A lattice Boltzmann (LB)-cellular automaton (CA) model is employed to study the dendrite growth of A1-4.0 wt%Cu- 1.0 wt%Mg alloy. The effects of melt convection, solute diffusion, interface curvature, and preferre...A lattice Boltzmann (LB)-cellular automaton (CA) model is employed to study the dendrite growth of A1-4.0 wt%Cu- 1.0 wt%Mg alloy. The effects of melt convection, solute diffusion, interface curvature, and preferred growth orientation are incorporated into the coupled model by coupling the LB-CA model and the CALPHAD-based phase equilibrium solver, PanEngine. The dendrite growth with single and multiple initial seeds was numerically studied under the conditions of pure diffusion and melt convection. Effects of initial seed number and melt convection strength were characterized by new- defined solidification and concentration entropies, The numerical result shows that the growth behavior of dendJ-ites, the final microstructure, and the micro-segregation are significantly influenced by melt convection during solidification of the ternary alloys. The proposed solidification and concentration entropies are useful characteristics bridging the solidification behavior and the microstructure evolution of alloys.展开更多
We reported the development of a Ф100 cm growth apparatus for skull melting growth of yttria-stabilized cubic zirconia(YSZ) crystals and more than 1000 kg crystals have been grown in the furnace each time.The growth ...We reported the development of a Ф100 cm growth apparatus for skull melting growth of yttria-stabilized cubic zirconia(YSZ) crystals and more than 1000 kg crystals have been grown in the furnace each time.The growth conditions were optimized and the structure of the as-grown crystals was characterized by X-ray diffraction.The transmittance of 15 mol.% yttria-stabilized cubic zirconia crystal was nearly 80% in the range of 400–1600 nm.The refractive indices were measured and fitted the Sellmeier equation whi...展开更多
A cellular automaton-lattice Boltzmann coupled model is extended to study the dendritic growth with melt convection in the solidification of ternary alloys. With a CALPHAD-based phase equilibrium engine, the effects o...A cellular automaton-lattice Boltzmann coupled model is extended to study the dendritic growth with melt convection in the solidification of ternary alloys. With a CALPHAD-based phase equilibrium engine, the effects of melt convection, solutal diffusion, interface curvature and preferred growth orientation are incorporated into the coupled model. After model validation, the multi dendritic growth of the Al-4.0 wt%Cu-1.0 wt%Mg alloy is simulated under the conditions of pure diffusion and melt convection. The result shows that the dendritic growth behavior, the final microstructure and microsegregation are significantly influenced by melt convection in the solidification.展开更多
The effect of convective flow on a spherical crystal growth in the undercooled melt with a moderate far field flow is studied. The asymptotic solution of the evolution of the interface of the spherical crystal growth ...The effect of convective flow on a spherical crystal growth in the undercooled melt with a moderate far field flow is studied. The asymptotic solution of the evolution of the interface of the spherical crystal growth is obtained by the matched asymptotic expansion method. The analytic result shows that the convective flow in the undercooled melt has a strong effect on the evolution of spherical crystal growth. The convective flow induced by the far field flow makes the interface of the growing spherical crystal enhance its growth velocity in the upstream direction of the far field flow and inhibit growth in the downstream direction, and the interface of the decaying spherical crystal further decay in the upstream direction and inhibit decay in the downstream direction. The maximum growth velocity of the interface of the spherical crystal influenced by the far field flow is obtained.展开更多
To improve the efficiency of melting modification for stainless steel(SS) slag, a shear force was introduced in this work and its effects on the spinel and silicate melt were experimentally investigated. The results i...To improve the efficiency of melting modification for stainless steel(SS) slag, a shear force was introduced in this work and its effects on the spinel and silicate melt were experimentally investigated. The results indicated that the use of shear force changed the nucleation and growth behaviors of spinel and that the effects of shear force varied with its intensity. The aggregation behavior of spinel under different shear-force conditions was studied, revealing that large spinel clusters could be formed when the stirring speed was controlled. However, no notable change in the melt structure of the silicate was detected in this study. The optimal stirring speed for the melting modification treatment was 50 r·min^(-1), which substantially promoted spinel growth and aggregation, resulting in modified SS slag with excellent chromium sequestration capability.展开更多
