The Sanchahe quartz monzonite intrusion is situated in the middle segment of the North Qinling tectonic belt, Central China mainland, and consists chiefly of sanukitoid–like and granodioritic-monzogranitic rocks. The...The Sanchahe quartz monzonite intrusion is situated in the middle segment of the North Qinling tectonic belt, Central China mainland, and consists chiefly of sanukitoid–like and granodioritic-monzogranitic rocks. The sanukitoid–like rocks are characterized by quartz monzonites, which display higher Mg#(55.0–59.0), and enrichments in Na2 O+K2 O(7.28–8.94 %), Ni(21-2312 ppm), Cr(56-4167 ppm), Sr(553-923 ppm), Ba(912-1355 ppm) and LREE((La/Yb)N =9.47–15.3), from negative to slightly positive Eu anomalies(δEu=+0.61 to +1.10), but also depletion in Nb, Ta and Ti. The granodioritic-monzogranitic rocks diaplay various Mg#of 6.00-53.0, high Na2 O+K2 O(7.20– 8.30%), Sr(455–1081 ppm) and(La/Yb)N(27.6–47.8), with positive Eu anomalies(δEu=1.03–1.57) and depleted Nb, Ta and Ti. Laser ablation inductively coupled plasma mass spectrometry(LA-ICPMS) zircon U-Pb isotopic dating reveals that the sanukitoid-like rocks were emplaced at two episodes of magmatism at 457±3 Ma and 431±2 Ma, respectively. The monzogranites were emplaced at 445±7Ma. Sanukitoid–like rocks have their εHf(t) values ranging from +0.3 to +15.1 with Hf–depleted mantle model ages of 445 to 1056 Ma, and the monzogranite shows its εHf(t) values ranging from 21.6 to +10.8 with Hf–depleted mantle model ages of 635 to 3183 Ma. Petrological, geochemical and zircon Lu –Hf isotopic features indicate that the magmatic precursor of sanukitoid–like rocks was derived from partial melting of the depleted mantle wedge materials that were metasomatized by fluids and melts related to subduction of oceanic slab, subsequently the sanukitoid magma ascended to crust level. This emplaced mantle magma caused partial melting of crustally metamorphosed sedimentary rocks, and mixing with the crustal magma, and suffered fractional crystallization, which lead to formations of quartz monzonites. However, the magmatic precursor of the granodioritic-monzogranitic rocks were derived from partial melting of subducted oceanic slab basalts. Integrated previous investigation for the adackitic rocks in the south of the intrusion, the Sanchahe intrusion signed that the North Qinling tectonic zone was developed in an early Paleozoic transitionally tectonic background from an island arc to back–arc.展开更多
Xiong’er volcanic rocks cover an area of more than6×104 km2 along the southern margin of North China Craton.The Xiong’er group has been divided,from bottom to top,into the Dagushi,Xushan,Jidanping and
The Huangtuliang monzonitic granite outcrops on the northern side of the Huangtuliang gold mining district, Chicheng, North Hebei Province. Our predecessors only made isotopic age determination using the K-Ar method. ...The Huangtuliang monzonitic granite outcrops on the northern side of the Huangtuliang gold mining district, Chicheng, North Hebei Province. Our predecessors only made isotopic age determination using the K-Ar method. Through LA-MC-ICP-MS zircon U-Pb dating and zircon Hf isotopic composition determination, this study acquired the age of 244.8±2.0 Ma(MSWD=0.57) on the basis of the weighed mean 206Pb/238U ratio, indicating that the Huangtuliang monzonitic granite was formed during the Middle Triassic period, which is the product of Early Indosinian magmatic activities in the region of North Hebei. εHf(t) values vary relatively evenly, within the range of-10.65--14.03, with an average of-12.14. The two-stage evolution model ages, tDM2, vary between 1943 and 2144 Ma, implying that the rock-forming materials of the Huangtiliang monzonitic granite mainly came from the Paleoproterozoic recirculated crustal materials, though a small quantity of enriched-mantle materials would have been involved.展开更多
The geochemical features of the monzonitic granite in Qimantage Hutouya deposit area,Qinghai,in respect to the mineralization,suggest that this granite belongs to weak peraluminous and high-k calc alkaline rock series...The geochemical features of the monzonitic granite in Qimantage Hutouya deposit area,Qinghai,in respect to the mineralization,suggest that this granite belongs to weak peraluminous and high-k calc alkaline rock series. The REE of the samples show right slope with obvious LREE/HREE differentiation and negative Eu abnormity. The trace elements show enrichment of LILE( Rb,Th,U,La,Nd),and deleption of Ba,Sr,Nd,P,Ti. The Sr-Nb isotopic data indicate that the magma source is mainly aluminosilicate lower crust with a small amount of new crustal materials. The weighted mean zircon U-Pbage of the Hutouya monzonitic granite is 221±1.7 Ma,belonging to Late Triassic. The Hutouya monzonitic granite was formed in the tectonic setting of transition from compression to extension during Middle-Late Triassic.展开更多
