Large-scale Language Models(LLMs)have achieved significant breakthroughs in Natural Language Processing(NLP),driven by the pre-training and fine-tuning paradigm.While this approach allows models to specialize in speci...Large-scale Language Models(LLMs)have achieved significant breakthroughs in Natural Language Processing(NLP),driven by the pre-training and fine-tuning paradigm.While this approach allows models to specialize in specific tasks with reduced training costs,the substantial memory requirements during fine-tuning present a barrier to broader deployment.Parameter-Efficient Fine-Tuning(PEFT)techniques,such as Low-Rank Adaptation(LoRA),and parameter quantization methods have emerged as solutions to address these challenges by optimizing memory usage and computational efficiency.Among these,QLoRA,which combines PEFT and quantization,has demonstrated notable success in reducing memory footprints during fine-tuning,prompting the development of various QLoRA variants.Despite these advancements,the quantitative impact of key variables on the fine-tuning performance of quantized LLMs remains underexplored.This study presents a comprehensive analysis of these key variables,focusing on their influence across different layer types and depths within LLM architectures.Our investigation uncovers several critical findings:(1)Larger layers,such as MLP layers,can maintain performance despite reductions in adapter rank,while smaller layers,like self-attention layers,aremore sensitive to such changes;(2)The effectiveness of balancing factors depends more on specific values rather than layer type or depth;(3)In quantization-aware fine-tuning,larger layers can effectively utilize smaller adapters,whereas smaller layers struggle to do so.These insights suggest that layer type is a more significant determinant of fine-tuning success than layer depth when optimizing quantized LLMs.Moreover,for the same discount of trainable parameters,reducing the trainable parameters in a larger layer is more effective in preserving fine-tuning accuracy than in a smaller one.This study provides valuable guidance for more efficient fine-tuning strategies and opens avenues for further research into optimizing LLM fine-tuning in resource-constrained environments.展开更多
Smart contracts on the Ethereum blockchain continue to revolutionize decentralized applications (dApps) by allowing for self-executing agreements. However, bad actors have continuously found ways to exploit smart cont...Smart contracts on the Ethereum blockchain continue to revolutionize decentralized applications (dApps) by allowing for self-executing agreements. However, bad actors have continuously found ways to exploit smart contracts for personal financial gain, which undermines the integrity of the Ethereum blockchain. This paper proposes a computer program called SADA (Static and Dynamic Analyzer), a novel approach to smart contract vulnerability detection using multiple Large Language Model (LLM) agents to analyze and flag suspicious Solidity code for Ethereum smart contracts. SADA not only improves upon existing vulnerability detection methods but also paves the way for more secure smart contract development practices in the rapidly evolving blockchain ecosystem.展开更多
The integration of artificial intelligence(AI)technology,particularly large language models(LLMs),has become essential across various sectors due to their advanced language comprehension and generation capabilities.De...The integration of artificial intelligence(AI)technology,particularly large language models(LLMs),has become essential across various sectors due to their advanced language comprehension and generation capabilities.Despite their transformative impact in fields such as machine translation and intelligent dialogue systems,LLMs face significant challenges.These challenges include safety,security,and privacy concerns that undermine their trustworthiness and effectiveness,such as hallucinations,backdoor attacks,and privacy leakage.Previous works often conflated safety issues with security concerns.In contrast,our study provides clearer and more reasonable definitions for safety,security,and privacy within the context of LLMs.Building on these definitions,we provide a comprehensive overview of the vulnerabilities and defense mechanisms related to safety,security,and privacy in LLMs.Additionally,we explore the unique research challenges posed by LLMs and suggest potential avenues for future research,aiming to enhance the robustness and reliability of LLMs in the face of emerging threats.展开更多
The advent of large language models(LLMs)has made knowledge acquisition and content creation increasingly easier and cheaper,which in turn redefines learning and urges transformation in software engineering education....The advent of large language models(LLMs)has made knowledge acquisition and content creation increasingly easier and cheaper,which in turn redefines learning and urges transformation in software engineering education.To do so,there is a need to understand the impact of LLMs on software engineering education.In this paper,we conducted a preliminary case study on three software requirements engineering classes where students are allowed to use LLMs to assist in their projects.Based on the students’experience,performance,and feedback from a survey conducted at the end of the courses,we characterized the challenges and benefits of applying LLMs in software engineering education.This research contributes to the ongoing discourse on the integration of LLMs in education,emphasizing both their prominent potential and the need for balanced,mindful usage.展开更多
