This paper considers the approaches and methods for reducing the influence of multi-collinearity. Great attention is paid to the question of using shrinkage estimators for this purpose. Two classes of regression model...This paper considers the approaches and methods for reducing the influence of multi-collinearity. Great attention is paid to the question of using shrinkage estimators for this purpose. Two classes of regression models are investigated, the first of which corresponds to systems with a negative feedback, while the second class presents systems without the feedback. In the first case the use of shrinkage estimators, especially the Principal Component estimator, is inappropriate but is possible in the second case with the right choice of the regularization parameter or of the number of principal components included in the regression model. This fact is substantiated by the study of the distribution of the random variable , where b is the LS estimate and β is the true coefficient, since the form of this distribution is the basic characteristic of the specified classes. For this study, a regression approximation of the distribution of the event based on the Edgeworth series was developed. Also, alternative approaches are examined to resolve the multicollinearity issue, including an application of the known Inequality Constrained Least Squares method and the Dual estimator method proposed by the author. It is shown that with a priori information the Euclidean distance between the estimates and the true coefficients can be significantly reduced.展开更多
In oil and gas exploration,elucidating the complex interdependencies among geological variables is paramount.Our study introduces the application of sophisticated regression analysis method at the forefront,aiming not...In oil and gas exploration,elucidating the complex interdependencies among geological variables is paramount.Our study introduces the application of sophisticated regression analysis method at the forefront,aiming not just at predicting geophysical logging curve values but also innovatively mitigate hydrocarbon depletion observed in geochemical logging.Through a rigorous assessment,we explore the efficacy of eight regression models,bifurcated into linear and nonlinear groups,to accommodate the multifaceted nature of geological datasets.Our linear model suite encompasses the Standard Equation,Ridge Regression,Least Absolute Shrinkage and Selection Operator,and Elastic Net,each presenting distinct advantages.The Standard Equation serves as a foundational benchmark,whereas Ridge Regression implements penalty terms to counteract overfitting,thus bolstering model robustness in the presence of multicollinearity.The Least Absolute Shrinkage and Selection Operator for variable selection functions to streamline models,enhancing their interpretability,while Elastic Net amalgamates the merits of Ridge Regression and Least Absolute Shrinkage and Selection Operator,offering a harmonized solution to model complexity and comprehensibility.On the nonlinear front,Gradient Descent,Kernel Ridge Regression,Support Vector Regression,and Piecewise Function-Fitting methods introduce innovative approaches.Gradient Descent assures computational efficiency in optimizing solutions,Kernel Ridge Regression leverages the kernel trick to navigate nonlinear patterns,and Support Vector Regression is proficient in forecasting extremities,pivotal for exploration risk assessment.The Piecewise Function-Fitting approach,tailored for geological data,facilitates adaptable modeling of variable interrelations,accommodating abrupt data trend shifts.Our analysis identifies Ridge Regression,particularly when augmented by Piecewise Function-Fitting,as superior in recouping hydrocarbon losses,and underscoring its utility in resource quantification refinement.Meanwhile,Kernel Ridge Regression emerges as a noteworthy strategy in ameliorating porosity-logging curve prediction for well A,evidencing its aptness for intricate geological structures.This research attests to the scientific ascendancy and broad-spectrum relevance of these regression techniques over conventional methods while heralding new horizons for their deployment in the oil and gas sector.The insights garnered from these advanced modeling strategies are set to transform geological and engineering practices in hydrocarbon prediction,evaluation,and recovery.展开更多
The purpose of this research is to explore the factors influencing the self-improvement process of museums in China and to conduct empirical analyses based on multiple linear regression models.As core institutions for...The purpose of this research is to explore the factors influencing the self-improvement process of museums in China and to conduct empirical analyses based on multiple linear regression models.As core institutions for inheriting and displaying cultural heritage and enhancing public cultural literacy,museums’self-improvement is of great significance in promoting cultural development,optimizing the supply of public cultural services,and enhancing social influence.This paper constructs a multiple linear regression model for the influencing factors of museum self-improvement by integrating several key variables,including emerging cultural and museum business(EF),institutional reform(SR),research and innovation level(RIL),management level(ML),and the museum cultural and creative industry(MCCI).The study employs scientific methods such as literature review,data collection,and data analysis to thoroughly explore the internal logic of museum operations and development.Through multiple linear regression analyses,it quantifies the specific influence and relative importance of each factor on the level of museum self-improvement.The results indicate that the management level(ML)is the dominant factor among the variables studied,exerting the most significant influence on museum self-improvement.Based on these empirical findings,this paper provides an in-depth analysis of the specific factors affecting museum self-improvement in China,offering solid theoretical support and practical guidance for the sustainable development of museums.展开更多
As one of the first coastal open cities in China,Yantai City is situated in the eastern Shandong Peninsula,bordered by the Yellow Sea and Bohai Sea.With the continuous improvement of tourism infrastructure,public enth...As one of the first coastal open cities in China,Yantai City is situated in the eastern Shandong Peninsula,bordered by the Yellow Sea and Bohai Sea.With the continuous improvement of tourism infrastructure,public enthusiasm for tourism in Yantai has been growing.To formulate more effective tourism development policies tailored to the local context,this study examines Yantai City using a multiple linear regression model to identify the primary factors influencing domestic tourism income.Based on the findings,this paper proposes scientifically grounded and actionable strategies to further optimize the development of tourism in Yantai City.展开更多
