The work in this article focuses on developing and improving the performance of new leaky-wave antenna configurations that can be adapted for use in radar systems. The study focused on the W-band, where we demonstrate...The work in this article focuses on developing and improving the performance of new leaky-wave antenna configurations that can be adapted for use in radar systems. The study focused on the W-band, where we demonstrated the possibility of modifying resonant frequencies and reducing the number of patches required. The antenna was designed using HFSS, based on the finite element method. It we designed enabled us to observe the influence of the number of patches on the radiation pattern, and also to achieve low levels of minor’s lobes. and good directivity at the operating frequency. These patches are arranged in the shape of an inverted T. The interest of this study is to meet the requirements of radar antennas dedicated to detection.展开更多
The development of space telecommunications in recent years has necessitated the design and the realization of compact, high-performance equipment operating at increasingly high frequencies. The use of high-precision ...The development of space telecommunications in recent years has necessitated the design and the realization of compact, high-performance equipment operating at increasingly high frequencies. The use of high-precision radars for surveillance, detection and mobile communication systems orients research toward the antennas to electronic sweep. In this article, we present a microstrip leaky-wave antenna with periodic patches. Its design is based on an integral formulation solved by software using HFSS finite elements. A parametric study of this antenna is validated by simulations and compared with other results found in the literature. Analysis of the antenna’s radiation parameters shows that the main beam direction and levels of minor’s lobes can be controlled from these geometrical parameters. The interest of this study is to meet the requirements of antennas dedicated telecommunications systems.展开更多
Smart antennas have received great attention for their potentials to enable communication and perception functions at the same time.However,realizing the function synthesis remains an open challenge,and most existing ...Smart antennas have received great attention for their potentials to enable communication and perception functions at the same time.However,realizing the function synthesis remains an open challenge,and most existing system solutions are limited to narrow operating bands and high complexity and cost.Here,we propose an externally perceivable leakywave antenna(LWA)based on spoof surface plasmon polaritons(SSPPs),which can realize adaptive real-time switching between the“radiating”and“non-radiating”states and beam tracking at different frequencies.With the assistance of computer vision,the smart SSPP-LWA is able to detect the external target user or jammer,and intelligently track the target by self-adjusting the operating frequency.The proposed scheme helps to reduce the power consumption through dynamically controlling the radiating state of the antenna,and improve spectrum utilization and avoid spectrum conflicts through intelligently deciding the radiating frequency.On the other hand,it is also helpful for the physical layer communication security through switching the antenna working state according to the presence of the target and target beam tracking in real time.In addition,the proposed smart antenna can be generalized to other metamaterial systems and could be a candidate for synaesthesia integration in future smart antenna systems.展开更多
A simple and efficient design scheme of the continuous long slot leaky-wave antenna is developed. The key steps involved in the scheme are summarized. First, the cut-off frequencies of slot waveguides with different s...A simple and efficient design scheme of the continuous long slot leaky-wave antenna is developed. The key steps involved in the scheme are summarized. First, the cut-off frequencies of slot waveguides with different slot offsets are obtained by 3D finite-difference time-domain (FDTD) method, Second, the attenuation function a^a is estimated by the aperture distribution, and the attenuation function αrs is determined by the slot radiation. Finally, the attenuation function αrs is combined with the attenuation function αrs by the coefficient K. And an example in Ka band is presented. Moreover, the return loss of the E-plane Tee-junction (ET) and the radiation pattern of leaky-wave antenna are simulated. The scheme is verified by comparing with the experimental result.展开更多
A novel leaky-wave antenna(LWA)utilizing spoof surface plasmon polaritons(SSPPs)excitation is proposed with continuous scanning range from endfire to forward.The designed transmission line unit supports two SSPPS mode...A novel leaky-wave antenna(LWA)utilizing spoof surface plasmon polaritons(SSPPs)excitation is proposed with continuous scanning range from endfire to forward.The designed transmission line unit supports two SSPPS modes,of which the 2nd order mode is applied in the design.A novel strategy has been devised to excite the spatial radiation of the-1st order harmonics by arranging periodic counter changed sinusoidal structures on both sides of the SSPPs transmission line.Both full-wave simulation and measurement results show that the proposed LWA presents wide scanning angle from endfire to forward.In the frequency range from 4 GHz to 10 GHz,LWAs achieve scanning from 90°to+20°,covering the entire backward quadrant continuously.展开更多
In this paper, we first propose a metamaterial structure by etching the same two interdigital fingers on the upper ground of quarter mode substrate integrated waveguide(QMSIW). The simulated results show that the pr...In this paper, we first propose a metamaterial structure by etching the same two interdigital fingers on the upper ground of quarter mode substrate integrated waveguide(QMSIW). The simulated results show that the proposed QMSIWbased metamaterial has a continuous phase constant changing from negative to positive values within its passband. A periodic leaky-wave antenna(LWA), which consists of 11 QMSIW-based metamaterial unit cells, is designed, fabricated,and measured. The measured results show that the fabricated antenna achieves a continuous beam scanning property from backward-43° to forward +32° over an operating frequencyrange of 8.9 GHz–11.8 GHz with return loss better than 10 d B.The measured antenna gain keeps consistent with the variation of less than 2 d B over the operating frequency range with a maximum gain of 12 d B. Besides, the measured and simulated results are in good agreement with each other, indicating the significance and effectiveness of this method.展开更多
