridless region are implemented in an anisotropic way according to the features of the thin boundary layer of the viscous flows over the airfoils,and the clouds of points at the vicinity of the interface between the grid and the gridless regions are also controlled by using an adaptive refinement technique during the generation of the unstructured Cartesian grid.An implementation of the resulting hybrid method is presented for solving two-dimensional compressible Navier-Stokes(NS)equations.The simulations of the viscous flows over a RAE2822airfoil or a two-element airfoil are successfully carried out,and the obtained results agree well with the available experimental data.
基金supported by the National Key Project of China(No.GJXM92579)National Natural Science Foundation of China(Nos.92052203,11872230 and 91852108)。
文摘Almost half of all flight accidents caused by inflight icing occur at the approach and landing phases when high-lift devices are deployed.The present study focuses on the optimization of an ice-tolerant multi-element airfoil.Dual-objective optimization is carried out with critical hornshaped ice accumulated during the holding phase.The optimization results show that the present optimization method significantly enhances the iced-state and clean-state performance.The optimal multi-element airfoil has a larger deflection angle and wider gap at the slat and the flap compared with the baseline configuration.The sensitivity of each design parameter is analyzed,which verifies the robustness of the design.The design is further assessed when ice is accreted during the approach and landing phases,which also shows performance improvement.
基金supported by the National Natural Science Foundation of China(Grant Nos.12102024 and 11721202)the China Postdoctoral Science Foundation(Grant Nos.2021M700010 and 2022T150036)。
文摘The flow around the slat cove of a two-dimensional 30P30N multi-element airfoil is investigated with time-resolved particle image velocimetry(TR-PIV)at low Reynolds number(Rec=2.41×10^(4)and 4.61×10^(4)).The effects of angle of attack(α=8°,12°,and 16°)on the mean flow characteristics and vortex dynamics are discussed.The size of the recirculation within the slat cove and the intensity of the shed vortices originating from the slat cusp shear layer are found to generally decrease as the angle of attack increases.The joint time-frequency analyses show that disturbances of different frequencies exist in the slat cusp shear layer and they trigger the different vortex shedding patterns of the slat cusp shear layer.The self-sustained oscillation within the slat cove,normally observed at high Reynolds number(Re_(c)~10^(6)),is proved to be responsible for the disturbances of different frequencies and the related vortex dynamics in the current study.
基金This work was supported by the Scientific Research Foundation for High Level Talents of Qingdao Agricultural University,China(665-1120015)the National Program for Quality and Safety Risk Assessment of Agricultural Products of China(GJFP2019011)the National Natural Science Foundation of China(42207017).
文摘Winter jujube(Ziziphus jujuba'Dongzao')is greatly appreciated by consumers for its excellent quality,but brand infringement frequently occurs in the market.Here,we first determined a total of 38 elements in 167 winter jujube samples from the main winter jujube producing areas of China by inductively coupled plasma mass spectrometer(ICP-MS).As a result,16 elements(Mg,K,Mn,Cu,Zn,Mo,Ba,Be,As,Se,Cd,Sb,Ce,Er,Tl,and Pb)exhibited significant differences in samples from different producing areas.Supervised linear discriminant analysis(LDA)and orthogonal projection to latent structures discriminant analysis(OPLS-DA)showed better performance in identifying the origin of samples than unsupervised principal component analysis(PCA).LDA and OPLS-DA had a mean identification accuracy of 87.84 and 94.64%in the testing set,respectively.By using the multilayer perceptron(MLP)and C5.0,the prediction accuracy of the models could reach 96.36 and 91.06%,respectively.Based on the above four chemometric methods,Cd,Tl,Mo and Se were selected as the main variables and principal markers for the origin identification of winter jujube.Overall,this study demonstrates that it is practical and precise to identify the origin of winter jujube through multi-element fingerprint analysis with chemometrics,and may also provide reference for establishing the origin traceability system of other fruits.
基金supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions,the Fundamental Research Funds for the Central Universities(No.ILA220101A23)CARDC Fundamental and Frontier Technology Research Fund(No.PJD20200210)the Aeronautical Science Foundation of China(No.20200023052002).