The rock matrix bulk modulus or its inverse, the compressive coefficient, is an important input parameter for fluid substitution by the Biot-Gassmann equation in reservoir prediction. However, it is not easy to accura...The rock matrix bulk modulus or its inverse, the compressive coefficient, is an important input parameter for fluid substitution by the Biot-Gassmann equation in reservoir prediction. However, it is not easy to accurately estimate the bulk modulus by using conventional methods. In this paper, we present a new linear regression equation for calculating the parameter. In order to get this equation, we first derive a simplified Gassmann equation by using a reasonable assumption in which the compressive coefficient of the saturated pore fluid is much greater than the rock matrix, and, second, we use the Eshelby- Walsh relation to replace the equivalent modulus of a dry rock in the Gassmann equation. Results from the rock physics analysis of rock sample from a carbonate area show that rock matrix compressive coefficients calculated with water-saturated and dry rock samples using the linear regression method are very close (their error is less than 1%). This means the new method is accurate and reliable.展开更多
As the traditional methods and technical means cannot meet the quantitative research needs of the urban land use patterns, quantitative research methods for the urban land use pattern are established via the GIS (geo...As the traditional methods and technical means cannot meet the quantitative research needs of the urban land use patterns, quantitative research methods for the urban land use pattern are established via the GIS (geographic information system ) technique combined with the related theories and models. Taking the city of Nanjing as an example, a spatial database of urban land use and other environmental and socio-economic data is constructed. A multiple linear regression model is developed to determine the statistically significant factors affecting the residential land use distributions. To explain the spatial variations of urban land use patterns, the geographically weighted regression (GWR) is employed to establish spatial associations between these significant factors and the distribution of urban residential land use. The results demonstrate that the GWR can provide an effective approach to the exploration of the urban land use spatial patterns and also provide useful spatial information for planning residential development and other types of urban land use.展开更多
1st cases of COVID-19 were reported in March 2020 in Bangladesh and rapidly increased daily. So many steps were taken by the Bangladesh government to reduce the outbreak of COVID-19, such as masks, gatherings, local m...1st cases of COVID-19 were reported in March 2020 in Bangladesh and rapidly increased daily. So many steps were taken by the Bangladesh government to reduce the outbreak of COVID-19, such as masks, gatherings, local movements, international movements, etc. The data was collected from the World Health Organization. In this research, different variables have been used for analysis, for instance, new cases, new deaths, masks, schools, business, gatherings, domestic movement, international travel, new test, positive rate, test per case, new vaccination smoothed, new vaccine, total vaccination, and stringency index. Machine learning algorithms were used to predict and build the model, such as linear regression, K-nearest neighbours, decision trees, random forests, and support vector machines. Accuracy and Mean Square error (MSE) were used to test the model. A hyperparameter was also applied to find the optimum values of parameters. After computing the analysis, the result showed that the linear regression algorithm performs the best overall among the algorithms listed, with the highest testing accuracy and the lowest RMSE before and after hyper-tuning. The highest accuracy and lowest MSE were used for the best model, and for this data set, Linear regression got the highest accuracy, 0.98 and 0.97 and the lowest MSE, 4.79 and 4.04, respectively.展开更多
The precision of dynamic reserve calculations in gas reservoirs is crucial for the rational and efficient development of oil and gas fields and the formulation of gas well production plans.The Shaximiao gas reservoir ...The precision of dynamic reserve calculations in gas reservoirs is crucial for the rational and efficient development of oil and gas fields and the formulation of gas well production plans.The Shaximiao gas reservoir in the ZT block of northwestern Sichuan is densely packed and highly heterogeneous,featuring complex gas-water distribution,substantial variations in test production among gas wells,and a rapid decline rate.To precisely determine the dynamic reserves of these tight water-bearing gas wells,this study focuses on the water-tight gas reservoirs in the ZT block of northwestern Sichuan,conducting core X-ray diffraction,constant-rate mercury injection,and reservoir rock stress sensitivity experiments.Utilizing the experimental findings,the porosity and permeability of the rock samples under effective stress conditions are adjusted via binary linear regression.These adjusted parameters are then incorporated into the water-sealed gas material balance method,thereby establishing a novel approach for calculating dynamic reserves in water-tight gas reservoirs under stress sensitivity conditions.The results show that:(1)the rock porosity ranges from 6.08%to 10.22%,permeability ranges from 0.035 mD to 0.547 mD,clay mineral content ranges from 6.58%to 19.14%,pore radius distribution ranges from 90μm to 180μm,throat radius distribution ranges from 0.61μm to 3.41μm,with significant differences in throat distribution,indicating poor reservoir fluid flow capacity and strong tightness;(2)after aging experiments,rock samples exhibit plastic deformation,with porosity and permeability unable to fully recover after pressure relief.The stress sensitivity curve of rock samples shows a two-stage characteristic,with moderate to strong stress sensitivity;(3)porosity stress sensitivity is mainly influenced by pore radius and mineral composition-larger pore radius and higher clay content lead to stronger stress sensitivity,with porosity loss rates ranging from 8.26%to 23.69%.Permeability stress sensitivity is mainly influenced by throat radius and mineral composition-smaller throat radius and higher clay content result in stronger stress sensitivity,with permeability loss rates ranging from 47.91%to 62.03%;(4)a comparative analysis between the traditional dynamic reserve calculation method for gas wells and the new method considering stress sensitivity shows a relative error between 0.90%and 2.41%,with the new method demonstrating better accuracy.This study combines physical experimental results with an effective stress model of reservoir rocks to develop a new method for calculating dynamic reserves of water-bearing tight gas reservoirs under effective stress conditions,providing experimental data and example calculation results to support subsequent dynamic evaluation of gas reservoirs and the establishment of rational well allocation plans.展开更多