This paper reports that the rapid solidification of mixed Li2B4O7 and KNbO3 melted in a Pt loop heater has been performed experimentally by the method of quenching, and various morphologies of KNbO3 crystals have been...This paper reports that the rapid solidification of mixed Li2B4O7 and KNbO3 melted in a Pt loop heater has been performed experimentally by the method of quenching, and various morphologies of KNbO3 crystals have been observed in different regions of the quenched melt-solution. Dendrites were formed in the central region where mass transfer is performed by diffusion, whereas polygonal crystals with smooth surface grew in the marginal region where convection dominates mass transport. Based on measurement of KNbO3 concentration along crystal interface by electronic probe analysis, it finds the variety of crystal morphologies, which is the result of different solute distributions: in the central region the inhomogeneity of solute concentration is much sharper and morphological instability is easier to take place; nevertheless in the marginal region the concentration homogeneity has been greatly enhanced by convection which prevents the occurrence of morphological instability. Additional solute distribution in the melt along the primary dendrite trunk axis as well as that in mushy zones has also been determined. Results show that the solute concentration in the liquid increases linearly with distance from the trunk tip and more solutes were found to be concentrated in mushy zones. The closer the mushy zone is to trunk tip, the lower the solute concentration will be there.展开更多
The Yb3+-doped LiGd(MoO4)2 crystal with the size up to Φ20×30 mm3 has been grown by Czochralski technique.The polarized room temperature absorption and emission spectra have been investigated.This crystal exh...The Yb3+-doped LiGd(MoO4)2 crystal with the size up to Φ20×30 mm3 has been grown by Czochralski technique.The polarized room temperature absorption and emission spectra have been investigated.This crystal exhibits a broad absorption band centered at 975 nm with an FWHM of 43 and 59 nm for π-and σ-polarization,respectively,and the corresponding maximal absorption cross-sections are 3.36 and 2.42×10-20 cm2.The emission broadband has an FWHM of 47 and 54 nm for π-and σ-polarization,respectively,with the corresponding emission cross sections of 3.92 and 3.34 × 10-20 cm2 at 1020 nm.The measured fluorescence lifetime is 287 μs.展开更多
Nonequilibrium thermodynamics and transportation kinetics near the propagating solid-liquid interface dominates the rapid solidification process,which is far from a thermodynamically stable state.Rapid solidification ...Nonequilibrium thermodynamics and transportation kinetics near the propagating solid-liquid interface dominates the rapid solidification process,which is far from a thermodynamically stable state.Rapid solidification process can be described more precisely using quantitative thermodynamic calculation of phase diagram with nonlinear liquidus and solidus and evaluating the nonequilibrium effect in diffusion kinetics.Based on these basic principles,we used a current nonequilibrium dendrite growth model to describe rapid solidification process of deeply undercooled alloys.Evolution of the key fundamental solidification parameters was also evaluated.展开更多
Advantages of the detached phenomena have influenced researchers to modify the conventional methods to promote it on the earth. Since 1994, the vertical directional solidification (VDS) technique has been employed f...Advantages of the detached phenomena have influenced researchers to modify the conventional methods to promote it on the earth. Since 1994, the vertical directional solidification (VDS) technique has been employed for the growth of bulk crystals, without the seed, without contact to the ampoule wall, without coating and without external pressure. An automated furnace was designed and fabricated for the controlled temperature gradients, growth conditions and parameters. The typical ingots growths of GaSb have shown the gap of 20 μm-145 μm and mobility μn = 1125 cm^2/V.sec at 300 K. Mobility is highest and five times larger than the attached growths. Dislocation density is the order of 104/cm2 in the conical region, decreases in the direction of growth, and in many crystals reached less than 103/cm2. The spontaneous gap formation due to the meniscus depends on the pressure differences and thermal state. GaSb grown ingots have shown progress in the properties of crystal grown ever, and attributed to reduce thermal stress without contact to the ampoule wall.展开更多