文摘Under complex flight conditions,such as obstacle avoidance and extreme sea state,wing-in-ground(WIG)effect aircraft need to ascend to higher altitudes,resulting in the disappearance of the ground effect.A design of high-speed WIG airfoil considering non-ground effect is carried out by a novel two-step inverse airfoil design method that combines conditional generative adversarial network(CGAN)and artificial neural network(ANN).The CGAN model is employed to generate a variety of airfoil designs that satisfy the desired lift-drag ratios in both ground effect and non-ground effect conditions.Subsequently,the ANN model is utilized to forecast aerodynamic parameters of the generated airfoils.The results indicate that the CGAN model contributes to a high accuracy rate for airfoil design and enables the creation of novel airfoil designs.Furthermore,it demonstrates high accuracy in predicting aerodynamic parameters of these airfoils due to the ANN model.This method eliminates the necessity for numerical simulations and experimental testing through the design procedure,showcasing notable efficiency.The analysis of airfoils generated by the CGAN model shows that airfoils exhibiting high lift-drag ratios under both flight conditions typically have cambers of among[0.08c,0.105c],with the positions of maximum camber occurring among[0.35c,0.5c]of the chord length,and the leading-edge radiuses of these airfoils primarily cluster among[0.008c,0.025c]
基金This work was supported by the State Key Lab of Intense Pulsed Radiation Simulation and Effect Basic Research Foundation(No.SKLIPR1504).
文摘To study the effects of the gamma reflection of multi-element materials,gamma ray transport models of single-element materials,such as iron and lead,and multielement materials,such as polyethylene and ordinary concrete,were established in this study.Relationships among the albedo factors of the gamma photons and energies and average energy of the reflected gamma rays by material type,material thickness,incident gamma energy,and incidence angle of gamma rays were obtained by Monte Carlo simulation.The results show that the albedo factors of single-element and multi-element materials increase rapidly with an increase in the material thickness.When the thickness of the material increases to a certain value,the albedo factors do not increase further but rather tend to the saturation value.The saturation values for the albedo factors of the gamma photons,and energies and the reflection thickness are related not only to the type of material but also to the incident gamma energy and incidence angle of the gamma rays.At a given incident gamma energy,which is between 0.2 and 2.5 MeV,the smaller the effective atomic number of the multi-element material is,the higher the saturation values of the albedo factors are.The larger the incidence angle of the gamma ray is,the greater the saturation value of the gamma albedo factor,saturation reflection thickness,and average saturation energy of the reflected gamma photons are.
基金This work was supported by the Hainan Provincial Natural Science Foundation of China[2018CXTD333,617048]National Natural Science Foundation of China[61762033,61702539]+1 种基金Hainan University Doctor Start Fund Project[kyqd1328]Hainan University Youth Fund Project[qnjj1444].
文摘Traditional distributed denial of service(DDoS)detection methods need a lot of computing resource,and many of them which are based on single element have high missing rate and false alarm rate.In order to solve the problems,this paper proposes a DDoS attack information fusion method based on CNN for multi-element data.Firstly,according to the distribution,concentration and high traffic abruptness of DDoS attacks,this paper defines six features which are respectively obtained from the elements of source IP address,destination IP address,source port,destination port,packet size and the number of IP packets.Then,we propose feature weight calculation algorithm based on principal component analysis to measure the importance of different features in different network environment.The algorithm of weighted multi-element feature fusion proposed in this paper is used to fuse different features,and obtain multi-element fusion feature(MEFF)value.Finally,the DDoS attack information fusion classification model is established by using convolutional neural network and support vector machine respectively based on the MEFF time series.Experimental results show that the information fusion method proposed can effectively fuse multi-element data,reduce the missing rate and total error rate,memory resource consumption,running time,and improve the detection rate.