Cardiac rehabilitation is a crucial multidisciplinary approach to improve patient outcomes.There is a growing body of evidence that suggests that these programs contribute towards reducing cardiovascular mortality and...Cardiac rehabilitation is a crucial multidisciplinary approach to improve patient outcomes.There is a growing body of evidence that suggests that these programs contribute towards reducing cardiovascular mortality and recurrence.Despite this,cardiac rehabilitation is underutilized and adherence to these programs has been a demonstrated barrier in achieving these outcomes.As a result,there is a growing focus on innovating these programs,especially from the standpoint of digital health and personalized medicine.This editorial discusses the possible roles of large language models,such as their role in ChatGPT,in further personalizing cardiac rehabilitation programs through simplifying medical jargon and employing motivational interviewing techniques,thus boosting patient engagement and adherence.However,these possibilities must be further investigated in the clinical literature.Likewise,the integration of large language models in cardiac rehabilitation will be challenging in its nascent stages to ensure accurate and ethical information delivery.展开更多
AIM:To assess the possibility of using different large language models(LLMs)in ocular surface diseases by selecting five different LLMS to test their accuracy in answering specialized questions related to ocular surfa...AIM:To assess the possibility of using different large language models(LLMs)in ocular surface diseases by selecting five different LLMS to test their accuracy in answering specialized questions related to ocular surface diseases:ChatGPT-4,ChatGPT-3.5,Claude 2,PaLM2,and SenseNova.METHODS:A group of experienced ophthalmology professors were asked to develop a 100-question singlechoice question on ocular surface diseases designed to assess the performance of LLMs and human participants in answering ophthalmology specialty exam questions.The exam includes questions on the following topics:keratitis disease(20 questions),keratoconus,keratomalaciac,corneal dystrophy,corneal degeneration,erosive corneal ulcers,and corneal lesions associated with systemic diseases(20 questions),conjunctivitis disease(20 questions),trachoma,pterygoid and conjunctival tumor diseases(20 questions),and dry eye disease(20 questions).Then the total score of each LLMs and compared their mean score,mean correlation,variance,and confidence were calculated.RESULTS:GPT-4 exhibited the highest performance in terms of LLMs.Comparing the average scores of the LLMs group with the four human groups,chief physician,attending physician,regular trainee,and graduate student,it was found that except for ChatGPT-4,the total score of the rest of the LLMs is lower than that of the graduate student group,which had the lowest score in the human group.Both ChatGPT-4 and PaLM2 were more likely to give exact and correct answers,giving very little chance of an incorrect answer.ChatGPT-4 showed higher credibility when answering questions,with a success rate of 59%,but gave the wrong answer to the question 28% of the time.CONCLUSION:GPT-4 model exhibits excellent performance in both answer relevance and confidence.PaLM2 shows a positive correlation(up to 0.8)in terms of answer accuracy during the exam.In terms of answer confidence,PaLM2 is second only to GPT4 and surpasses Claude 2,SenseNova,and GPT-3.5.Despite the fact that ocular surface disease is a highly specialized discipline,GPT-4 still exhibits superior performance,suggesting that its potential and ability to be applied in this field is enormous,perhaps with the potential to be a valuable resource for medical students and clinicians in the future.展开更多
The recent interest in the deployment of Generative AI applications that use large language models (LLMs) has brought to the forefront significant privacy concerns, notably the leakage of Personally Identifiable Infor...The recent interest in the deployment of Generative AI applications that use large language models (LLMs) has brought to the forefront significant privacy concerns, notably the leakage of Personally Identifiable Information (PII) and other confidential or protected information that may have been memorized during training, specifically during a fine-tuning or customization process. We describe different black-box attacks from potential adversaries and study their impact on the amount and type of information that may be recovered from commonly used and deployed LLMs. Our research investigates the relationship between PII leakage, memorization, and factors such as model size, architecture, and the nature of attacks employed. The study utilizes two broad categories of attacks: PII leakage-focused attacks (auto-completion and extraction attacks) and memorization-focused attacks (various membership inference attacks). The findings from these investigations are quantified using an array of evaluative metrics, providing a detailed understanding of LLM vulnerabilities and the effectiveness of different attacks.展开更多