Due to the heterogeneity of rock masses and the variability of in situ stress,the traditional linear inversion method is insufficiently accurate to achieve high accuracy of the in situ stress field.To address this cha...Due to the heterogeneity of rock masses and the variability of in situ stress,the traditional linear inversion method is insufficiently accurate to achieve high accuracy of the in situ stress field.To address this challenge,nonlinear stress boundaries for a numerical model are determined through regression analysis of a series of nonlinear coefficient matrices,which are derived from the bubbling method.Considering the randomness and flexibility of the bubbling method,a parametric study is conducted to determine recommended ranges for these parameters,including the standard deviation(σb)of bubble radii,the non-uniform coefficient matrix number(λ)for nonlinear stress boundaries,and the number(m)and positions of in situ stress measurement points.A model case study provides a reference for the selection of these parameters.Additionally,when the nonlinear in situ stress inversion method is employed,stress distortion inevitably occurs near model boundaries,aligning with the Saint Venant's principle.Two strategies are proposed accordingly:employing a systematic reduction of nonlinear coefficients to achieve high inversion accuracy while minimizing significant stress distortion,and excluding regions with severe stress distortion near the model edges while utilizing the central part of the model for subsequent simulations.These two strategies have been successfully implemented in the nonlinear in situ stress inversion of the Xincheng Gold Mine and have achieved higher inversion accuracy than the linear method.Specifically,the linear and nonlinear inversion methods yield root mean square errors(RMSE)of 4.15 and 3.2,and inversion relative errors(δAve)of 22.08%and 17.55%,respectively.Therefore,the nonlinear inversion method outperforms the traditional multiple linear regression method,even in the presence of a systematic reduction in the nonlinear stress boundaries.展开更多
Biomass models to estimate carbon stocks in arid environment are very limited. This study employed destructive sampling to develop a new biomass model for Vachellia tortilis, a widely known species in the Sultanate of...Biomass models to estimate carbon stocks in arid environment are very limited. This study employed destructive sampling to develop a new biomass model for Vachellia tortilis, a widely known species in the Sultanate of Oman. Twenty trees with a diameter at stump height (DSH) ranging from 18.5 cm to 150 cm were selected based on DSH and height variations for destructive sampling in As Saleel Natural Park Reserve (SNPR) in Al Sharqiyah governorate, South of Oman. Each tree was excavated and cut into three parts: Stems, Branches, twigs, and leaves. The total fresh weight of each tree was obtained in the field using a 300 balance. Sub-samples (250 - 300 grams) were taken from each part of the tree and transferred to the laboratory for dry weight determination. Linear multiple regression analysis was done using SPSS software between the three variables, DSH, H, CA (x) and the total dry biomass (y). Five models were tested for the best-fit model based on R-Square and Mean Square Error (MSE). Model 5 was the best-fit model, including the LOG of DSH and the LOG of CA (R2 = 0.97, MSE = 0.114). The models developed in this research fill a critical gap in estimating the AGB of terrestrial native species in Oman and other countries with similar ecological and climate conditions.展开更多
Abstract Using the method of stepwise multivariate linear regression (SMLR), the quantitative structure activity relationships (QSAR) of two isomeric series of taxol and its derivatives have been studied. It was foun...Abstract Using the method of stepwise multivariate linear regression (SMLR), the quantitative structure activity relationships (QSAR) of two isomeric series of taxol and its derivatives have been studied. It was found that the molar refractivity of the C3′substituent of the C13 side chain has significant correlation with its activity. We deduce that structural changes in the C3′substituents may be critical to the anticancer function. It would be useful to the design and synthesis of taxol like compounds with improved activities.展开更多
In this paper, based on the theory of parameter estimation, we give a selection method and, in a sense of a good character of the parameter estimation, we think that it is very reasonable. Moreover, we offer a calcula...In this paper, based on the theory of parameter estimation, we give a selection method and, in a sense of a good character of the parameter estimation, we think that it is very reasonable. Moreover, we offer a calculation method of selection statistic and an applied example.展开更多
The construction method of background value is improved in the original multi-variable grey model (MGM(1,m)) from its source of construction errors. The MGM(1,m) with optimized background value is used to elimin...The construction method of background value is improved in the original multi-variable grey model (MGM(1,m)) from its source of construction errors. The MGM(1,m) with optimized background value is used to eliminate the random fluctuations or errors of the observational data of all variables, and the combined prediction model together with the multiple linear regression is established in order to improve the simulation and prediction accuracy of the combined model. Finally, a combined model of the MGM(1,2) with optimized background value and the binary linear regression is constructed by an example. The results show that the model has good effects for simulation and prediction.展开更多
Many properties of fruit are influenced by plant nutrition. Fruit firmness is one of the most important fruit characteristics and determines post-harvest life of the fruit, in recent decades, artificial intelligence s...Many properties of fruit are influenced by plant nutrition. Fruit firmness is one of the most important fruit characteristics and determines post-harvest life of the fruit, in recent decades, artificial intelligence systems were employed for developing predictive models to estimate and predict many agriculture processes. In the present study, the predictive capabilities of multiple linear regressions (MLR) and artificial neural networks (ANNs) are evaluated to estimate fruit firmness in six months, including each of nutrients concentrations (nitrogen (N), potassium (K), calcium (Ca) and magnesium (Mg)) alone (P1), com- bination of nutrients concentrations (P2), nutrient concentration ratios alone (P3), and combination of nutrient concentrations and nutrient concentration ratios (P4). The results showed that MLR model estimated fruit firmness more accuracy than ANN model in three datasets (P1, P2 and P4). However, the application of P3 (N/Ca ratio) as the input dataset in ANN model improved the prediction of fruit firmness than the MLR model. Correlation coefficient and root mean squared error (RMSE) were 0.850 and 0.539 between the measured and the estimated data by the ANN model, respectively. Generally, the ANN model showed greater potential in determining the relationship between 6-mon-fruit firmness and nutrients concentration.展开更多
Multiple linear regression (MLR) method was applied to quantify the effects of the net heat flux (NHF), the net freshwater flux (NFF) and the wind stress on the mixed layer depth (MLD) of the South China Sea ...Multiple linear regression (MLR) method was applied to quantify the effects of the net heat flux (NHF), the net freshwater flux (NFF) and the wind stress on the mixed layer depth (MLD) of the South China Sea (SCS) based on the simple ocean data assimilation (SODA) dataset. The spatio-temporal distributions of the MLD, the buoyancy flux (combining the NHF and the NFF) and the wind stress of the SCS were presented. Then using an oceanic vertical mixing model, the MLD after a certain time under the same initial conditions but various pairs of boundary conditions (the three factors) was simulated. Applying the MLR method to the results, regression equations which modeling the relationship between the simulated MLD and the three factors were calculated. The equations indicate that when the NHF was negative, it was the primary driver of the mixed layer deepening; and when the NHF was positive, the wind stress played a more important role than that of the NHF while the NFF had the least effect. When the NHF was positive, the relative quantitative effects of the wind stress, the NHF, and the NFF were about i0, 6 and 2. The above conclusions were applied to explaining the spatio-temporal distributions of the MLD in the SCS and thus proved to be valid.展开更多