The Nd^3+:LiGd(WO4) 2 crystal with dimensions of 25mm×28mm×16mm was grown by the top-seeded solution growth method from the 60 mol% Li2W2O7 flux. LiGd(WO4) 2 crystallizes in the tetragonal system with ...The Nd^3+:LiGd(WO4) 2 crystal with dimensions of 25mm×28mm×16mm was grown by the top-seeded solution growth method from the 60 mol% Li2W2O7 flux. LiGd(WO4) 2 crystallizes in the tetragonal system with space group I41/a(C4h^6) and cell parameters: a = 5.1986 and c = 11.2652A. The hardness is about 5.0 Mohs' scale. The specific heat is 0.40 J·g^-1·K^-1 at 50 oC. The thermal expansion coefficients for a-and c-axes are 1.314×10^-5 and 2.052×10^-5 K^-1,respectively. The room-temperature polarized absorption and emission spectra and the fluorescence decay curve was measured. The parameters of oscillator strengths,the spontaneous transition probabilities,the fluorescence branching ratios,the radiative lifetimes,and the emission cross sections have been investigated based on Judd-Ofelt theory and Füchtbauer-Ladenburg method. The absorption cross-section is 5.19×10^-20 cm^2 at 805 nm for π-polarization and its line width is 15 nm; the emission cross section is 1.726×10^-19 cm^2 at 1060.5 nm for π-polarization. The fluorescence and radiative lifetimes are 86 and 158 μs,respectively. The fluorescence quantum efficiency is 54.43%.展开更多
Numerical results show that an external magnetic field may influence significantly the flow pattern in the molten semiconductor of Czochralski crystal growth. The melt flow could be pronouncedly damped by a magnet. ic...Numerical results show that an external magnetic field may influence significantly the flow pattern in the molten semiconductor of Czochralski crystal growth. The melt flow could be pronouncedly damped by a magnet. ic field with the intensity of several thousands Gauss, while the temperature field is affected only in a less extent by the magnetic field.展开更多
Pattern selection during crystal growth is studied by using the anisotropic lattice Boltzmann-phase field model.In the model,the phase transition,melt flows,and heat transfer are coupled and mathematically described b...Pattern selection during crystal growth is studied by using the anisotropic lattice Boltzmann-phase field model.In the model,the phase transition,melt flows,and heat transfer are coupled and mathematically described by using the lattice Boltzmann(LB)scheme.The anisotropic streaming-relaxation operation fitting into the LB framework is implemented to model interface advancing with various preferred orientations.Crystal pattern evolutions are then numerically investigated in the conditions of with and without melt flows.It is found that melt flows can significantly influence heat transfer,crystal growth behavior,and phase distributions.The crystal morphological transition from dendrite,seaweed to cauliflower-like patterns occurs with the increase of undercoolings.The interface normal angles and curvature distributions are proposed to quantitatively characterize crystal patterns.The results demonstrate that the distributions are corresponding to crystal morphological features,and they can be therefore used to describe the evolution of crystal patterns in a quantitative way.展开更多
A model for dendrite growth during rapid solidification was established on the basis of BCT model and marginal stability criterion through modified Peclet numbers. Taking into account the interaction of diffusion fiel...A model for dendrite growth during rapid solidification was established on the basis of BCT model and marginal stability criterion through modified Peclet numbers. Taking into account the interaction of diffusion fields, including solute diffusion field and thermal diffusion field around the dendrite tip, the model obtain a satisfactory results to predict the dendrite velocity and the tip radius, which agrees well with the experimental data from references in Cu Ni alloy.展开更多
Since 1994, the vertical directional solidification (VDS) technique is employed for the growths of bulk crystals-without the seed, without contact to the ampoule wall, without coating and without external pressure, ...Since 1994, the vertical directional solidification (VDS) technique is employed for the growths of bulk crystals-without the seed, without contact to the ampoule wall, without coating and without external pressure, which leads to the detached growth. Growth velocities ranged from 3 mm/h to 10 mm/h, and rotation rates 10-20 rpm have been used. Ingots, 10-20 mm diameter and 60-65 mm length, have been grown with the conical ampoule geometry and these ingots have shown symmetric detachment. Crystals grown under such conditions showed the relatively low dislocation density and the highest carrier mobility,/tn = 5.9 x 104 cm2"Vl-sl than the crystal grown ever. For the detached crystals, the dislocation density is 104 cm"2 in conical region, and reached less than 103 cm-2 in the direction of the growth, when the ingots are not in contact with the ampoule wall. Experiments for indium-antimonide (InSb) growth have shown that the 80% growth environments have detachment, 15% entrapped in conical region and 5% attached.展开更多
The purpose of the work is to identify the acoustic emission (AE) signal in the melt and from the interphase during the crystal growth and to establish the connection between issue parameters: the number of signal ...The purpose of the work is to identify the acoustic emission (AE) signal in the melt and from the interphase during the crystal growth and to establish the connection between issue parameters: the number of signal events of frequency and the signal power with the growth conditions of temperature gradient and crystallization rate. Experiments on single crystal growth were carried out using hardware and software system which allows to perform spectral Fourier analysis of AE signals and to simultaneously remove the cooling curve for the entire period of crystallization. On the basis of spectral analysis of AE signals, a theoretical model of clusters in the aluminum melt was designed. The experimental results indicate an uneven abrupt advancement of the interface according to the configuration of each individual cluster.展开更多