文摘A multivariate statistical analysis was performed on multi-element soil geochemical data from the Koda Hill-Bulenga gold prospects in the Wa-Lawra gold belt, northwest Ghana. The objectives of the study were to define gold relationships with other trace elements to determine possible pathfinder elements for gold from the soil geochemical data. The study focused on seven elements, namely, Au, Fe, Pb, Mn, Ag, As and Cu. Factor analysis and hierarchical cluster analysis were performed on the analyzed samples. Factor analysis explained 79.093% of the total variance of the data through three factors. This had the gold factor being factor 3, having associations of copper, iron, lead and manganese and accounting for 20.903% of the total variance. From hierarchical clustering, gold was also observed to be clustering with lead, copper, arsenic and silver. There was further indication that, gold concentrations were lower than that of its associations. It can be inferred from the results that, the occurrence of gold and its associated elements can be linked to both primary dispersion from underlying rocks and secondary processes such as lateritization. This data shows that Fe and Mn strongly associated with gold, and alongside Pb, Ag, As and Cu, these elements can be used as pathfinders for gold in the area, with ferruginous zones as targets.
文摘A factor analysis was applied to soil geochemical data to define anomalies related to buried Pb-Zn mineralization.A favorable main factor with a strong association of the elements Zn,Cu and Pb,related to mineralization,was selected for interpretation.The median+2 MAD(median absolute deviation)method of exploratory data analysis(EDA)and C-A(concentration-area)fractal modeling were then applied to the Mahalanobis distance,as defined by Zn,Cu and Pb from the factor analysis to set the thresholds for defining multi-element anomalies.As a result,the median+2 MAD method more successfully identified the Pb-Zn mineralization than the C-A fractal model.The soil anomaly identified by the median+2 MAD method on the Mahalanobis distances defined by three principal elements(Zn,Cu and Pb)rather than thirteen elements(Co,Zn,Cu,V,Mo,Ni,Cr,Mn,Pb,Ba,Sr,Zr and Ti)was the more favorable reflection of the ore body.The identified soil geochemical anomalies were compared with the in situ economic Pb-Zn ore bodies for validation.The results showed that the median+2 MAD approach is capable of mapping both strong and weak geochemical anomalies related to buried Pb-Zn mineralization,which is therefore useful at the reconnaissance drilling stage.
文摘Multi-element analysis in historical sites is a major issue in archaeological studies;however,this approach is almost unknown among Iranian scholars.Geochemical multi-element analysis of soil is very important to evaluate anthropogenic activities.The aim of this study consists of assessing the potential usefulness of multi-elemental soil analysis,obtained by Analytical Jena atomic absorption spectrophotometer(AAS) and ICP-MS,to recognize ancient anthropogenic features on the territory of Tappe Rivi(North Khorasan,Iran).For that purpose,a total of 80 ancient soil samples were sampled from each soil horizon and cultural layer.The research involved Fe,Al,Cd,Cu,Ni,Co,Cr,Pb,and P which trace element samples were extracted according to the International Standard ISO 11466 and phosphorus samples by Olsen method.Besides,the contamination of the soils was assessed based on enrichment factors(EFs) by using Fe as a reference element.This geochemical/archaeological approach highlights that the content of most elements in the Parthian and Sassanid ages were significantly higher than the contents of the elements in other zones,which shows that by the development of the eras,the content of the elements has also increased.Also,the accumulation of metals in the Rivi site was significantly higher than in the control area.Among the sampled zones,enrichment factor(EF) indicated that the enrichment of Cu and phosphate at the Parthian and Sassanid had the highest content.This result is important because it shows that the amount of metals and human activities are directly related to each other during different ages.
基金Projects(51671217,51604112) supported by the National Natural Science Foundation of ChinaProject(2017JJ3089) supported by the Natural Science Foundation of Hunan Province,China
文摘The effects of Al and Sc on mechanical properties of FeCoNi multi-element alloys(MEAs) were investigated by compressive tests. The microstructures of FeCoNi MEAs with different contents of Al and Sc were characterized and the strengthening mechanisms were discussed. The results show that FeCoNi MEA with a low content of Al has a face-centered cubic(FCC) structure. The yield strength increases linearly with the increase of Al content, which is largely caused by solid solution hardening. Further addition of Sc can promote the formation of a new phase in(FeCoNi)1-xAlx MEAs. A minor addition of Sc can significantly increase the yield strengths of(FeCoNi)1-xAlx MEAs with a low Al content and improve the compressive plasticity of(FeCoNi)1-xAlx MEAs with a high Al content.
