This paper uses deep seismic sounding (DSS) data to contrast and analyze the crustal structures of three plateau basins (Songpan-Garze, Qaidam, Longzhong) in the northeastern margin of the Qinghai-Xizang (Tibetan...This paper uses deep seismic sounding (DSS) data to contrast and analyze the crustal structures of three plateau basins (Songpan-Garze, Qaidam, Longzhong) in the northeastern margin of the Qinghai-Xizang (Tibetan) plateau, as well as two stable cratonic basins (Ordos, Sichuan) in its peripheral areas. Plateau basin crustal structures, lithological variations and crustal thickening mechanisms were investigated. The results show that, compared to the peripheral stable cratonic basins, the crystalline crusts of plateau basins in the northeastern margin are up to 10 15 km thicker, and the relative medium velocity difference is about 5% less. The medium velocity change in crustal layers of plateau basin indicates that the upper crust undergoes brittle deformation, whereas the lower crust deforms plastically with low velocity. The middle crust shows a brittle-to-plastic transition zone in this region. Thickening in the lower crust (about 5 10 km), and rheological characteristics that show low- medium velocity (relatively reduced by 7%), suggest that crustal thickening mainly takes place in lower crust in the northeastern margin of the Tibetan plateau. The crust along the northeastern margin shows evidence of wholesale block movement, and crustal shortening and thickening seem to be the main deformation features of this region. The GPS data show that the block motion modes and crustal thickening in the Tibetan plateau is closely related to the peripheral tectonic stress field and motion direction of the Indian plate. The Mani-Yushu- Xianshuihe fold belt along the boundary between the Qiangtang block and the Bayan Har block divides the different plateau thickening tectonic environments into the middle-western plateau, the northeastern margin and the southeastern plateau.展开更多
Low pressure sheet molding compound (LPMC,1.0-3.0 MPa,95-103 ℃) is a new kind of thermosetting material with crystalline polyester as a physical thickenner.LPMC is different from conventional SMC using an earth oxi...Low pressure sheet molding compound (LPMC,1.0-3.0 MPa,95-103 ℃) is a new kind of thermosetting material with crystalline polyester as a physical thickenner.LPMC is different from conventional SMC using an earth oxide thickening agent (e.g.MgO) as chemical thickenner,it relies on the physical thickening of crystalline polyester.Crystalline polyester resin is the key material to mold LPMC parts.Currently there was no report about the thickening mechanism of crystalline polyester in LPMC.In this article,crystalline polyester resins,whose melting points were between 45 ℃ and 89 ℃,were synthesized by a two-step esterification.The melt points of crystalline polyesters are controlled by regulating the mol ratio of the two glycols and the two acids.And by means of varying the content of crystalline polyester resin,the thickening effect on resin paste is investigated.In addition,the thickening mechanism of crystalline polyester in LPMC was investigated by FTIR and DSC analysis.The effects of the diameters and viscosity of crystalline polyester on the rheological property and fiber distribution of LPMC sheets were studied,too.Results show that the thickening effect is excellent when the weight content of crystalline polyester resin is 3%.And there exists three kinds of functions acting in the process of thickening:swelling,hydrogen bonds and induction crystallization.During the preparing process of resin paste in LPMC,the temperature of resin paste must be kept at 90 ℃.In addition,crystalline polyester make LPMC have a perfect fluid property.When the viscosity of LPMC sheet is beyond 1 kPa s,the fiber orientation is not obvious.But when the viscosity of LPMC sheet is about 500 Pa s,the fiber shows a certain degree of orientation.Moreover the study of physical and chemical thickening mechanism of crystalline polyester and the rheological discipline of LPMC sheets in the hot mould will provide the researchers and enterprises with theory guidance.展开更多
In order to investigate the influening factors of organic modification procedure and find out connections between organic modification and the properties of bentonite greases, organic montmorillonite(OMMT) thickeners ...In order to investigate the influening factors of organic modification procedure and find out connections between organic modification and the properties of bentonite greases, organic montmorillonite(OMMT) thickeners with different surfactant dosages and constituents were synthesized through intercalation reaction between sodium montmorillonite(NaM MT) and quaternary ammonium surfactants in aqueous solvents. The lubricating greases were prepared with the resulting organoclays, while the penetration and oil separation of lubricating greases were evaluated, respectively. The surface modification process of montmorillonite(MMT) was analyzed and the thickening mechanism of OMMT was discussed in this study. The experimental results showed that, with an increasing amount of surfactant, the basal spacing between the clay platelets was increasing and the structure of modifier molecules layer in the interlayer was changing from lateral bilayer to paraffin-type bilayer. The optimal properties of lubricating greases were achieved, when the structure of surfactant molecules loaded in the interlayer was the paraffin-type monolayer, which meant that the dosage of modifier was equal to 120—140 mmol/(100g). Meanwhile, it was found that the thickening performance, colloid stability, anti-wear and friction-reducing performance of lubricating greases were improved, when the surfactants were mixed with octadecyl trimethyl ammonium chloride(OTAC) and hexadecyl trimethyl ammonium chloride(HTAC). And the optimum mole ratio of two surfactants is was 1:1.展开更多