Since leaky-wave antennas(LWAs)have the advantages of high directivity,low loss and structural simplicity,LWAs are very suitable for designing millimeter-wave(mmW)antennas.The purpose of this paper is to review the la...Since leaky-wave antennas(LWAs)have the advantages of high directivity,low loss and structural simplicity,LWAs are very suitable for designing millimeter-wave(mmW)antennas.The purpose of this paper is to review the latest research progress of LWAs for 5G/B5G mobile communication systems.Firstly,the conventional classification and design methods of LWAs are introduced and the effects of the phase constant and attenuation constant on the radiation characteristics are discussed.Then two types of new LWAs for 5G/B5G mobile communication systems including broadband fixed-beam LWAs and frequencyfixed beam-scanning LWAs are summarized.Finally,the challenges and future research directions of LWAs for 5G/B5G mobile communication systems are presented.展开更多
We propose a single-beam leaky-wave antenna(LWA) with a wide-scanning angle and a high-scanning rate based on spoof surface plasmon polariton(SSPP) in this paper. The SSPP transmission line(TL) is etched with periodic...We propose a single-beam leaky-wave antenna(LWA) with a wide-scanning angle and a high-scanning rate based on spoof surface plasmon polariton(SSPP) in this paper. The SSPP transmission line(TL) is etched with periodically arranged circular patches, which converts the slow-wave mode into the fast-wave region for radiation. The proposed LWA is designed, fabricated, and tested. The simulated results imply that the proposed LWA not only achieves a high radiation efficiency of about 81.4%, and a high scanning rate of 12.12, but also has a large scanning angle of 176° over a narrow operation bandwidth of 8.3-9.6 GHz(for |S_(11)| <-10 dB). In addition, the simulated average gain of the LWA can reach as high as 10.9 d Bi. The measured scanning angle range is 175° in the operation band of 8.2-9.6 GHz, and the measured average gain is 10.6 dBi. The experimental results are consistent with the simulation, validating its performance. An antenna with high radiation efficiency, wide scanning angle range, and high scanning rate has great potential for application in radar and wireless communication systems.展开更多
In this paper, we propose a single-port dual-beam leaky-wave antenna(LWA) in the terahertz(THz) band based on a composite spoof surface plasmon polariton(SSPP) waveguide. The antenna can generate three independent tra...In this paper, we propose a single-port dual-beam leaky-wave antenna(LWA) in the terahertz(THz) band based on a composite spoof surface plasmon polariton(SSPP) waveguide. The antenna can generate three independent transmission channels by exciting two independent modes inherent to hole and groove structures, respectively. By periodic modulation of the hole and groove structures, we achieve dual-beam scanning through a broad radiation angle using only the -1st space harmonics of the two modes, hence avoiding the instability of the -2rd space harmonic. Within the operating frequency range of 0.62—0.85 THz, the gain ranges from 13.5 d Bi to 17 d Bi for the backward beam, and from 6 d Bi to 11.8 d Bi for the forward beam. The antenna can accomplish continuous backward beam through broadside to forward beam scanning with a total scanning range of 116° and an average efficiency of about 92%. The antenna exhibits a great potential in the design of multi-transceiver radar system in the THz band and multi-beam LWAs.展开更多
An array of two substrate-integrated waveguide(SIW) periodic leaky-wave antennas(LWAs) with sum and difference beam scanning is proposed for application in target detection and tracking. The array is composed of two p...An array of two substrate-integrated waveguide(SIW) periodic leaky-wave antennas(LWAs) with sum and difference beam scanning is proposed for application in target detection and tracking. The array is composed of two periodic LWAs with different periods, in which each LWA generates a narrow beam through the n=-1 space harmonic. Due to the two different periods for the two LWAs, two beams with two different directions can be realized, which can be combined into a sum beam when the array is fed in phase or into a difference beam when the array is fed 180?out of phase. The array integrated with 180?hybrid is designed, fabricated, and measured.Measurement results show that the sum beam can reach a gain up to 15.9 dBi and scan from-33.4?to 20.8?. In the scanning range, the direction of the null in the difference beam is consistent with the direction of the sum beam,with the lowest null depth of-40.8 dB. With the excellent performance, the antenna provides an alternative solution with low complexity and low cost for target detection and tracking.展开更多
We propose a uniform backfire-to-endfire leaky-wave antenna(LWA)based on a topological one-way waveguide under external bias magnetic field.We systematically analyze the dispersion,showing that the proposed structure ...We propose a uniform backfire-to-endfire leaky-wave antenna(LWA)based on a topological one-way waveguide under external bias magnetic field.We systematically analyze the dispersion,showing that the proposed structure supports leaky mode arisen from total internal reflection.By means of tuning frequency or magnetic field,we obtain fixed-bias frequency and fixed-frequency bias LWA with continuous beam scanning from backward,broadside to forward direction.More importantly,we,for the first time,demonstrate that this proposed LWA shows mechanical tunability,allowing us to manipulate the radiation direction from backward,broadside to forward direction by mechanically tuning the air layer thickness.The simulated results show that our system exhibits super low 3dB beam width,high radiation efficiency as well as high antenna gain.Being provided such multiple controlled(especially mechanically)beam scanning manners,the present LWA paves an advanced approach for continuous beam scanning,holding a great potential for applications in modern communication and radar system.展开更多