In current paper, a quantitative structure-activity relationship (QSAR) study was performed for the prediction of acute toxicity of aromatic amines. A set of 56 compounds was randomly divided into a training set of ...In current paper, a quantitative structure-activity relationship (QSAR) study was performed for the prediction of acute toxicity of aromatic amines. A set of 56 compounds was randomly divided into a training set of 46 compounds and a test set of 10 compounds. The electronic and topological descriptors computed by the Scigress package and Dragon software were used as predictor variables. Multiple linear regression (MLR) and support vector machine (SVM) were utilized to build the linear and nonlinear QSAR models, respectively. The obtained models with five descriptors show strong predictive ability. The linear model fits the training set with R2 = 0.71, with higher SVM values of R2 = 0.77. The validation results obtained from the test set indicate that the SVM model is comparable or superior to that obtained by MLR, both in terms of prediction ability and robustness.展开更多
A class of estimators of the mean survival time with interval censored data are studied by unbiased transformation method. The estimators are constructed based on the observations to ensure unbiasedness in the sense t...A class of estimators of the mean survival time with interval censored data are studied by unbiased transformation method. The estimators are constructed based on the observations to ensure unbiasedness in the sense that the estimators in a certain class have the same expectation as the mean survival time. The estimators have good properties such as strong consistency (with the rate of O(n^-1/1 (log log n)^1/2)) and asymptotic normality. The application to linear regression is considered and the simulation reports are given.展开更多
Understanding the spatial-temporal dynamics of crop nitrogen(N)use efficiency(NUE)and the relationship with explanatory environmental variables can support land-use management and policymaking.Nevertheless,the applica...Understanding the spatial-temporal dynamics of crop nitrogen(N)use efficiency(NUE)and the relationship with explanatory environmental variables can support land-use management and policymaking.Nevertheless,the application of statistical models for evaluating the explanatory variables of space-time variation in crop NUE is still under-researched.In this study,stepwise multiple linear regression(SMLR)and Random Forest(RF)were used to evaluate the spatial and temporal variation of NUE indicators(i.e.,partial factor productivity of N(PFPN);partial nutrient balance of N(PNBN))at county scale in Northeast China(Heilongjiang,Liaoning and Jilin provinces)from 1990 to 2015.Explanatory variables included agricultural management practices,topography,climate,economy,soil and crop types.Results revealed that the PFPN was higher in the northern parts and lower in the center of the Northeast China and PNBN increased from southern to northern parts during the 1990–2015 period.The NUE indicators decreased with time in most counties during the study period.The model efficiency coefficients of the SMLR and RF models were 0.44 and 0.84 for PFPN,and 0.67 and 0.89 for PNBN,respectively.The RF model had higher relative importance of soil and climatic covariates and lower relative importance of crop covariates compared to the SMLR model.The planting area index of vegetables and beans,soil clay content,saturated water content,enhanced vegetation index in November&December,soil bulk density,and annual minimum temperature were the main explanatory variables for both NUE indicators.This is the first study to show the quantitative relative importance of explanatory variables for NUE at a county level in Northeast China using RF and SMLR.This novel study gives reference measurements to improve crop NUE which is one of the most effective means of managing N for sustainable development,ensuring food security,alleviating environmental degradation and increasing farmer’s profitability.展开更多
Alcoholism is an unhealthy lifestyle associated with alcohol dependence.Not only does drinking for a long time leads to poor mental health and loss of self-control,but alcohol seeps into the bloodstream and shortens t...Alcoholism is an unhealthy lifestyle associated with alcohol dependence.Not only does drinking for a long time leads to poor mental health and loss of self-control,but alcohol seeps into the bloodstream and shortens the lifespan of the body’s internal organs.Alcoholics often think of alcohol as an everyday drink and see it as a way to reduce stress in their lives because they cannot see the damage in their bodies and they believe it does not affect their physical health.As their drinking increases,they become dependent on alcohol and it affects their daily lives.Therefore,it is important to recognize the dangers of alcohol abuse and to stop drinking as soon as possible.To assist physicians in the diagnosis of patients with alcoholism,we provide a novel alcohol detection system by extracting image features of wavelet energy entropy from magnetic resonance imaging(MRI)combined with a linear regression classifier.Compared with the latest method,the 10-fold cross-validation experiment showed excellent results,including sensitivity 91.54±1.47%,specificity 93.66±1.34%,Precision 93.45±1.27%,accuracy 92.61±0.81%,F1 score 92.48±0.83%and MCC 85.26±1.62%.展开更多
文摘This paper considers the approaches and methods for reducing the influence of multi-collinearity. Great attention is paid to the question of using shrinkage estimators for this purpose. Two classes of regression models are investigated, the first of which corresponds to systems with a negative feedback, while the second class presents systems without the feedback. In the first case the use of shrinkage estimators, especially the Principal Component estimator, is inappropriate but is possible in the second case with the right choice of the regularization parameter or of the number of principal components included in the regression model. This fact is substantiated by the study of the distribution of the random variable , where b is the LS estimate and β is the true coefficient, since the form of this distribution is the basic characteristic of the specified classes. For this study, a regression approximation of the distribution of the event based on the Edgeworth series was developed. Also, alternative approaches are examined to resolve the multicollinearity issue, including an application of the known Inequality Constrained Least Squares method and the Dual estimator method proposed by the author. It is shown that with a priori information the Euclidean distance between the estimates and the true coefficients can be significantly reduced.