Objective To develop and evaluate a fine-tuned large language model(LLM)for traditional Chinese medicine(TCM)prescription recommendation named TCMLLM-PR.Methods First,we constructed an instruction-tuning dataset conta...Objective To develop and evaluate a fine-tuned large language model(LLM)for traditional Chinese medicine(TCM)prescription recommendation named TCMLLM-PR.Methods First,we constructed an instruction-tuning dataset containing 68654 samples(ap-proximately 10 million tokens)by integrating data from eight sources,including four TCM textbooks,Pharmacopoeia of the People’s Republic of China 2020(CHP),Chinese Medicine Clinical Cases(CMCC),and hospital clinical records covering lung disease,liver disease,stroke,diabetes,and splenic-stomach disease.Then,we trained TCMLLM-PR using Chat-GLM-6B with P-Tuning v2 technology.The evaluation consisted of three aspects:(i)compari-son with traditional prescription recommendation models(PTM,TCMPR,and PresRecST);(ii)comparison with TCM-specific LLMs(ShenNong,Huatuo,and HuatuoGPT)and general-domain ChatGPT;(iii)assessment of model migration capability across different disease datasets.We employed precision,recall,and F1 score as evaluation metrics.Results The experiments showed that TCMLLM-PR significantly outperformed baseline models on TCM textbooks and CHP datasets,with F1@10 improvements of 31.80%and 59.48%,respectively.In cross-dataset validation,the model performed best when migrating from TCM textbooks to liver disease dataset,achieving an F1@10 of 0.1551.Analysis of real-world cases demonstrated that TCMLLM-PR's prescription recommendations most closely matched actual doctors’prescriptions.Conclusion This study integrated LLMs into TCM prescription recommendations,leverag-ing a tailored instruction-tuning dataset and developing TCMLLM-PR.This study will pub-licly release the best model parameters of TCMLLM-PR to promote the development of the decision-making process in TCM practices(https://github.com/2020MEAI/TCMLLM).展开更多
Large Language Models (LLMs) have revolutionized Generative Artificial Intelligence (GenAI) tasks, becoming an integral part of various applications in society, including text generation, translation, summarization, a...Large Language Models (LLMs) have revolutionized Generative Artificial Intelligence (GenAI) tasks, becoming an integral part of various applications in society, including text generation, translation, summarization, and more. However, their widespread usage emphasizes the critical need to enhance their security posture to ensure the integrity and reliability of their outputs and minimize harmful effects. Prompt injections and training data poisoning attacks are two of the most prominent vulnerabilities in LLMs, which could potentially lead to unpredictable and undesirable behaviors, such as biased outputs, misinformation propagation, and even malicious content generation. The Common Vulnerability Scoring System (CVSS) framework provides a standardized approach to capturing the principal characteristics of vulnerabilities, facilitating a deeper understanding of their severity within the security and AI communities. By extending the current CVSS framework, we generate scores for these vulnerabilities such that organizations can prioritize mitigation efforts, allocate resources effectively, and implement targeted security measures to defend against potential risks.展开更多
With the improvement of multisource information sensing and data acquisition capabilities inside tunnels,the availability of multimodal data in tunnel engineering has significantly increased.However,due to structural ...With the improvement of multisource information sensing and data acquisition capabilities inside tunnels,the availability of multimodal data in tunnel engineering has significantly increased.However,due to structural differences in multimodal data,traditional intelligent advanced geological prediction models have limited capacity for data fusion.Furthermore,the lack of pre-trained models makes it difficult for neural networks trained from scratch to deeply explore the features of multimodal data.To address these challenges,we utilize the fusion capability of knowledge graph for multimodal data and the pre-trained knowledge of large language models(LLMs)to establish an intelligent advanced geological prediction model(GeoPredict-LLM).First,we develop an advanced geological prediction ontology model,forming a knowledge graph database.Using knowledge graph embeddings,multisource and multimodal data are transformed into low-dimensional vectors with a unified structure.Secondly,pre-trained LLMs,through reprogramming,reconstruct these low-dimensional vectors,imparting linguistic characteristics to the data.This transformation effectively reframes the complex task of advanced geological prediction as a"language-based"problem,enabling the model to approach the task from a linguistic perspective.Moreover,we propose the prompt-as-prefix method,which enables output generation,while freezing the core of the LLM,thereby significantly reduces the number of training parameters.Finally,evaluations show that compared to neural network models without pre-trained models,GeoPredict-LLM significantly improves prediction accuracy.It is worth noting that as long as a knowledge graph database can be established,GeoPredict-LLM can be adapted to multimodal data mining tasks with minimal modifications.展开更多