A compact high-scanning-rate circular-polarized leaky-wave antenna(LWA)based on a meandering substrate integrated waveguide(SIW)with defected ground structures(DGSs)is presented.The meandering-SIW design is employed t...A compact high-scanning-rate circular-polarized leaky-wave antenna(LWA)based on a meandering substrate integrated waveguide(SIW)with defected ground structures(DGSs)is presented.The meandering-SIW design is employed to enhance the beam scanning rate,while circular polarization is achieved by etchingπ-shaped slots on the top plane.To suppress the open stopband at broadside,offset circular DGSs are periodically etched on the ground plane.Their impact on the reflection coefficient and axial ratio is then analyzed through a parametric study.A prototype of the antenna is simulated,fabricated,and measured.Both simulated and measured results indicate a scanning rate of approximately 8.6,with continuous beam scanning from-41°to 59°across the 11.3-12.7 GHz operating band.The antenna maintains an axial ratio below 3 dB within the 11.5-12.3 GHz range.This design shows promise for use in wireless communication systems,particularly in environments with increasingly limited spectrum resources.展开更多
A novel dual-beam terahertz(THz)leaky-wave antenna(LWA)based on triple-periodically(TP)modulated spoof surface plasmon(SSP)waveguide is proposed.It is shown that SSP can be effectively excited and propagated along the...A novel dual-beam terahertz(THz)leaky-wave antenna(LWA)based on triple-periodically(TP)modulated spoof surface plasmon(SSP)waveguide is proposed.It is shown that SSP can be effectively excited and propagated along the surface of parallel corrugated metallic strips.Through proper design,the n=-1 and n=-2 Floquet modes are brought into the leakage radiation region simultaneously.Consequently,the forward and backward propagating waves corresponding to the two modes respectively generate two radiation beams in the far-field region.The proposed antenna is capable of steering the forward beam within a range of 34°and the backward beam within a range of 48°when frequency is swept between 0.23 THz and 0.29 THz.A simulated peak gain of 11.4 dBi and gain variation of 2.87 dBi are achieved within the band.The proposed LWA can be applied in THz wireless communication and radar systems.展开更多
A leaky-wave antenna(LWA)supporting wide-band and continuous-beam scanning is proposed in this paper.It is based on a spoof surface plasmon polariton(SSPP)transmission line(TL)periodically loaded with circular patches...A leaky-wave antenna(LWA)supporting wide-band and continuous-beam scanning is proposed in this paper.It is based on a spoof surface plasmon polariton(SSPP)transmission line(TL)periodically loaded with circular patches.The optimized antenna structure enables its continuous-beam scanning of 69°from backward through broadside to forward with a stable high radiation gain as the operating frequency increases from 7 GHZ to 15 GHz(with a relative bandwidth of 72.73%).Furthermore,a perfect electronic conductor(PEC)reflector is added at a distance of about 0.3λ_(0)(λ_(0) is the vacuum wavelength for the broadside radiation)to improve the antenna gain,achieving a gain increase of about 3 d B.The proposed LWA is expected to find applications in planar wireless communication systems.展开更多
The development of high-performance optically transparent radio frequency(RF)radiators is limited by the intrinsic loss issue of transparent conductive films(TCFs).Instead of pursuing expensive endeavors to improve th...The development of high-performance optically transparent radio frequency(RF)radiators is limited by the intrinsic loss issue of transparent conductive films(TCFs).Instead of pursuing expensive endeavors to improve the TCFs'electrical properties,this study introduces an innovative approach that leverages leaky-wave mode manipulation to mitigate the TCFs'attenuating effect and maximize the RF radiation.Our finding reveals that the precise control of the mode confinement on glass-coated TCFs can create a low-attenuation window for leaky-wave propagation,where the total attenuation caused by TCF dissipation and wave leakage is effectively reduced.The observed low-attenuation leaky-wave state on lossy TCFs originates from the delicate balance between wave leakage and TCF dissipation,attained at a particular glass cladding thickness.By leveraging the substantially extended radiation aperture achieved under suppressed wave attenuation,this study develops an optically transparent antenna with an enhanced endfire realized gain exceeding 15 dBi and a radiation efficiency of 66%,which is validated to offer competitive transmission performance for advancing ubiquitous wireless communication and sensing applications.展开更多
Optical antennas have received considerable attention in recent years due to their unique ability to convert localized energy to freely propagating radiation and vice versa.Sidelobe level(SLL)is one of the most crucia...Optical antennas have received considerable attention in recent years due to their unique ability to convert localized energy to freely propagating radiation and vice versa.Sidelobe level(SLL)is one of the most crucial parameters in antenna design.A low SLL is beneficial to minimize the antenna interference with other optical components.Here a plasmonic optical leaky-wave antenna with low SLL is reported.Shifting spatial frequency by periodically modulating the electric-field amplitude in a plasmonic gap waveguide enables a free-space coupled wave out of the antenna.At the same time,precise control of the aperture fields by the modulation depth allows for reducing SLL.Simulation results indicate that the proposed design can achieve a high directivity of 15.8 dB and a low SLL of-20 dB at the wavelength of 1550 nm.A low SLL below-15 dB is experimentally demonstrated within the wavelength range from 1527 to 1570 nm.In addition,the low-SLL property is further verified by comparing it with a uniformly modulated antenna.By modulating the guided waves in the plasmonic gap waveguide in different forms,the aperture fields can be flexibly arranged to achieve arbitrary wavefront shaping.It bridges the gap between guided and free-space waves and empowers plasmonic integrated devices to control free-space light,thus enabling various free-space functions.展开更多