The directional solidification in the undercooled pure melt influenced by a transverse far field flow was studied by using the multiple scale method. The result shows that in the boundary layer near the liquid-solid i...The directional solidification in the undercooled pure melt influenced by a transverse far field flow was studied by using the multiple scale method. The result shows that in the boundary layer near the liquid-solid interface, when affected by a transverse far field flow, the temperature distribution in the direction of crystal growth presents an oscillatory and decay front in the side of liquid phase. The crucial distinguishing feature of a temperature pattern due to the transverse convection is the additional periodic modulation of the pattern in the growth direction. The wave number and eigenvalue that satisfy the Mullins-Sekerka dispersion relation are suppressed by the transverse far field flow.展开更多
A set of 2D steady state finite element numerical simulations of electromagnetic fields and heating distribution for an oxide Czochralski crystal growth system was carried out for different input current shapes (sine,...A set of 2D steady state finite element numerical simulations of electromagnetic fields and heating distribution for an oxide Czochralski crystal growth system was carried out for different input current shapes (sine, square, triangle and sawtooth waveforms) of the induction coil. Comparison between the results presented here demonstrates the importance of input current shape on the electromagnetic field distribution, coil efficiency, and intensity and structure of generated power in the growth setup.展开更多
The electromagnetic levitation melting of the rare earth giant magnetostrictive materials Tb 0.27 Dy 0.73 Fe 1.90 alloys is realized. The compound is difficult to realize levitation melting at terrestrial environment ...The electromagnetic levitation melting of the rare earth giant magnetostrictive materials Tb 0.27 Dy 0.73 Fe 1.90 alloys is realized. The compound is difficult to realize levitation melting at terrestrial environment because of its high density and low electric conductivity. The microstructure of the sample near peritectic composition obtained by this process contains REFe 2 matrix phase, a large amount of rod like REFe 3 phase embedded in the matrix phase, rare earth rich phase enriching around the REFe 3 phase and a small amount of rare earth rich phase in the REFe 2 matrix phase far from the REFe 3 phase, which is significantly different from that of the sample obtained by general melting casting process with the same composition,which contains almost complete REFe 2 phase and a small amount of RE rich phase in the REFe 2 matrix phase. The formation of the microstructure can be attributed to the coupled growth of the peritectic phase—REFe 2 and the primary phase—REFe 3 , and the subsequent eutectic reaction under this experimental condition.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51728601 and 51771118)
文摘A lattice Boltzmann (LB)-cellular automaton (CA) model is employed to study the dendrite growth of A1-4.0 wt%Cu- 1.0 wt%Mg alloy. The effects of melt convection, solute diffusion, interface curvature, and preferred growth orientation are incorporated into the coupled model by coupling the LB-CA model and the CALPHAD-based phase equilibrium solver, PanEngine. The dendrite growth with single and multiple initial seeds was numerically studied under the conditions of pure diffusion and melt convection. Effects of initial seed number and melt convection strength were characterized by new- defined solidification and concentration entropies, The numerical result shows that the growth behavior of dendJ-ites, the final microstructure, and the micro-segregation are significantly influenced by melt convection during solidification of the ternary alloys. The proposed solidification and concentration entropies are useful characteristics bridging the solidification behavior and the microstructure evolution of alloys.
基金supported by the National Natural Science Foundation of China (50672111)Shanghai Science and Technology Committee (08520513100)
文摘We reported the development of a Ф100 cm growth apparatus for skull melting growth of yttria-stabilized cubic zirconia(YSZ) crystals and more than 1000 kg crystals have been grown in the furnace each time.The growth conditions were optimized and the structure of the as-grown crystals was characterized by X-ray diffraction.The transmittance of 15 mol.% yttria-stabilized cubic zirconia crystal was nearly 80% in the range of 400–1600 nm.The refractive indices were measured and fitted the Sellmeier equation whi...