Since the 1950s,when the Turing Test was introduced,there has been notable progress in machine language intelligence.Language modeling,crucial for AI development,has evolved from statistical to neural models over the ...Since the 1950s,when the Turing Test was introduced,there has been notable progress in machine language intelligence.Language modeling,crucial for AI development,has evolved from statistical to neural models over the last two decades.Recently,transformer-based Pre-trained Language Models(PLM)have excelled in Natural Language Processing(NLP)tasks by leveraging large-scale training corpora.Increasing the scale of these models enhances performance significantly,introducing abilities like context learning that smaller models lack.The advancement in Large Language Models,exemplified by the development of ChatGPT,has made significant impacts both academically and industrially,capturing widespread societal interest.This survey provides an overview of the development and prospects from Large Language Models(LLM)to Large Multimodal Models(LMM).It first discusses the contributions and technological advancements of LLMs in the field of natural language processing,especially in text generation and language understanding.Then,it turns to the discussion of LMMs,which integrates various data modalities such as text,images,and sound,demonstrating advanced capabilities in understanding and generating cross-modal content,paving new pathways for the adaptability and flexibility of AI systems.Finally,the survey highlights the prospects of LMMs in terms of technological development and application potential,while also pointing out challenges in data integration,cross-modal understanding accuracy,providing a comprehensive perspective on the latest developments in this field.展开更多
Modern technological advancements have made social media an essential component of daily life.Social media allow individuals to share thoughts,emotions,and ideas.Sentiment analysis plays the function of evaluating whe...Modern technological advancements have made social media an essential component of daily life.Social media allow individuals to share thoughts,emotions,and ideas.Sentiment analysis plays the function of evaluating whether the sentiment of the text is positive,negative,neutral,or any other personal emotion to understand the sentiment context of the text.Sentiment analysis is essential in business and society because it impacts strategic decision-making.Sentiment analysis involves challenges due to lexical variation,an unlabeled dataset,and text distance correlations.The execution time increases due to the sequential processing of the sequence models.However,the calculation times for the Transformer models are reduced because of the parallel processing.This study uses a hybrid deep learning strategy to combine the strengths of the Transformer and Sequence models while ignoring their limitations.In particular,the proposed model integrates the Decoding-enhanced with Bidirectional Encoder Representations from Transformers(BERT)attention(DeBERTa)and the Gated Recurrent Unit(GRU)for sentiment analysis.Using the Decoding-enhanced BERT technique,the words are mapped into a compact,semantic word embedding space,and the Gated Recurrent Unit model can capture the distance contextual semantics correctly.The proposed hybrid model achieves F1-scores of 97%on the Twitter Large Language Model(LLM)dataset,which is much higher than the performance of new techniques.展开更多
Objective This study aimed to evaluate and compare the effectiveness of knowledge base-optimized and unoptimized large language models(LLMs)in the field of orthopedics to explore optimization strategies for the applic...Objective This study aimed to evaluate and compare the effectiveness of knowledge base-optimized and unoptimized large language models(LLMs)in the field of orthopedics to explore optimization strategies for the application of LLMs in specific fields.Methods This research constructed a specialized knowledge base using clinical guidelines from the American Academy of Orthopaedic Surgeons(AAOS)and authoritative orthopedic publications.A total of 30 orthopedic-related questions covering aspects such as anatomical knowledge,disease diagnosis,fracture classification,treatment options,and surgical techniques were input into both the knowledge base-optimized and unoptimized versions of the GPT-4,ChatGLM,and Spark LLM,with their generated responses recorded.The overall quality,accuracy,and comprehensiveness of these responses were evaluated by 3 experienced orthopedic surgeons.Results Compared with their unoptimized LLMs,the optimized version of GPT-4 showed improvements of 15.3%in overall quality,12.5%in accuracy,and 12.8%in comprehensiveness;ChatGLM showed improvements of 24.8%,16.1%,and 19.6%,respectively;and Spark LLM showed improvements of 6.5%,14.5%,and 24.7%,respectively.Conclusion The optimization of knowledge bases significantly enhances the quality,accuracy,and comprehensiveness of the responses provided by the 3 models in the orthopedic field.Therefore,knowledge base optimization is an effective method for improving the performance of LLMs in specific fields.展开更多