文摘In oil and gas exploration,elucidating the complex interdependencies among geological variables is paramount.Our study introduces the application of sophisticated regression analysis method at the forefront,aiming not just at predicting geophysical logging curve values but also innovatively mitigate hydrocarbon depletion observed in geochemical logging.Through a rigorous assessment,we explore the efficacy of eight regression models,bifurcated into linear and nonlinear groups,to accommodate the multifaceted nature of geological datasets.Our linear model suite encompasses the Standard Equation,Ridge Regression,Least Absolute Shrinkage and Selection Operator,and Elastic Net,each presenting distinct advantages.The Standard Equation serves as a foundational benchmark,whereas Ridge Regression implements penalty terms to counteract overfitting,thus bolstering model robustness in the presence of multicollinearity.The Least Absolute Shrinkage and Selection Operator for variable selection functions to streamline models,enhancing their interpretability,while Elastic Net amalgamates the merits of Ridge Regression and Least Absolute Shrinkage and Selection Operator,offering a harmonized solution to model complexity and comprehensibility.On the nonlinear front,Gradient Descent,Kernel Ridge Regression,Support Vector Regression,and Piecewise Function-Fitting methods introduce innovative approaches.Gradient Descent assures computational efficiency in optimizing solutions,Kernel Ridge Regression leverages the kernel trick to navigate nonlinear patterns,and Support Vector Regression is proficient in forecasting extremities,pivotal for exploration risk assessment.The Piecewise Function-Fitting approach,tailored for geological data,facilitates adaptable modeling of variable interrelations,accommodating abrupt data trend shifts.Our analysis identifies Ridge Regression,particularly when augmented by Piecewise Function-Fitting,as superior in recouping hydrocarbon losses,and underscoring its utility in resource quantification refinement.Meanwhile,Kernel Ridge Regression emerges as a noteworthy strategy in ameliorating porosity-logging curve prediction for well A,evidencing its aptness for intricate geological structures.This research attests to the scientific ascendancy and broad-spectrum relevance of these regression techniques over conventional methods while heralding new horizons for their deployment in the oil and gas sector.The insights garnered from these advanced modeling strategies are set to transform geological and engineering practices in hydrocarbon prediction,evaluation,and recovery.
基金2024 Guangdong Philosophy and Social Science Planning Discipline Co-construction Project“Study on the Measurement of Economic Benefits and Path of High-Quality Development of Museums in Guangdong Province”(Project No.GD24XYS045)Key Project of the Social Sciences Division of Shenzhen Polytechnic University“Research on Strategies for Enhancing the Effectiveness of Non-State-Owned Museums in Shenzhen”(Project No.20240105)+1 种基金Shenzhen Polytechnic University’s Platform Construction Project“SZPU-Fangzhi Technology AI New Media R&D Centre”(Project No:602331019PQ)Open-ended Project of the Global Urban Civilization Model Research Institute of Southern University of Science and Technology in 2024,“Research on the Efficiency Enhancement Strategy of Non State owned Museums in Shenzhen from the Perspective of Urban Civilization Construction”(Project No.IGUC24C011)。
文摘The purpose of this research is to explore the factors influencing the self-improvement process of museums in China and to conduct empirical analyses based on multiple linear regression models.As core institutions for inheriting and displaying cultural heritage and enhancing public cultural literacy,museums’self-improvement is of great significance in promoting cultural development,optimizing the supply of public cultural services,and enhancing social influence.This paper constructs a multiple linear regression model for the influencing factors of museum self-improvement by integrating several key variables,including emerging cultural and museum business(EF),institutional reform(SR),research and innovation level(RIL),management level(ML),and the museum cultural and creative industry(MCCI).The study employs scientific methods such as literature review,data collection,and data analysis to thoroughly explore the internal logic of museum operations and development.Through multiple linear regression analyses,it quantifies the specific influence and relative importance of each factor on the level of museum self-improvement.The results indicate that the management level(ML)is the dominant factor among the variables studied,exerting the most significant influence on museum self-improvement.Based on these empirical findings,this paper provides an in-depth analysis of the specific factors affecting museum self-improvement in China,offering solid theoretical support and practical guidance for the sustainable development of museums.