基金Supported by the National Natural Science Foundation of China under Grant Nos 51306037 and 51371051
文摘A cellular automaton-lattice Boltzmann coupled model is extended to study the dendritic growth with melt convection in the solidification of ternary alloys. With a CALPHAD-based phase equilibrium engine, the effects of melt convection, solutal diffusion, interface curvature and preferred growth orientation are incorporated into the coupled model. After model validation, the multi dendritic growth of the Al-4.0 wt%Cu-1.0 wt%Mg alloy is simulated under the conditions of pure diffusion and melt convection. The result shows that the dendritic growth behavior, the final microstructure and microsegregation are significantly influenced by melt convection in the solidification.
基金the National Basic Research Program of China (the Project 973) (2006CB605205)the National Natural Science Foundation of China (10672019)
文摘The effect of convective flow on a spherical crystal growth in the undercooled melt with a moderate far field flow is studied. The asymptotic solution of the evolution of the interface of the spherical crystal growth is obtained by the matched asymptotic expansion method. The analytic result shows that the convective flow in the undercooled melt has a strong effect on the evolution of spherical crystal growth. The convective flow induced by the far field flow makes the interface of the growing spherical crystal enhance its growth velocity in the upstream direction of the far field flow and inhibit growth in the downstream direction, and the interface of the decaying spherical crystal further decay in the upstream direction and inhibit decay in the downstream direction. The maximum growth velocity of the interface of the spherical crystal influenced by the far field flow is obtained.
基金financially supported by the National Natural Science Foundation of China(No.51704068)the National Key Technologies R&D Program of China(No.2017YFC0805100)the Fundamental Research Funds for the Central Universities(No.N172504020)
文摘To improve the efficiency of melting modification for stainless steel(SS) slag, a shear force was introduced in this work and its effects on the spinel and silicate melt were experimentally investigated. The results indicated that the use of shear force changed the nucleation and growth behaviors of spinel and that the effects of shear force varied with its intensity. The aggregation behavior of spinel under different shear-force conditions was studied, revealing that large spinel clusters could be formed when the stirring speed was controlled. However, no notable change in the melt structure of the silicate was detected in this study. The optimal stirring speed for the melting modification treatment was 50 r·min^(-1), which substantially promoted spinel growth and aggregation, resulting in modified SS slag with excellent chromium sequestration capability.
基金supported by the National Natural Science Foundation of China (Grant Nos 50331040 and 50802105)the Innovation Funds from Shanghai Institute of Ceramics, Chinese Academy of Sciences (Grant No SCX0623)
文摘This paper reports that the rapid solidification of mixed Li2B4O7 and KNbO3 melted in a Pt loop heater has been performed experimentally by the method of quenching, and various morphologies of KNbO3 crystals have been observed in different regions of the quenched melt-solution. Dendrites were formed in the central region where mass transfer is performed by diffusion, whereas polygonal crystals with smooth surface grew in the marginal region where convection dominates mass transport. Based on measurement of KNbO3 concentration along crystal interface by electronic probe analysis, it finds the variety of crystal morphologies, which is the result of different solute distributions: in the central region the inhomogeneity of solute concentration is much sharper and morphological instability is easier to take place; nevertheless in the marginal region the concentration homogeneity has been greatly enhanced by convection which prevents the occurrence of morphological instability. Additional solute distribution in the melt along the primary dendrite trunk axis as well as that in mushy zones has also been determined. Results show that the solute concentration in the liquid increases linearly with distance from the trunk tip and more solutes were found to be concentrated in mushy zones. The closer the mushy zone is to trunk tip, the lower the solute concentration will be there.
基金supported by the National Natural Science Foundation of China (No. 60808033)Natural Science Foundation of Jiangxi Province (No. 2008GZW0012)the Science Project of the Education Commission of Jiangxi Province (No. GJJ08345)
文摘The Yb3+-doped LiGd(MoO4)2 crystal with the size up to Φ20×30 mm3 has been grown by Czochralski technique.The polarized room temperature absorption and emission spectra have been investigated.This crystal exhibits a broad absorption band centered at 975 nm with an FWHM of 43 and 59 nm for π-and σ-polarization,respectively,and the corresponding maximal absorption cross-sections are 3.36 and 2.42×10-20 cm2.The emission broadband has an FWHM of 47 and 54 nm for π-and σ-polarization,respectively,with the corresponding emission cross sections of 3.92 and 3.34 × 10-20 cm2 at 1020 nm.The measured fluorescence lifetime is 287 μs.