Non-orthogonal multiple access(NOMA)is a promising technology for the next generation wireless communication networks.The benefits of this technology can be further enhanced through deployment in conjunction with mult...Non-orthogonal multiple access(NOMA)is a promising technology for the next generation wireless communication networks.The benefits of this technology can be further enhanced through deployment in conjunction with multiple-input multipleoutput(MIMO)systems.Antenna selection plays a critical role in MIMO–NOMA systems as it has the potential to significantly reduce the cost and complexity associated with radio frequency chains.This paper considers antenna selection for downlink MIMO–NOMA networks with multiple-antenna basestation(BS)and multiple-antenna user equipments(UEs).An iterative antenna selection scheme is developed for a two-user system,and to determine the initial power required for this selection scheme,a power estimation method is also proposed.The proposed algorithm is then extended to a general multiuser NOMA system.Numerical results demonstrate that the proposed antenna selection algorithm achieves near-optimal performance with much lower computational complexity in both two-user and multiuser scenarios.展开更多
Radio antenna arrays have many advantages for astronomical observations,such as high resolution,high sensitivity,multi-target simultaneous observation,and flexible beam formation.Problems surrounding key indices,such ...Radio antenna arrays have many advantages for astronomical observations,such as high resolution,high sensitivity,multi-target simultaneous observation,and flexible beam formation.Problems surrounding key indices,such as sensitivity enhancement,scanning range extension,and sidelobe level suppression,need to be solved urgently.Here,we propose a sparse optimization scheme based on a genetic algorithm for a 64-array element planar radio antenna array.As optimization targets for the iterative process of the genetic algorithm,we use the maximum sidelobe levels and beamwidth of multiple cross-section patterns that pass through the main beam in three-dimensions,with the maximum sidelobe levels of the patterns at several different scanning angles.Element positions are adjusted for iterations,to select the optimal array configuration.Following sparse layout optimization,the simulated 64-element planar radio antenna array shows that the maximum sidelobe level decreases by 1.79 dB,and the beamwidth narrows by 3°.Within the scan range of±30°,after sparse array optimization,all sidelobe levels decrease,and all beamwidths narrow.This performance improvement can potentially enhance the sensitivity and spatial resolution of radio telescope systems.展开更多
In this paper,we investigate covert communications under multi-antenna detection,and explore the impacts of the warden’s channel state information(CSI)availability and the noise uncertainty on system covert capabilit...In this paper,we investigate covert communications under multi-antenna detection,and explore the impacts of the warden’s channel state information(CSI)availability and the noise uncertainty on system covert capability.The detection performance at warden is analyzed in two cases under the perfect and statistical CSI at warden,respectively.In particular,for the former one,the warden utilizes the likelihood ratio(LR)detector,while for the latter one,the generalized likelihood ratio(GLR)detector is adopted.We first consider the scenario where the blocklength is finite,and demonstrate that the covert rate under both cases asymptotically goes to zero as the blocklength goes to infinity.Subsequently,we take the noise uncertainty at the warden into account which leads to positive covert rate,and characterize the covert rate for infinite blocklength.Specially,we derive the optimal transmit power for the legitimate transmitter that maximizes the covert rate.Besides,the rate gap under two cases,with different CSI availability at the warden,can be presented in closed form.Finally,numerical results validate the effectiveness of our theoretical analysis and also demonstrate the impacts of the factors studied on the system covertness.展开更多
In this paper,a dual-polarized antenna operating at 3.5 GHz is presented with 2D beam-scanning performance.The steerable beam is realized based on a 2×2 active reflective metasurface.The active metasurface is com...In this paper,a dual-polarized antenna operating at 3.5 GHz is presented with 2D beam-scanning performance.The steerable beam is realized based on a 2×2 active reflective metasurface.The active metasurface is composed of folded annular rings and cross dipoles embedded with voltage-controlled varactor diodes.By tuning the capacitance values of the varactors,the reflective phase of the metasurface is reconfigured to tilt the main beam.To verify the scanning performance,a prototype is fabricated and measured.At 3.5 GHz,the measured scanning ranges are from-25°to 29°and-27°to 29°in the XOZ and YOZ planes,respectively.展开更多
文摘The work in this article focuses on developing and improving the performance of new leaky-wave antenna configurations that can be adapted for use in radar systems. The study focused on the W-band, where we demonstrated the possibility of modifying resonant frequencies and reducing the number of patches required. The antenna was designed using HFSS, based on the finite element method. It we designed enabled us to observe the influence of the number of patches on the radiation pattern, and also to achieve low levels of minor’s lobes. and good directivity at the operating frequency. These patches are arranged in the shape of an inverted T. The interest of this study is to meet the requirements of radar antennas dedicated to detection.