文摘As one of the first coastal open cities in China,Yantai City is situated in the eastern Shandong Peninsula,bordered by the Yellow Sea and Bohai Sea.With the continuous improvement of tourism infrastructure,public enthusiasm for tourism in Yantai has been growing.To formulate more effective tourism development policies tailored to the local context,this study examines Yantai City using a multiple linear regression model to identify the primary factors influencing domestic tourism income.Based on the findings,this paper proposes scientifically grounded and actionable strategies to further optimize the development of tourism in Yantai City.
基金supported by the National Nature Science Foundation of China (Grant Noss 40739907 and 40774064)National Science and Technology Major Project (Grant No. 2008ZX05025-003)
文摘The rock matrix bulk modulus or its inverse, the compressive coefficient, is an important input parameter for fluid substitution by the Biot-Gassmann equation in reservoir prediction. However, it is not easy to accurately estimate the bulk modulus by using conventional methods. In this paper, we present a new linear regression equation for calculating the parameter. In order to get this equation, we first derive a simplified Gassmann equation by using a reasonable assumption in which the compressive coefficient of the saturated pore fluid is much greater than the rock matrix, and, second, we use the Eshelby- Walsh relation to replace the equivalent modulus of a dry rock in the Gassmann equation. Results from the rock physics analysis of rock sample from a carbonate area show that rock matrix compressive coefficients calculated with water-saturated and dry rock samples using the linear regression method are very close (their error is less than 1%). This means the new method is accurate and reliable.
基金The National Natural Science Foundation of China(No.51378099)
文摘As the traditional methods and technical means cannot meet the quantitative research needs of the urban land use patterns, quantitative research methods for the urban land use pattern are established via the GIS (geographic information system ) technique combined with the related theories and models. Taking the city of Nanjing as an example, a spatial database of urban land use and other environmental and socio-economic data is constructed. A multiple linear regression model is developed to determine the statistically significant factors affecting the residential land use distributions. To explain the spatial variations of urban land use patterns, the geographically weighted regression (GWR) is employed to establish spatial associations between these significant factors and the distribution of urban residential land use. The results demonstrate that the GWR can provide an effective approach to the exploration of the urban land use spatial patterns and also provide useful spatial information for planning residential development and other types of urban land use.
文摘1st cases of COVID-19 were reported in March 2020 in Bangladesh and rapidly increased daily. So many steps were taken by the Bangladesh government to reduce the outbreak of COVID-19, such as masks, gatherings, local movements, international movements, etc. The data was collected from the World Health Organization. In this research, different variables have been used for analysis, for instance, new cases, new deaths, masks, schools, business, gatherings, domestic movement, international travel, new test, positive rate, test per case, new vaccination smoothed, new vaccine, total vaccination, and stringency index. Machine learning algorithms were used to predict and build the model, such as linear regression, K-nearest neighbours, decision trees, random forests, and support vector machines. Accuracy and Mean Square error (MSE) were used to test the model. A hyperparameter was also applied to find the optimum values of parameters. After computing the analysis, the result showed that the linear regression algorithm performs the best overall among the algorithms listed, with the highest testing accuracy and the lowest RMSE before and after hyper-tuning. The highest accuracy and lowest MSE were used for the best model, and for this data set, Linear regression got the highest accuracy, 0.98 and 0.97 and the lowest MSE, 4.79 and 4.04, respectively.
基金supported by CNPC Southwest Oil and Gas Field Branch's 2023 Scientific Research Program Project(20230303-14).
文摘The precision of dynamic reserve calculations in gas reservoirs is crucial for the rational and efficient development of oil and gas fields and the formulation of gas well production plans.The Shaximiao gas reservoir in the ZT block of northwestern Sichuan is densely packed and highly heterogeneous,featuring complex gas-water distribution,substantial variations in test production among gas wells,and a rapid decline rate.To precisely determine the dynamic reserves of these tight water-bearing gas wells,this study focuses on the water-tight gas reservoirs in the ZT block of northwestern Sichuan,conducting core X-ray diffraction,constant-rate mercury injection,and reservoir rock stress sensitivity experiments.Utilizing the experimental findings,the porosity and permeability of the rock samples under effective stress conditions are adjusted via binary linear regression.These adjusted parameters are then incorporated into the water-sealed gas material balance method,thereby establishing a novel approach for calculating dynamic reserves in water-tight gas reservoirs under stress sensitivity conditions.The results show that:(1)the rock porosity ranges from 6.08%to 10.22%,permeability ranges from 0.035 mD to 0.547 mD,clay mineral content ranges from 6.58%to 19.14%,pore radius distribution ranges from 90μm to 180μm,throat radius distribution ranges from 0.61μm to 3.41μm,with significant differences in throat distribution,indicating poor reservoir fluid flow capacity and strong tightness;(2)after aging experiments,rock samples exhibit plastic deformation,with porosity and permeability unable to fully recover after pressure relief.The stress sensitivity curve of rock samples shows a two-stage characteristic,with moderate to strong stress sensitivity;(3)porosity stress sensitivity is mainly influenced by pore radius and mineral composition-larger pore radius and higher clay content lead to stronger stress sensitivity,with porosity loss rates ranging from 8.26%to 23.69%.Permeability stress sensitivity is mainly influenced by throat radius and mineral composition-smaller throat radius and higher clay content result in stronger stress sensitivity,with permeability loss rates ranging from 47.91%to 62.03%;(4)a comparative analysis between the traditional dynamic reserve calculation method for gas wells and the new method considering stress sensitivity shows a relative error between 0.90%and 2.41%,with the new method demonstrating better accuracy.This study combines physical experimental results with an effective stress model of reservoir rocks to develop a new method for calculating dynamic reserves of water-bearing tight gas reservoirs under effective stress conditions,providing experimental data and example calculation results to support subsequent dynamic evaluation of gas reservoirs and the establishment of rational well allocation plans.