基金Funded by the Key R&D and Promotion Projects in Henan Province(No.212102210267)。
文摘Nonequilibrium thermodynamics and transportation kinetics near the propagating solid-liquid interface dominates the rapid solidification process,which is far from a thermodynamically stable state.Rapid solidification process can be described more precisely using quantitative thermodynamic calculation of phase diagram with nonlinear liquidus and solidus and evaluating the nonequilibrium effect in diffusion kinetics.Based on these basic principles,we used a current nonequilibrium dendrite growth model to describe rapid solidification process of deeply undercooled alloys.Evolution of the key fundamental solidification parameters was also evaluated.
文摘Advantages of the detached phenomena have influenced researchers to modify the conventional methods to promote it on the earth. Since 1994, the vertical directional solidification (VDS) technique has been employed for the growth of bulk crystals, without the seed, without contact to the ampoule wall, without coating and without external pressure. An automated furnace was designed and fabricated for the controlled temperature gradients, growth conditions and parameters. The typical ingots growths of GaSb have shown the gap of 20 μm-145 μm and mobility μn = 1125 cm^2/V.sec at 300 K. Mobility is highest and five times larger than the attached growths. Dislocation density is the order of 104/cm2 in the conical region, decreases in the direction of growth, and in many crystals reached less than 103/cm2. The spontaneous gap formation due to the meniscus depends on the pressure differences and thermal state. GaSb grown ingots have shown progress in the properties of crystal grown ever, and attributed to reduce thermal stress without contact to the ampoule wall.
基金Supported by the National Natural Science Foundation of China (No.60808033)Natural Science Foundation of Jiangxi Province (No.2008GZW0012)
文摘The Nd^3+:LiGd(WO4) 2 crystal with dimensions of 25mm×28mm×16mm was grown by the top-seeded solution growth method from the 60 mol% Li2W2O7 flux. LiGd(WO4) 2 crystallizes in the tetragonal system with space group I41/a(C4h^6) and cell parameters: a = 5.1986 and c = 11.2652A. The hardness is about 5.0 Mohs' scale. The specific heat is 0.40 J·g^-1·K^-1 at 50 oC. The thermal expansion coefficients for a-and c-axes are 1.314×10^-5 and 2.052×10^-5 K^-1,respectively. The room-temperature polarized absorption and emission spectra and the fluorescence decay curve was measured. The parameters of oscillator strengths,the spontaneous transition probabilities,the fluorescence branching ratios,the radiative lifetimes,and the emission cross sections have been investigated based on Judd-Ofelt theory and Füchtbauer-Ladenburg method. The absorption cross-section is 5.19×10^-20 cm^2 at 805 nm for π-polarization and its line width is 15 nm; the emission cross section is 1.726×10^-19 cm^2 at 1060.5 nm for π-polarization. The fluorescence and radiative lifetimes are 86 and 158 μs,respectively. The fluorescence quantum efficiency is 54.43%.
基金supported by the National Natural Foundation of China
文摘Numerical results show that an external magnetic field may influence significantly the flow pattern in the molten semiconductor of Czochralski crystal growth. The melt flow could be pronouncedly damped by a magnet. ic field with the intensity of several thousands Gauss, while the temperature field is affected only in a less extent by the magnetic field.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51728601 and 51771118)the Fund of the State Key Laboratory of Solidification Processing in NPU(Grant No.SKLSP201901)the Fundamental Research Funds for the Central Universities,China(Grant No.2242019K1G003).
