Spatial precession is a special micro-motion of the spinning-directional target, and the micro-Doppler signature of the cone-shaped target with precession is studied. The micro-motion model of precession is built firs...Spatial precession is a special micro-motion of the spinning-directional target, and the micro-Doppler signature of the cone-shaped target with precession is studied. The micro-motion model of precession is built first, and then the micro-Doppler model is developed based on the proposed concept of micro-motion ma- trix, by which the theoretical formula of micro-Doppler signature of precession is derived. In order to further approach to the actual case, the occlusion effect is firstly considered in micro-Doppler, and the simulated result with occlusion effect is well in accordance with the measured result in microwave anechoic chamber, which suggests that the micro-motion model and micro-Doppler model of precession are both valid.展开更多
In traditional inverse synthetic aperture radar (ISAR) imaging of moving targets with rotational parts, the micro-Doppler (m-D) effects caused by the rotational parts influence the quality of the radar images. Rec...In traditional inverse synthetic aperture radar (ISAR) imaging of moving targets with rotational parts, the micro-Doppler (m-D) effects caused by the rotational parts influence the quality of the radar images. Recently, L. Stankovic proposed an m-D removal method based on L-statistics, which has been proved effective and simple. The algorithm can extract the m-D effects according to different behaviors of signals induced by rotational parts and rigid bodies in time-frequency (T-F) domain. However, by removing m-D effects, some useful short time Fourier transform (STFT) samples of rigid bodies are also extracted, which induces the side lobe problem of rigid bodies. A parameter estimation method for rigid bodies after m-D removal is proposed, which can accurately re- cover rigid bodies and avoid the side lobe problem by only using m-D removal. Simulations are given to validate the effectiveness of the proposed method.展开更多
A laser coherent detection system of 1550 nm wavelength was presented, and experimen- tal research on detecting micro-Doppler effect in a dynamic target was developed. In the study, the return signal in the time domai...A laser coherent detection system of 1550 nm wavelength was presented, and experimen- tal research on detecting micro-Doppler effect in a dynamic target was developed. In the study, the return signal in the time domain is decomposed into a set of components in different wavelet scales by multi-resolution wavelet analysis, and the components are associated with the vibrational motions in a target. Then micro-Doppler signatures are extracted by applying the reconstruction. During the course of the final data processing frequency analysis and time-frequency analysis are applied to analyze the vibrationM signals and estimate the motion parameters successfully. The experimental results indicate that the system can effectively detect micro-Doppler information in a moving target, and the tiny vibrational signatures also can be acquired effectively by wavelet multi-resolution analy- sis and time-frequency analysis.展开更多
A micro-Doppler parameter estimation method based on compressed sensing theory is proposed in this paper.The micro-Doppler parameter estimation algorithm was improved for micro-motion targets with translation in this ...A micro-Doppler parameter estimation method based on compressed sensing theory is proposed in this paper.The micro-Doppler parameter estimation algorithm was improved for micro-motion targets with translation in this paper.Relatively ideal micro-Doppler parameter estimation results were obtained.The proposed micro-Doppler parameter estimation was compared with the traditional micro-Doppler parameter estimation algorithm.Requirements for return signal length were analyzed with this new algorithm and its performance was also analyzed in various environments with different SNR.展开更多
To measure projectile attitude in space flight, based on continuous wave (CW) radar, a new micro-Doppler effect testing technique is developed in this paper. It also establishes radar testing model for attitude of f...To measure projectile attitude in space flight, based on continuous wave (CW) radar, a new micro-Doppler effect testing technique is developed in this paper. It also establishes radar testing model for attitude of flying projectile and resolve micro-Doppler effect of projectile motion attitude. By distinguishing and geting attitude parameters such as micro-motion period, this technique can in- tuitively estimate the flight stability of projectile, and the validity of this technique is proved accord- ing to flight tests.展开更多
Object: To evaluate the use of neuronavigation with vascular micro-doppler in transsphenoidal pituitary surgery. Methods: 141 cases having done transsphenoidal pituitary surgery are evaluated from 2005 to 2014. Fluoro...Object: To evaluate the use of neuronavigation with vascular micro-doppler in transsphenoidal pituitary surgery. Methods: 141 cases having done transsphenoidal pituitary surgery are evaluated from 2005 to 2014. Fluoroscopy was used in 69 cases and vascular micro-doppler with neuronavigation were used in 72 cases. Results: Transsphenoidal surgery has a lot of risks due to sella’s deep location, and position of the carotid artery and the optic nerve. Clasically the fluoroscopy and microscopic anatomical markers were used in order to minimize the risk of carotid artery and optic nerve damage. Additional devices such as neuronavigation and vascular micro-doppler are needed to decrease the morbidity and mortality arising from these injuries. Conclusion: Neurovascular complications such as carotid artery and optic nerve injuries owing to disorientation in transsphenoidal surgery will reduce the use of neuronavigation with vascular micro-doppler.展开更多
Target micromotion not only plays an important role in target recognition but also leads to esoteric characteristics in synthetic aperture radar (SAR) imaging. This paper finds out an interesting phenomenon, i.e. th...Target micromotion not only plays an important role in target recognition but also leads to esoteric characteristics in synthetic aperture radar (SAR) imaging. This paper finds out an interesting phenomenon, i.e. the angular extent effect, in micro-motion target images formulated by the polar format algorithm. A micromotion target takes on multiple pairs of paired echoes (PEs) around the true point, and each PE extends for an angle which is exactly equal to the angular extent of the synthetic aperture, regardless of the micromotion frequency. The effect is derived and interpreted by using the characteristics of Bessel functions. Then it is demonstrated by simulation experiments of a target with different micromotion frequencies. The revelation and interpretation of the effect is highly beneficial to micromotion-target SAR image understanding as wel as target recognition.展开更多
文摘Spatial precession is a special micro-motion of the spinning-directional target, and the micro-Doppler signature of the cone-shaped target with precession is studied. The micro-motion model of precession is built first, and then the micro-Doppler model is developed based on the proposed concept of micro-motion ma- trix, by which the theoretical formula of micro-Doppler signature of precession is derived. In order to further approach to the actual case, the occlusion effect is firstly considered in micro-Doppler, and the simulated result with occlusion effect is well in accordance with the measured result in microwave anechoic chamber, which suggests that the micro-motion model and micro-Doppler model of precession are both valid.