基金funded by the National Key R&D Program of China(Grant No.2022YFC2903904)the National Natural Science Foundation of China(Grant Nos.51904057 and U1906208).
文摘Due to the heterogeneity of rock masses and the variability of in situ stress,the traditional linear inversion method is insufficiently accurate to achieve high accuracy of the in situ stress field.To address this challenge,nonlinear stress boundaries for a numerical model are determined through regression analysis of a series of nonlinear coefficient matrices,which are derived from the bubbling method.Considering the randomness and flexibility of the bubbling method,a parametric study is conducted to determine recommended ranges for these parameters,including the standard deviation(σb)of bubble radii,the non-uniform coefficient matrix number(λ)for nonlinear stress boundaries,and the number(m)and positions of in situ stress measurement points.A model case study provides a reference for the selection of these parameters.Additionally,when the nonlinear in situ stress inversion method is employed,stress distortion inevitably occurs near model boundaries,aligning with the Saint Venant's principle.Two strategies are proposed accordingly:employing a systematic reduction of nonlinear coefficients to achieve high inversion accuracy while minimizing significant stress distortion,and excluding regions with severe stress distortion near the model edges while utilizing the central part of the model for subsequent simulations.These two strategies have been successfully implemented in the nonlinear in situ stress inversion of the Xincheng Gold Mine and have achieved higher inversion accuracy than the linear method.Specifically,the linear and nonlinear inversion methods yield root mean square errors(RMSE)of 4.15 and 3.2,and inversion relative errors(δAve)of 22.08%and 17.55%,respectively.Therefore,the nonlinear inversion method outperforms the traditional multiple linear regression method,even in the presence of a systematic reduction in the nonlinear stress boundaries.
文摘Biomass models to estimate carbon stocks in arid environment are very limited. This study employed destructive sampling to develop a new biomass model for Vachellia tortilis, a widely known species in the Sultanate of Oman. Twenty trees with a diameter at stump height (DSH) ranging from 18.5 cm to 150 cm were selected based on DSH and height variations for destructive sampling in As Saleel Natural Park Reserve (SNPR) in Al Sharqiyah governorate, South of Oman. Each tree was excavated and cut into three parts: Stems, Branches, twigs, and leaves. The total fresh weight of each tree was obtained in the field using a 300 balance. Sub-samples (250 - 300 grams) were taken from each part of the tree and transferred to the laboratory for dry weight determination. Linear multiple regression analysis was done using SPSS software between the three variables, DSH, H, CA (x) and the total dry biomass (y). Five models were tested for the best-fit model based on R-Square and Mean Square Error (MSE). Model 5 was the best-fit model, including the LOG of DSH and the LOG of CA (R2 = 0.97, MSE = 0.114). The models developed in this research fill a critical gap in estimating the AGB of terrestrial native species in Oman and other countries with similar ecological and climate conditions.
文摘Abstract Using the method of stepwise multivariate linear regression (SMLR), the quantitative structure activity relationships (QSAR) of two isomeric series of taxol and its derivatives have been studied. It was found that the molar refractivity of the C3′substituent of the C13 side chain has significant correlation with its activity. We deduce that structural changes in the C3′substituents may be critical to the anticancer function. It would be useful to the design and synthesis of taxol like compounds with improved activities.
基金Supported by the Natural Science Foundation of Anhui Education Committee
文摘In this paper, based on the theory of parameter estimation, we give a selection method and, in a sense of a good character of the parameter estimation, we think that it is very reasonable. Moreover, we offer a calculation method of selection statistic and an applied example.
基金supported by the National Natural Science Foundation of China(71071077)the Ministry of Education Key Project of National Educational Science Planning(DFA090215)+1 种基金China Postdoctoral Science Foundation(20100481137)Funding of Jiangsu Innovation Program for Graduate Education(CXZZ11-0226)
文摘The construction method of background value is improved in the original multi-variable grey model (MGM(1,m)) from its source of construction errors. The MGM(1,m) with optimized background value is used to eliminate the random fluctuations or errors of the observational data of all variables, and the combined prediction model together with the multiple linear regression is established in order to improve the simulation and prediction accuracy of the combined model. Finally, a combined model of the MGM(1,2) with optimized background value and the binary linear regression is constructed by an example. The results show that the model has good effects for simulation and prediction.
文摘Many properties of fruit are influenced by plant nutrition. Fruit firmness is one of the most important fruit characteristics and determines post-harvest life of the fruit, in recent decades, artificial intelligence systems were employed for developing predictive models to estimate and predict many agriculture processes. In the present study, the predictive capabilities of multiple linear regressions (MLR) and artificial neural networks (ANNs) are evaluated to estimate fruit firmness in six months, including each of nutrients concentrations (nitrogen (N), potassium (K), calcium (Ca) and magnesium (Mg)) alone (P1), com- bination of nutrients concentrations (P2), nutrient concentration ratios alone (P3), and combination of nutrient concentrations and nutrient concentration ratios (P4). The results showed that MLR model estimated fruit firmness more accuracy than ANN model in three datasets (P1, P2 and P4). However, the application of P3 (N/Ca ratio) as the input dataset in ANN model improved the prediction of fruit firmness than the MLR model. Correlation coefficient and root mean squared error (RMSE) were 0.850 and 0.539 between the measured and the estimated data by the ANN model, respectively. Generally, the ANN model showed greater potential in determining the relationship between 6-mon-fruit firmness and nutrients concentration.