文摘The development of space telecommunications in recent years has necessitated the design and the realization of compact, high-performance equipment operating at increasingly high frequencies. The use of high-precision radars for surveillance, detection and mobile communication systems orients research toward the antennas to electronic sweep. In this article, we present a microstrip leaky-wave antenna with periodic patches. Its design is based on an integral formulation solved by software using HFSS finite elements. A parametric study of this antenna is validated by simulations and compared with other results found in the literature. Analysis of the antenna’s radiation parameters shows that the main beam direction and levels of minor’s lobes can be controlled from these geometrical parameters. The interest of this study is to meet the requirements of antennas dedicated telecommunications systems.
基金supports from the National Natural Science Foundation of China(Grant Nos.62288101,and 61971134)National Key Research and Development Program of China(Grant Nos.2021YFB3200502,and 2017YFA0700200)+2 种基金the Major Project of the Natural Science Foundation of Jiangsu Province(Grant No.BK20212002)the Fundamental Research Funds for Central Universities(Grant No.2242021R41078)the 111 Project(Grant No.111-2-05).
文摘Smart antennas have received great attention for their potentials to enable communication and perception functions at the same time.However,realizing the function synthesis remains an open challenge,and most existing system solutions are limited to narrow operating bands and high complexity and cost.Here,we propose an externally perceivable leakywave antenna(LWA)based on spoof surface plasmon polaritons(SSPPs),which can realize adaptive real-time switching between the“radiating”and“non-radiating”states and beam tracking at different frequencies.With the assistance of computer vision,the smart SSPP-LWA is able to detect the external target user or jammer,and intelligently track the target by self-adjusting the operating frequency.The proposed scheme helps to reduce the power consumption through dynamically controlling the radiating state of the antenna,and improve spectrum utilization and avoid spectrum conflicts through intelligently deciding the radiating frequency.On the other hand,it is also helpful for the physical layer communication security through switching the antenna working state according to the presence of the target and target beam tracking in real time.In addition,the proposed smart antenna can be generalized to other metamaterial systems and could be a candidate for synaesthesia integration in future smart antenna systems.
基金This project was supported by the National Natural Science Foundation of China (60271012)the National High Technology Research and Development Program of China (2006AA12A110).
文摘A simple and efficient design scheme of the continuous long slot leaky-wave antenna is developed. The key steps involved in the scheme are summarized. First, the cut-off frequencies of slot waveguides with different slot offsets are obtained by 3D finite-difference time-domain (FDTD) method, Second, the attenuation function a^a is estimated by the aperture distribution, and the attenuation function αrs is determined by the slot radiation. Finally, the attenuation function αrs is combined with the attenuation function αrs by the coefficient K. And an example in Ka band is presented. Moreover, the return loss of the E-plane Tee-junction (ET) and the radiation pattern of leaky-wave antenna are simulated. The scheme is verified by comparing with the experimental result.
文摘A novel leaky-wave antenna(LWA)utilizing spoof surface plasmon polaritons(SSPPs)excitation is proposed with continuous scanning range from endfire to forward.The designed transmission line unit supports two SSPPS modes,of which the 2nd order mode is applied in the design.A novel strategy has been devised to excite the spatial radiation of the-1st order harmonics by arranging periodic counter changed sinusoidal structures on both sides of the SSPPs transmission line.Both full-wave simulation and measurement results show that the proposed LWA presents wide scanning angle from endfire to forward.In the frequency range from 4 GHz to 10 GHz,LWAs achieve scanning from 90°to+20°,covering the entire backward quadrant continuously.
基金Project supported by the National Natural Science Foundation of China(Grant No.61372034)
文摘In this paper, we first propose a metamaterial structure by etching the same two interdigital fingers on the upper ground of quarter mode substrate integrated waveguide(QMSIW). The simulated results show that the proposed QMSIWbased metamaterial has a continuous phase constant changing from negative to positive values within its passband. A periodic leaky-wave antenna(LWA), which consists of 11 QMSIW-based metamaterial unit cells, is designed, fabricated,and measured. The measured results show that the fabricated antenna achieves a continuous beam scanning property from backward-43° to forward +32° over an operating frequencyrange of 8.9 GHz–11.8 GHz with return loss better than 10 d B.The measured antenna gain keeps consistent with the variation of less than 2 d B over the operating frequency range with a maximum gain of 12 d B. Besides, the measured and simulated results are in good agreement with each other, indicating the significance and effectiveness of this method.
基金the National Natural Science Foundation of China(NSFC)under Grants 62071306 and 61801299in part by the Mobil⁃ity Program for Taiwan Young Scientists under Grant RW2019TW001and in part by Shenzhen Science and Technology Program under Grants GJHZ20180418190529516 and JSGG20180507183215520.