基金supported by the project Active Fault Survey in Chinese mainl and-DSS profile in the central Longmen-shan from CEA (2010)National Natural Science Foundation of China (No. 40974033)
文摘This paper uses deep seismic sounding (DSS) data to contrast and analyze the crustal structures of three plateau basins (Songpan-Garze, Qaidam, Longzhong) in the northeastern margin of the Qinghai-Xizang (Tibetan) plateau, as well as two stable cratonic basins (Ordos, Sichuan) in its peripheral areas. Plateau basin crustal structures, lithological variations and crustal thickening mechanisms were investigated. The results show that, compared to the peripheral stable cratonic basins, the crystalline crusts of plateau basins in the northeastern margin are up to 10 15 km thicker, and the relative medium velocity difference is about 5% less. The medium velocity change in crustal layers of plateau basin indicates that the upper crust undergoes brittle deformation, whereas the lower crust deforms plastically with low velocity. The middle crust shows a brittle-to-plastic transition zone in this region. Thickening in the lower crust (about 5 10 km), and rheological characteristics that show low- medium velocity (relatively reduced by 7%), suggest that crustal thickening mainly takes place in lower crust in the northeastern margin of the Tibetan plateau. The crust along the northeastern margin shows evidence of wholesale block movement, and crustal shortening and thickening seem to be the main deformation features of this region. The GPS data show that the block motion modes and crustal thickening in the Tibetan plateau is closely related to the peripheral tectonic stress field and motion direction of the Indian plate. The Mani-Yushu- Xianshuihe fold belt along the boundary between the Qiangtang block and the Bayan Har block divides the different plateau thickening tectonic environments into the middle-western plateau, the northeastern margin and the southeastern plateau.
基金supported by National Natural Science Foundation of China (Grant No. 50473013)National Hi-tech Research and Development Program of China (863 Program,Grant No. 2003AA333070)+1 种基金Hubei Provincial Natural Science Foundation of China (Grant No.2009CDA037)Researching Foundation of Hubei Automotive Industries Institute of China (Grant No. BK201001)
文摘Low pressure sheet molding compound (LPMC,1.0-3.0 MPa,95-103 ℃) is a new kind of thermosetting material with crystalline polyester as a physical thickenner.LPMC is different from conventional SMC using an earth oxide thickening agent (e.g.MgO) as chemical thickenner,it relies on the physical thickening of crystalline polyester.Crystalline polyester resin is the key material to mold LPMC parts.Currently there was no report about the thickening mechanism of crystalline polyester in LPMC.In this article,crystalline polyester resins,whose melting points were between 45 ℃ and 89 ℃,were synthesized by a two-step esterification.The melt points of crystalline polyesters are controlled by regulating the mol ratio of the two glycols and the two acids.And by means of varying the content of crystalline polyester resin,the thickening effect on resin paste is investigated.In addition,the thickening mechanism of crystalline polyester in LPMC was investigated by FTIR and DSC analysis.The effects of the diameters and viscosity of crystalline polyester on the rheological property and fiber distribution of LPMC sheets were studied,too.Results show that the thickening effect is excellent when the weight content of crystalline polyester resin is 3%.And there exists three kinds of functions acting in the process of thickening:swelling,hydrogen bonds and induction crystallization.During the preparing process of resin paste in LPMC,the temperature of resin paste must be kept at 90 ℃.In addition,crystalline polyester make LPMC have a perfect fluid property.When the viscosity of LPMC sheet is beyond 1 kPa s,the fiber orientation is not obvious.But when the viscosity of LPMC sheet is about 500 Pa s,the fiber shows a certain degree of orientation.Moreover the study of physical and chemical thickening mechanism of crystalline polyester and the rheological discipline of LPMC sheets in the hot mould will provide the researchers and enterprises with theory guidance.
基金financially supported by the Chongqing Construction Project of Innovation Teams in Colleges and Universities-Petroleum Products Application Engineering and Technology(Project No.KJTD201342)the Chongqing Project of Innovation Research by Postgraduates(Project No.CYB16130)
文摘In order to investigate the influening factors of organic modification procedure and find out connections between organic modification and the properties of bentonite greases, organic montmorillonite(OMMT) thickeners with different surfactant dosages and constituents were synthesized through intercalation reaction between sodium montmorillonite(NaM MT) and quaternary ammonium surfactants in aqueous solvents. The lubricating greases were prepared with the resulting organoclays, while the penetration and oil separation of lubricating greases were evaluated, respectively. The surface modification process of montmorillonite(MMT) was analyzed and the thickening mechanism of OMMT was discussed in this study. The experimental results showed that, with an increasing amount of surfactant, the basal spacing between the clay platelets was increasing and the structure of modifier molecules layer in the interlayer was changing from lateral bilayer to paraffin-type bilayer. The optimal properties of lubricating greases were achieved, when the structure of surfactant molecules loaded in the interlayer was the paraffin-type monolayer, which meant that the dosage of modifier was equal to 120—140 mmol/(100g). Meanwhile, it was found that the thickening performance, colloid stability, anti-wear and friction-reducing performance of lubricating greases were improved, when the surfactants were mixed with octadecyl trimethyl ammonium chloride(OTAC) and hexadecyl trimethyl ammonium chloride(HTAC). And the optimum mole ratio of two surfactants is was 1:1.