基金supported by the National Natural Science Foundation of China(61471149)the Program for New Century Excellent Talents in University(NCET-12-0149)+2 种基金the National Science Foundation for Postdoctoral Scientists of China(2013M540292)the postdoctoral scienceresearch developmental foundation of Heilongjiang province(LBHQ11092)the Heilongjiang Postdoctoral Specialized Research Fund
文摘In traditional inverse synthetic aperture radar (ISAR) imaging of moving targets with rotational parts, the micro-Doppler (m-D) effects caused by the rotational parts influence the quality of the radar images. Recently, L. Stankovic proposed an m-D removal method based on L-statistics, which has been proved effective and simple. The algorithm can extract the m-D effects according to different behaviors of signals induced by rotational parts and rigid bodies in time-frequency (T-F) domain. However, by removing m-D effects, some useful short time Fourier transform (STFT) samples of rigid bodies are also extracted, which induces the side lobe problem of rigid bodies. A parameter estimation method for rigid bodies after m-D removal is proposed, which can accurately re- cover rigid bodies and avoid the side lobe problem by only using m-D removal. Simulations are given to validate the effectiveness of the proposed method.
文摘A laser coherent detection system of 1550 nm wavelength was presented, and experimen- tal research on detecting micro-Doppler effect in a dynamic target was developed. In the study, the return signal in the time domain is decomposed into a set of components in different wavelet scales by multi-resolution wavelet analysis, and the components are associated with the vibrational motions in a target. Then micro-Doppler signatures are extracted by applying the reconstruction. During the course of the final data processing frequency analysis and time-frequency analysis are applied to analyze the vibrationM signals and estimate the motion parameters successfully. The experimental results indicate that the system can effectively detect micro-Doppler information in a moving target, and the tiny vibrational signatures also can be acquired effectively by wavelet multi-resolution analy- sis and time-frequency analysis.
基金Supported by the National Natural Science Foundation of China(61571043)111 Project of China(B14010)
文摘A micro-Doppler parameter estimation method based on compressed sensing theory is proposed in this paper.The micro-Doppler parameter estimation algorithm was improved for micro-motion targets with translation in this paper.Relatively ideal micro-Doppler parameter estimation results were obtained.The proposed micro-Doppler parameter estimation was compared with the traditional micro-Doppler parameter estimation algorithm.Requirements for return signal length were analyzed with this new algorithm and its performance was also analyzed in various environments with different SNR.
基金Supported by the National Natural Science Fundation of China(61174219)
文摘To measure projectile attitude in space flight, based on continuous wave (CW) radar, a new micro-Doppler effect testing technique is developed in this paper. It also establishes radar testing model for attitude of flying projectile and resolve micro-Doppler effect of projectile motion attitude. By distinguishing and geting attitude parameters such as micro-motion period, this technique can in- tuitively estimate the flight stability of projectile, and the validity of this technique is proved accord- ing to flight tests.
文摘Object: To evaluate the use of neuronavigation with vascular micro-doppler in transsphenoidal pituitary surgery. Methods: 141 cases having done transsphenoidal pituitary surgery are evaluated from 2005 to 2014. Fluoroscopy was used in 69 cases and vascular micro-doppler with neuronavigation were used in 72 cases. Results: Transsphenoidal surgery has a lot of risks due to sella’s deep location, and position of the carotid artery and the optic nerve. Clasically the fluoroscopy and microscopic anatomical markers were used in order to minimize the risk of carotid artery and optic nerve damage. Additional devices such as neuronavigation and vascular micro-doppler are needed to decrease the morbidity and mortality arising from these injuries. Conclusion: Neurovascular complications such as carotid artery and optic nerve injuries owing to disorientation in transsphenoidal surgery will reduce the use of neuronavigation with vascular micro-doppler.
基金supported by the National Natural Science Foundationof China(6130214861101182)
文摘Target micromotion not only plays an important role in target recognition but also leads to esoteric characteristics in synthetic aperture radar (SAR) imaging. This paper finds out an interesting phenomenon, i.e. the angular extent effect, in micro-motion target images formulated by the polar format algorithm. A micromotion target takes on multiple pairs of paired echoes (PEs) around the true point, and each PE extends for an angle which is exactly equal to the angular extent of the synthetic aperture, regardless of the micromotion frequency. The effect is derived and interpreted by using the characteristics of Bessel functions. Then it is demonstrated by simulation experiments of a target with different micromotion frequencies. The revelation and interpretation of the effect is highly beneficial to micromotion-target SAR image understanding as wel as target recognition.