文摘Pattern selection during crystal growth is studied by using the anisotropic lattice Boltzmann-phase field model.In the model,the phase transition,melt flows,and heat transfer are coupled and mathematically described by using the lattice Boltzmann(LB)scheme.The anisotropic streaming-relaxation operation fitting into the LB framework is implemented to model interface advancing with various preferred orientations.Crystal pattern evolutions are then numerically investigated in the conditions of with and without melt flows.It is found that melt flows can significantly influence heat transfer,crystal growth behavior,and phase distributions.The crystal morphological transition from dendrite,seaweed to cauliflower-like patterns occurs with the increase of undercoolings.The interface normal angles and curvature distributions are proposed to quantitatively characterize crystal patterns.The results demonstrate that the distributions are corresponding to crystal morphological features,and they can be therefore used to describe the evolution of crystal patterns in a quantitative way.
文摘A model for dendrite growth during rapid solidification was established on the basis of BCT model and marginal stability criterion through modified Peclet numbers. Taking into account the interaction of diffusion fields, including solute diffusion field and thermal diffusion field around the dendrite tip, the model obtain a satisfactory results to predict the dendrite velocity and the tip radius, which agrees well with the experimental data from references in Cu Ni alloy.
文摘Since 1994, the vertical directional solidification (VDS) technique is employed for the growths of bulk crystals-without the seed, without contact to the ampoule wall, without coating and without external pressure, which leads to the detached growth. Growth velocities ranged from 3 mm/h to 10 mm/h, and rotation rates 10-20 rpm have been used. Ingots, 10-20 mm diameter and 60-65 mm length, have been grown with the conical ampoule geometry and these ingots have shown symmetric detachment. Crystals grown under such conditions showed the relatively low dislocation density and the highest carrier mobility,/tn = 5.9 x 104 cm2"Vl-sl than the crystal grown ever. For the detached crystals, the dislocation density is 104 cm"2 in conical region, and reached less than 103 cm-2 in the direction of the growth, when the ingots are not in contact with the ampoule wall. Experiments for indium-antimonide (InSb) growth have shown that the 80% growth environments have detachment, 15% entrapped in conical region and 5% attached.
文摘The purpose of the work is to identify the acoustic emission (AE) signal in the melt and from the interphase during the crystal growth and to establish the connection between issue parameters: the number of signal events of frequency and the signal power with the growth conditions of temperature gradient and crystallization rate. Experiments on single crystal growth were carried out using hardware and software system which allows to perform spectral Fourier analysis of AE signals and to simultaneously remove the cooling curve for the entire period of crystallization. On the basis of spectral analysis of AE signals, a theoretical model of clusters in the aluminum melt was designed. The experimental results indicate an uneven abrupt advancement of the interface according to the configuration of each individual cluster.
基金This work was financially supported by the Major State Basic Research Development Program of China (973 Program, No.2006CB605205)
文摘The directional solidification in the undercooled pure melt influenced by a transverse far field flow was studied by using the multiple scale method. The result shows that in the boundary layer near the liquid-solid interface, when affected by a transverse far field flow, the temperature distribution in the direction of crystal growth presents an oscillatory and decay front in the side of liquid phase. The crucial distinguishing feature of a temperature pattern due to the transverse convection is the additional periodic modulation of the pattern in the growth direction. The wave number and eigenvalue that satisfy the Mullins-Sekerka dispersion relation are suppressed by the transverse far field flow.
文摘A set of 2D steady state finite element numerical simulations of electromagnetic fields and heating distribution for an oxide Czochralski crystal growth system was carried out for different input current shapes (sine, square, triangle and sawtooth waveforms) of the induction coil. Comparison between the results presented here demonstrates the importance of input current shape on the electromagnetic field distribution, coil efficiency, and intensity and structure of generated power in the growth setup.
文摘The electromagnetic levitation melting of the rare earth giant magnetostrictive materials Tb 0.27 Dy 0.73 Fe 1.90 alloys is realized. The compound is difficult to realize levitation melting at terrestrial environment because of its high density and low electric conductivity. The microstructure of the sample near peritectic composition obtained by this process contains REFe 2 matrix phase, a large amount of rod like REFe 3 phase embedded in the matrix phase, rare earth rich phase enriching around the REFe 3 phase and a small amount of rare earth rich phase in the REFe 2 matrix phase far from the REFe 3 phase, which is significantly different from that of the sample obtained by general melting casting process with the same composition,which contains almost complete REFe 2 phase and a small amount of RE rich phase in the REFe 2 matrix phase. The formation of the microstructure can be attributed to the coupled growth of the peritectic phase—REFe 2 and the primary phase—REFe 3 , and the subsequent eutectic reaction under this experimental condition.