基金The National Natural Science Foundation of China under contract No.11174235the Science and Technology Development Project of Shaanxi Province of China under contract No.2010KJXX-02+2 种基金the Program for New Century Excellent Talents in University of China under contract No. NCET-08-0455the Science and Technology Innovation Foundation of Northwestern Polytechnical University of Chinathe Doctorate Foundation of Northwestern Polytechnical University of China under contract No.CX201226.
文摘Multiple linear regression (MLR) method was applied to quantify the effects of the net heat flux (NHF), the net freshwater flux (NFF) and the wind stress on the mixed layer depth (MLD) of the South China Sea (SCS) based on the simple ocean data assimilation (SODA) dataset. The spatio-temporal distributions of the MLD, the buoyancy flux (combining the NHF and the NFF) and the wind stress of the SCS were presented. Then using an oceanic vertical mixing model, the MLD after a certain time under the same initial conditions but various pairs of boundary conditions (the three factors) was simulated. Applying the MLR method to the results, regression equations which modeling the relationship between the simulated MLD and the three factors were calculated. The equations indicate that when the NHF was negative, it was the primary driver of the mixed layer deepening; and when the NHF was positive, the wind stress played a more important role than that of the NHF while the NFF had the least effect. When the NHF was positive, the relative quantitative effects of the wind stress, the NHF, and the NFF were about i0, 6 and 2. The above conclusions were applied to explaining the spatio-temporal distributions of the MLD in the SCS and thus proved to be valid.
基金Supported by the Ministry of Environmental Protection of China(No.2011467037)
文摘In current paper, a quantitative structure-activity relationship (QSAR) study was performed for the prediction of acute toxicity of aromatic amines. A set of 56 compounds was randomly divided into a training set of 46 compounds and a test set of 10 compounds. The electronic and topological descriptors computed by the Scigress package and Dragon software were used as predictor variables. Multiple linear regression (MLR) and support vector machine (SVM) were utilized to build the linear and nonlinear QSAR models, respectively. The obtained models with five descriptors show strong predictive ability. The linear model fits the training set with R2 = 0.71, with higher SVM values of R2 = 0.77. The validation results obtained from the test set indicate that the SVM model is comparable or superior to that obtained by MLR, both in terms of prediction ability and robustness.
基金Supported by the National Natural Science Foundation of China (70171008)
文摘A class of estimators of the mean survival time with interval censored data are studied by unbiased transformation method. The estimators are constructed based on the observations to ensure unbiasedness in the sense that the estimators in a certain class have the same expectation as the mean survival time. The estimators have good properties such as strong consistency (with the rate of O(n^-1/1 (log log n)^1/2)) and asymptotic normality. The application to linear regression is considered and the simulation reports are given.
基金the China Scholarship Council(CSC)(201903250115)the National Natural Science Foundation of China(31972515)the China Agriculture Research System of MOF and MARA(CARS-09-P31).
文摘Understanding the spatial-temporal dynamics of crop nitrogen(N)use efficiency(NUE)and the relationship with explanatory environmental variables can support land-use management and policymaking.Nevertheless,the application of statistical models for evaluating the explanatory variables of space-time variation in crop NUE is still under-researched.In this study,stepwise multiple linear regression(SMLR)and Random Forest(RF)were used to evaluate the spatial and temporal variation of NUE indicators(i.e.,partial factor productivity of N(PFPN);partial nutrient balance of N(PNBN))at county scale in Northeast China(Heilongjiang,Liaoning and Jilin provinces)from 1990 to 2015.Explanatory variables included agricultural management practices,topography,climate,economy,soil and crop types.Results revealed that the PFPN was higher in the northern parts and lower in the center of the Northeast China and PNBN increased from southern to northern parts during the 1990–2015 period.The NUE indicators decreased with time in most counties during the study period.The model efficiency coefficients of the SMLR and RF models were 0.44 and 0.84 for PFPN,and 0.67 and 0.89 for PNBN,respectively.The RF model had higher relative importance of soil and climatic covariates and lower relative importance of crop covariates compared to the SMLR model.The planting area index of vegetables and beans,soil clay content,saturated water content,enhanced vegetation index in November&December,soil bulk density,and annual minimum temperature were the main explanatory variables for both NUE indicators.This is the first study to show the quantitative relative importance of explanatory variables for NUE at a county level in Northeast China using RF and SMLR.This novel study gives reference measurements to improve crop NUE which is one of the most effective means of managing N for sustainable development,ensuring food security,alleviating environmental degradation and increasing farmer’s profitability.
基金This research was supported by Zhejiang Provincial Natural Science Foundation of China under Grant No.LY17F010003.
文摘Alcoholism is an unhealthy lifestyle associated with alcohol dependence.Not only does drinking for a long time leads to poor mental health and loss of self-control,but alcohol seeps into the bloodstream and shortens the lifespan of the body’s internal organs.Alcoholics often think of alcohol as an everyday drink and see it as a way to reduce stress in their lives because they cannot see the damage in their bodies and they believe it does not affect their physical health.As their drinking increases,they become dependent on alcohol and it affects their daily lives.Therefore,it is important to recognize the dangers of alcohol abuse and to stop drinking as soon as possible.To assist physicians in the diagnosis of patients with alcoholism,we provide a novel alcohol detection system by extracting image features of wavelet energy entropy from magnetic resonance imaging(MRI)combined with a linear regression classifier.Compared with the latest method,the 10-fold cross-validation experiment showed excellent results,including sensitivity 91.54±1.47%,specificity 93.66±1.34%,Precision 93.45±1.27%,accuracy 92.61±0.81%,F1 score 92.48±0.83%and MCC 85.26±1.62%.