文摘Since leaky-wave antennas(LWAs)have the advantages of high directivity,low loss and structural simplicity,LWAs are very suitable for designing millimeter-wave(mmW)antennas.The purpose of this paper is to review the latest research progress of LWAs for 5G/B5G mobile communication systems.Firstly,the conventional classification and design methods of LWAs are introduced and the effects of the phase constant and attenuation constant on the radiation characteristics are discussed.Then two types of new LWAs for 5G/B5G mobile communication systems including broadband fixed-beam LWAs and frequencyfixed beam-scanning LWAs are summarized.Finally,the challenges and future research directions of LWAs for 5G/B5G mobile communication systems are presented.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 62171460 and 61801508)the Natural Science Basic Research Program of Shaanxi Province, China (Grant Nos. 2020JM-350, 20200108, 20210110, and 2020022)the Postdoctoral Innovative Talents Support Program of China (Grant Nos. BX20180375, 2019M653960, and 2021T140111)。
文摘We propose a single-beam leaky-wave antenna(LWA) with a wide-scanning angle and a high-scanning rate based on spoof surface plasmon polariton(SSPP) in this paper. The SSPP transmission line(TL) is etched with periodically arranged circular patches, which converts the slow-wave mode into the fast-wave region for radiation. The proposed LWA is designed, fabricated, and tested. The simulated results imply that the proposed LWA not only achieves a high radiation efficiency of about 81.4%, and a high scanning rate of 12.12, but also has a large scanning angle of 176° over a narrow operation bandwidth of 8.3-9.6 GHz(for |S_(11)| <-10 dB). In addition, the simulated average gain of the LWA can reach as high as 10.9 d Bi. The measured scanning angle range is 175° in the operation band of 8.2-9.6 GHz, and the measured average gain is 10.6 dBi. The experimental results are consistent with the simulation, validating its performance. An antenna with high radiation efficiency, wide scanning angle range, and high scanning rate has great potential for application in radar and wireless communication systems.
基金supported by the Natural Science Foundation of Tianjin (No.19JCYBJC16100)the Tianjin Innovation and Entrepreneurship Training Program (No.202210060027)。
文摘In this paper, we propose a single-port dual-beam leaky-wave antenna(LWA) in the terahertz(THz) band based on a composite spoof surface plasmon polariton(SSPP) waveguide. The antenna can generate three independent transmission channels by exciting two independent modes inherent to hole and groove structures, respectively. By periodic modulation of the hole and groove structures, we achieve dual-beam scanning through a broad radiation angle using only the -1st space harmonics of the two modes, hence avoiding the instability of the -2rd space harmonic. Within the operating frequency range of 0.62—0.85 THz, the gain ranges from 13.5 d Bi to 17 d Bi for the backward beam, and from 6 d Bi to 11.8 d Bi for the forward beam. The antenna can accomplish continuous backward beam through broadside to forward beam scanning with a total scanning range of 116° and an average efficiency of about 92%. The antenna exhibits a great potential in the design of multi-transceiver radar system in the THz band and multi-beam LWAs.
基金Project supported in part by the National Natural Science Foundation of China(No.62171480)in part by the Guangdong Basic and Applied Basic Research Foundation,China(No.2020B1515020053)。
文摘An array of two substrate-integrated waveguide(SIW) periodic leaky-wave antennas(LWAs) with sum and difference beam scanning is proposed for application in target detection and tracking. The array is composed of two periodic LWAs with different periods, in which each LWA generates a narrow beam through the n=-1 space harmonic. Due to the two different periods for the two LWAs, two beams with two different directions can be realized, which can be combined into a sum beam when the array is fed in phase or into a difference beam when the array is fed 180?out of phase. The array integrated with 180?hybrid is designed, fabricated, and measured.Measurement results show that the sum beam can reach a gain up to 15.9 dBi and scan from-33.4?to 20.8?. In the scanning range, the direction of the null in the difference beam is consistent with the direction of the sum beam,with the lowest null depth of-40.8 dB. With the excellent performance, the antenna provides an alternative solution with low complexity and low cost for target detection and tracking.
基金This work was supported by the National Natural Science Foundation of China(NSFC)(Grant No.61372005)the National Natural Science Foundation of China(NSFC)under the key project(Grant No.41331070)+1 种基金the Natural Science Foundation of Ningbo(No.2019A610081)Zhejiang Provincial Natural Science Foundation of China(No.LY20F050006).
文摘We propose a uniform backfire-to-endfire leaky-wave antenna(LWA)based on a topological one-way waveguide under external bias magnetic field.We systematically analyze the dispersion,showing that the proposed structure supports leaky mode arisen from total internal reflection.By means of tuning frequency or magnetic field,we obtain fixed-bias frequency and fixed-frequency bias LWA with continuous beam scanning from backward,broadside to forward direction.More importantly,we,for the first time,demonstrate that this proposed LWA shows mechanical tunability,allowing us to manipulate the radiation direction from backward,broadside to forward direction by mechanically tuning the air layer thickness.The simulated results show that our system exhibits super low 3dB beam width,high radiation efficiency as well as high antenna gain.Being provided such multiple controlled(especially mechanically)beam scanning manners,the present LWA paves an advanced approach for continuous beam scanning,holding a great potential for applications in modern communication and radar system.