基金financially supported by the National Geological Survey Project and National Scientific and Technological Support Project (Grant Nos. 1212011085534 and 2011BAB04B05)
文摘The Sanchahe quartz monzonite intrusion is situated in the middle segment of the North Qinling tectonic belt, Central China mainland, and consists chiefly of sanukitoid–like and granodioritic-monzogranitic rocks. The sanukitoid–like rocks are characterized by quartz monzonites, which display higher Mg#(55.0–59.0), and enrichments in Na2 O+K2 O(7.28–8.94 %), Ni(21-2312 ppm), Cr(56-4167 ppm), Sr(553-923 ppm), Ba(912-1355 ppm) and LREE((La/Yb)N =9.47–15.3), from negative to slightly positive Eu anomalies(δEu=+0.61 to +1.10), but also depletion in Nb, Ta and Ti. The granodioritic-monzogranitic rocks diaplay various Mg#of 6.00-53.0, high Na2 O+K2 O(7.20– 8.30%), Sr(455–1081 ppm) and(La/Yb)N(27.6–47.8), with positive Eu anomalies(δEu=1.03–1.57) and depleted Nb, Ta and Ti. Laser ablation inductively coupled plasma mass spectrometry(LA-ICPMS) zircon U-Pb isotopic dating reveals that the sanukitoid-like rocks were emplaced at two episodes of magmatism at 457±3 Ma and 431±2 Ma, respectively. The monzogranites were emplaced at 445±7Ma. Sanukitoid–like rocks have their εHf(t) values ranging from +0.3 to +15.1 with Hf–depleted mantle model ages of 445 to 1056 Ma, and the monzogranite shows its εHf(t) values ranging from 21.6 to +10.8 with Hf–depleted mantle model ages of 635 to 3183 Ma. Petrological, geochemical and zircon Lu –Hf isotopic features indicate that the magmatic precursor of sanukitoid–like rocks was derived from partial melting of the depleted mantle wedge materials that were metasomatized by fluids and melts related to subduction of oceanic slab, subsequently the sanukitoid magma ascended to crust level. This emplaced mantle magma caused partial melting of crustally metamorphosed sedimentary rocks, and mixing with the crustal magma, and suffered fractional crystallization, which lead to formations of quartz monzonites. However, the magmatic precursor of the granodioritic-monzogranitic rocks were derived from partial melting of subducted oceanic slab basalts. Integrated previous investigation for the adackitic rocks in the south of the intrusion, the Sanchahe intrusion signed that the North Qinling tectonic zone was developed in an early Paleozoic transitionally tectonic background from an island arc to back–arc.
基金financially supported by the National Natural Science Foundation of China(grant No.41173065)Ministry of Land and Natural Resources(grant No.201311116)
文摘Xiong’er volcanic rocks cover an area of more than6×104 km2 along the southern margin of North China Craton.The Xiong’er group has been divided,from bottom to top,into the Dagushi,Xushan,Jidanping and
基金financially supported jointly by the Geological Investigation Item sponsored by the China Geological Survey (No. 1212011220492)the Scientific Research Base of China’s Typical Metallic Ores (No. 200911007)the National Natural Science Foundation of China (40872137)
文摘The Huangtuliang monzonitic granite outcrops on the northern side of the Huangtuliang gold mining district, Chicheng, North Hebei Province. Our predecessors only made isotopic age determination using the K-Ar method. Through LA-MC-ICP-MS zircon U-Pb dating and zircon Hf isotopic composition determination, this study acquired the age of 244.8±2.0 Ma(MSWD=0.57) on the basis of the weighed mean 206Pb/238U ratio, indicating that the Huangtuliang monzonitic granite was formed during the Middle Triassic period, which is the product of Early Indosinian magmatic activities in the region of North Hebei. εHf(t) values vary relatively evenly, within the range of-10.65--14.03, with an average of-12.14. The two-stage evolution model ages, tDM2, vary between 1943 and 2144 Ma, implying that the rock-forming materials of the Huangtiliang monzonitic granite mainly came from the Paleoproterozoic recirculated crustal materials, though a small quantity of enriched-mantle materials would have been involved.
基金Supported by Project of China Geological Survey(No.20150209-01-079)
文摘The geochemical features of the monzonitic granite in Qimantage Hutouya deposit area,Qinghai,in respect to the mineralization,suggest that this granite belongs to weak peraluminous and high-k calc alkaline rock series. The REE of the samples show right slope with obvious LREE/HREE differentiation and negative Eu abnormity. The trace elements show enrichment of LILE( Rb,Th,U,La,Nd),and deleption of Ba,Sr,Nd,P,Ti. The Sr-Nb isotopic data indicate that the magma source is mainly aluminosilicate lower crust with a small amount of new crustal materials. The weighted mean zircon U-Pbage of the Hutouya monzonitic granite is 221±1.7 Ma,belonging to Late Triassic. The Hutouya monzonitic granite was formed in the tectonic setting of transition from compression to extension during Middle-Late Triassic.