基金The National Natural Science Foundation of China (No.50478090)
文摘A set of serf-developed apparatus for foundation physical model were utilized to conduct model tests of the multi-element composite foundation with a steel pipe pile and several gravel piles. Some load-bearing characteristics of the multi-element Composite foundation, including the curves of foundation settlement, stresses of piles, pile-soil stress ratio, and load-sharing ratio of piles and soil, were obtained to study its working performances in silty sand soil. The experimental results revealed that the multi-element composite foundation with steel pipe pile and gravel pile contributed more than the gravel pile composite foundation in improving the bearing capacity of the silty fine sand.
基金supported by National Natural Science Foundation of China (Nos.12002384, U2341277,and 52025064)Foundation Strengthening Program (No.2021JJ-0786)。
文摘To improve the cruise flight performance of aircraft, two new configurations of plasma actuators(grid-type and super-dense array) were investigated to reduce the turbulent skin friction drag of a low-speed airfoil. The induced jet characteristics of the two actuators in quiescent air were diagnosed with high-speed particle image velocimetry(PIV), and their drag reduction efficiencies were examined under different operating conditions in a wind tunnel. The results showed that the grid-type plasma actuator was capable of producing a wall-normal jet array(peak magnitude: 1.07 m/s) similar to that generated in a micro-blowing technique, while the superdense array plasma actuator created a wavy wall-parallel jet(magnitude: 0.94 m/s) due to the discrete spanwise electrostatic forces. Under a comparable electrical power consumption level,the super-dense array plasma actuator array significantly outperformed the grid-type configuration,reducing the total airfoil friction drag by approximately 22% at a free-stream velocity of 20 m/s.The magnitude of drag reduction was proportional to the dimensionless jet velocity ratio(r), and a threshold r = 0.014 existed under which little impact on airfoil drag could be discerned.
基金supported by the National Natural Science Foundation Project(Grant Numbers 51966018 and 51466015)the Key Research&Development Program of Xinjiang(Grant Number 2022B01003).
文摘A numerical method has been used to analyze the flow field related to a NACA 0015 airfoil with and without a flap and assess the influence of the flap height and angle on the surface pressure coefficient,lift coefficient,and drag coefficient.The numerical results demonstrate that the flap can effectively improve the lift coefficient of the airfoil;however,at small attack angles,its influence is significantly reduced.When the angle of attack exceeds the critical stall angle and the flap height is 1.5%of the chord length,the influence of the flap becomes very evident.As the flap height increases,the starting point of the separation vortex gradually moves forward and generates a larger wake vortex.Optimal aerodynamic characteristics are obtained for 1.5%(of the chord length)flap height and a 45°flap angle;in this case,the separation vortex is effectively reduced.
基金National Natural Science Foundation of China(Grant Nos.52376202)。
文摘The aerodynamic performance of wind turbine needs to be improved day by day.In this paper,the bionic airfoil of wind turbine and the traditional airfoil are combined to optimize the aerodynamic performance.The new airfoil is synthesized by the method of the mean camber line superposition thickness synthesis.The flow field characteristics of 4 synthetic airfoils were calculated by using the numerical simulation of CFD commercial software Fluent,and compared with 3 original airfoils,new airfoils of different shapes were obtained,and an incomplete synthetic parameterization method for airfoils optimization was proved,which has certain engineering practical value.
基金Natural Science Foundation of Liaoning Province(2022-MS-305)Foundation of Liaoning Province Education Administration(LJKZ1108).
文摘The effects of the erosion present on the leading edge of a wind turbine airfoil(DU 96-W-180)on its aerodynamic performances have been investigated numerically in the framework of a SST k–ωturbulence model based on the Reynolds Averaged Navier-Stokes equations(RANS).The results indicate that when sand-induced holes and small pits are involved as leading edge wear features,they have a minimal influence on the lift and drag coefficients of the airfoil.However,if delamination occurs in the same airfoil region,it significantly impacts the lift and resistance characteristics of the airfoil.Specifically,as the angle of attack grows,there is a significant decrease in the lift coefficient accompanied by a sharp increase in the drag coefficient.As wear intensifies,these effects gradually increase.Moreover,the leading edge wear can exacerbate flow separation near the trailing edge suction surface of the airfoil and cause forward displacement of the separation point.