文摘A compact high-scanning-rate circular-polarized leaky-wave antenna(LWA)based on a meandering substrate integrated waveguide(SIW)with defected ground structures(DGSs)is presented.The meandering-SIW design is employed to enhance the beam scanning rate,while circular polarization is achieved by etchingπ-shaped slots on the top plane.To suppress the open stopband at broadside,offset circular DGSs are periodically etched on the ground plane.Their impact on the reflection coefficient and axial ratio is then analyzed through a parametric study.A prototype of the antenna is simulated,fabricated,and measured.Both simulated and measured results indicate a scanning rate of approximately 8.6,with continuous beam scanning from-41°to 59°across the 11.3-12.7 GHz operating band.The antenna maintains an axial ratio below 3 dB within the 11.5-12.3 GHz range.This design shows promise for use in wireless communication systems,particularly in environments with increasingly limited spectrum resources.
基金supported by the Natural Science Foundation of Tianjin(No.19JCYBJC16100)the National Natural Science Foundation of China(No.61671200)。
文摘A novel dual-beam terahertz(THz)leaky-wave antenna(LWA)based on triple-periodically(TP)modulated spoof surface plasmon(SSP)waveguide is proposed.It is shown that SSP can be effectively excited and propagated along the surface of parallel corrugated metallic strips.Through proper design,the n=-1 and n=-2 Floquet modes are brought into the leakage radiation region simultaneously.Consequently,the forward and backward propagating waves corresponding to the two modes respectively generate two radiation beams in the far-field region.The proposed antenna is capable of steering the forward beam within a range of 34°and the backward beam within a range of 48°when frequency is swept between 0.23 THz and 0.29 THz.A simulated peak gain of 11.4 dBi and gain variation of 2.87 dBi are achieved within the band.The proposed LWA can be applied in THz wireless communication and radar systems.
文摘A leaky-wave antenna(LWA)supporting wide-band and continuous-beam scanning is proposed in this paper.It is based on a spoof surface plasmon polariton(SSPP)transmission line(TL)periodically loaded with circular patches.The optimized antenna structure enables its continuous-beam scanning of 69°from backward through broadside to forward with a stable high radiation gain as the operating frequency increases from 7 GHZ to 15 GHz(with a relative bandwidth of 72.73%).Furthermore,a perfect electronic conductor(PEC)reflector is added at a distance of about 0.3λ_(0)(λ_(0) is the vacuum wavelength for the broadside radiation)to improve the antenna gain,achieving a gain increase of about 3 d B.The proposed LWA is expected to find applications in planar wireless communication systems.
基金the support partially from the National Natural Science Foundation of China(62301162,62401386,62071125,62071187,62022045,and U22B2016)partially from the Industry–Education Cooperation Project of Fujian Province(#2022H6018)+2 种基金partially from the Fujian Provincial Natural Science Foundation of China(2023J01058)partially from the National Key Research and Development Program of China(2021YFA0716601 and 2022YFE0115500)partially from the Startup Funding of Fuzhou University(XRC-23007)。
文摘The development of high-performance optically transparent radio frequency(RF)radiators is limited by the intrinsic loss issue of transparent conductive films(TCFs).Instead of pursuing expensive endeavors to improve the TCFs'electrical properties,this study introduces an innovative approach that leverages leaky-wave mode manipulation to mitigate the TCFs'attenuating effect and maximize the RF radiation.Our finding reveals that the precise control of the mode confinement on glass-coated TCFs can create a low-attenuation window for leaky-wave propagation,where the total attenuation caused by TCF dissipation and wave leakage is effectively reduced.The observed low-attenuation leaky-wave state on lossy TCFs originates from the delicate balance between wave leakage and TCF dissipation,attained at a particular glass cladding thickness.By leveraging the substantially extended radiation aperture achieved under suppressed wave attenuation,this study develops an optically transparent antenna with an enhanced endfire realized gain exceeding 15 dBi and a radiation efficiency of 66%,which is validated to offer competitive transmission performance for advancing ubiquitous wireless communication and sensing applications.
基金National Natural Science Foundation of China(U20A20165)Fundamental Research Funds for the Central Universities(ZYGX2019Z005)City University of Hong Kong(CityU 11212121)。
文摘Optical antennas have received considerable attention in recent years due to their unique ability to convert localized energy to freely propagating radiation and vice versa.Sidelobe level(SLL)is one of the most crucial parameters in antenna design.A low SLL is beneficial to minimize the antenna interference with other optical components.Here a plasmonic optical leaky-wave antenna with low SLL is reported.Shifting spatial frequency by periodically modulating the electric-field amplitude in a plasmonic gap waveguide enables a free-space coupled wave out of the antenna.At the same time,precise control of the aperture fields by the modulation depth allows for reducing SLL.Simulation results indicate that the proposed design can achieve a high directivity of 15.8 dB and a low SLL of-20 dB at the wavelength of 1550 nm.A low SLL below-15 dB is experimentally demonstrated within the wavelength range from 1527 to 1570 nm.In addition,the low-SLL property is further verified by comparing it with a uniformly modulated antenna.By modulating the guided waves in the plasmonic gap waveguide in different forms,the aperture fields can be flexibly arranged to achieve arbitrary wavefront shaping.It bridges the gap between guided and free-space waves and empowers plasmonic integrated devices to control free-space light,thus enabling various free-space functions.
文摘Non-orthogonal multiple access(NOMA)is a promising technology for the next generation wireless communication networks.The benefits of this technology can be further enhanced through deployment in conjunction with multiple-input multipleoutput(MIMO)systems.Antenna selection plays a critical role in MIMO–NOMA systems as it has the potential to significantly reduce the cost and complexity associated with radio frequency chains.This paper considers antenna selection for downlink MIMO–NOMA networks with multiple-antenna basestation(BS)and multiple-antenna user equipments(UEs).An iterative antenna selection scheme is developed for a two-user system,and to determine the initial power required for this selection scheme,a power estimation method is also proposed.The proposed algorithm is then extended to a general multiuser NOMA system.Numerical results demonstrate that the proposed antenna selection algorithm achieves near-optimal performance with much lower computational complexity in both two-user and multiuser scenarios.
基金supported by the Ministry of Science and Technology SKA Special Project(2020SKA0110202)the Special Project on Building a Science and Technology Innovation Center for South and Southeast Asia–International Joint Innovation Platform in Yunnan Province:"Yunnan Sino-Malaysian International Joint Laboratory of HF-VHF Advanced Radio Astronomy Technology"(202303AP140003)+4 种基金the National Natural Science Foundation of China (NSFC) Joint Fund for Astronomy (JFA) incubator program (U2031133)the International Partnership Program Project of the International Cooperation Bureau of the Chinese Academy of Sciences:"Belt and Road"Cooperation (114A11KYSB20200001)the Kunming Foreign (International) Cooperation Base Program:"Yunnan Observatory of the Chinese Academy of Sciences-University of Malaya Joint R&D Cooperation Base for Advanced Radio Astronomy Technology"(GHJD-2021022)the China-Malaysia Collaborative Research on Space Remote Sensing and Radio Astronomy Observation of Space Weather at Low and Middle Latitudes under the Key Special Project of the State Key R&D Program of the Ministry of Science and Technology for International Cooperation in Science,Technology and Innovation among Governments (2022YFE0140000)the High-precision calibration method for low-frequency radio interferometric arrays for the SKA project of the Ministry of Science and Technology(2020SKA0110300).
文摘Radio antenna arrays have many advantages for astronomical observations,such as high resolution,high sensitivity,multi-target simultaneous observation,and flexible beam formation.Problems surrounding key indices,such as sensitivity enhancement,scanning range extension,and sidelobe level suppression,need to be solved urgently.Here,we propose a sparse optimization scheme based on a genetic algorithm for a 64-array element planar radio antenna array.As optimization targets for the iterative process of the genetic algorithm,we use the maximum sidelobe levels and beamwidth of multiple cross-section patterns that pass through the main beam in three-dimensions,with the maximum sidelobe levels of the patterns at several different scanning angles.Element positions are adjusted for iterations,to select the optimal array configuration.Following sparse layout optimization,the simulated 64-element planar radio antenna array shows that the maximum sidelobe level decreases by 1.79 dB,and the beamwidth narrows by 3°.Within the scan range of±30°,after sparse array optimization,all sidelobe levels decrease,and all beamwidths narrow.This performance improvement can potentially enhance the sensitivity and spatial resolution of radio telescope systems.
基金supported in part by the National Natural Science Foundation of China under Grants 62301117,62001094,and U19B2014in part by the National Key Laboratory of Wireless Communications Foundation under Grant 2023KP01602in part by the Natural Science Foundation of Xinjiang Uygur Autonomous Region under Grant 2022D01B184 and 2022D01A297.
文摘In this paper,we investigate covert communications under multi-antenna detection,and explore the impacts of the warden’s channel state information(CSI)availability and the noise uncertainty on system covert capability.The detection performance at warden is analyzed in two cases under the perfect and statistical CSI at warden,respectively.In particular,for the former one,the warden utilizes the likelihood ratio(LR)detector,while for the latter one,the generalized likelihood ratio(GLR)detector is adopted.We first consider the scenario where the blocklength is finite,and demonstrate that the covert rate under both cases asymptotically goes to zero as the blocklength goes to infinity.Subsequently,we take the noise uncertainty at the warden into account which leads to positive covert rate,and characterize the covert rate for infinite blocklength.Specially,we derive the optimal transmit power for the legitimate transmitter that maximizes the covert rate.Besides,the rate gap under two cases,with different CSI availability at the warden,can be presented in closed form.Finally,numerical results validate the effectiveness of our theoretical analysis and also demonstrate the impacts of the factors studied on the system covertness.
基金supported by ZTE Industry-University-Institute Cooperation Funds under Grant No.HC-CN-20220719005。
文摘In this paper,a dual-polarized antenna operating at 3.5 GHz is presented with 2D beam-scanning performance.The steerable beam is realized based on a 2×2 active reflective metasurface.The active metasurface is composed of folded annular rings and cross dipoles embedded with voltage-controlled varactor diodes.By tuning the capacitance values of the varactors,the reflective phase of the metasurface is reconfigured to tilt the main beam.To verify the scanning performance,a prototype is fabricated and measured.At 3.5 GHz,the measured scanning ranges are from-25°to 29°and-27°to 29°in the XOZ and YOZ planes,respectively.