A large language model(LLM)is constructed to address the sophisticated demands of data retrieval and analysis,detailed well profiling,computation of key technical indicators,and the solutions to complex problems in re...A large language model(LLM)is constructed to address the sophisticated demands of data retrieval and analysis,detailed well profiling,computation of key technical indicators,and the solutions to complex problems in reservoir performance analysis(RPA).The LLM is constructed for RPA scenarios with incremental pre-training,fine-tuning,and functional subsystems coupling.Functional subsystem and efficient coupling methods are proposed based on named entity recognition(NER),tool invocation,and Text-to-SQL construction,all aimed at resolving pivotal challenges in developing the specific application of LLMs for RDA.This study conducted a detailed accuracy test on feature extraction models,tool classification models,data retrieval models and analysis recommendation models.The results indicate that these models have demonstrated good performance in various key aspects of reservoir dynamic analysis.The research takes some injection and production well groups in the PK3 Block of the Daqing Oilfield as an example for testing.Testing results show that our model has significant potential and practical value in assisting reservoir engineers with RDA.The research results provide a powerful support to the application of LLM in reservoir performance analysis.展开更多
High-angle annular dark field(HAADF)imaging in scanning transmission electron microscopy(STEM)has become an indispensable tool in materials science due to its ability to offer sub-°A resolution and provide chemic...High-angle annular dark field(HAADF)imaging in scanning transmission electron microscopy(STEM)has become an indispensable tool in materials science due to its ability to offer sub-°A resolution and provide chemical information through Z-contrast.This study leverages large language models(LLMs)to conduct a comprehensive bibliometric analysis of a large amount of HAADF-related literature(more than 41000 papers).By using LLMs,specifically ChatGPT,we were able to extract detailed information on applications,sample preparation methods,instruments used,and study conclusions.The findings highlight the capability of LLMs to provide a new perspective into HAADF imaging,underscoring its increasingly important role in materials science.Moreover,the rich information extracted from these publications can be harnessed to develop AI models that enhance the automation and intelligence of electron microscopes.展开更多
Sentence classification is the process of categorizing a sentence based on the context of the sentence.Sentence categorization requires more semantic highlights than other tasks,such as dependence parsing,which requir...Sentence classification is the process of categorizing a sentence based on the context of the sentence.Sentence categorization requires more semantic highlights than other tasks,such as dependence parsing,which requires more syntactic elements.Most existing strategies focus on the general semantics of a conversation without involving the context of the sentence,recognizing the progress and comparing impacts.An ensemble pre-trained language model was taken up here to classify the conversation sentences from the conversation corpus.The conversational sentences are classified into four categories:information,question,directive,and commission.These classification label sequences are for analyzing the conversation progress and predicting the pecking order of the conversation.Ensemble of Bidirectional Encoder for Representation of Transformer(BERT),Robustly Optimized BERT pretraining Approach(RoBERTa),Generative Pre-Trained Transformer(GPT),DistilBERT and Generalized Autoregressive Pretraining for Language Understanding(XLNet)models are trained on conversation corpus with hyperparameters.Hyperparameter tuning approach is carried out for better performance on sentence classification.This Ensemble of Pre-trained Language Models with a Hyperparameter Tuning(EPLM-HT)system is trained on an annotated conversation dataset.The proposed approach outperformed compared to the base BERT,GPT,DistilBERT and XLNet transformer models.The proposed ensemble model with the fine-tuned parameters achieved an F1_score of 0.88.展开更多
In the process of constructing domain-specific knowledge graphs,the task of relational triple extraction plays a critical role in transforming unstructured text into structured information.Existing relational triple e...In the process of constructing domain-specific knowledge graphs,the task of relational triple extraction plays a critical role in transforming unstructured text into structured information.Existing relational triple extraction models facemultiple challenges when processing domain-specific data,including insufficient utilization of semantic interaction information between entities and relations,difficulties in handling challenging samples,and the scarcity of domain-specific datasets.To address these issues,our study introduces three innovative components:Relation semantic enhancement,data augmentation,and a voting strategy,all designed to significantly improve the model’s performance in tackling domain-specific relational triple extraction tasks.We first propose an innovative attention interaction module.This method significantly enhances the semantic interaction capabilities between entities and relations by integrating semantic information fromrelation labels.Second,we propose a voting strategy that effectively combines the strengths of large languagemodels(LLMs)and fine-tuned small pre-trained language models(SLMs)to reevaluate challenging samples,thereby improving the model’s adaptability in specific domains.Additionally,we explore the use of LLMs for data augmentation,aiming to generate domain-specific datasets to alleviate the scarcity of domain data.Experiments conducted on three domain-specific datasets demonstrate that our model outperforms existing comparative models in several aspects,with F1 scores exceeding the State of the Art models by 2%,1.6%,and 0.6%,respectively,validating the effectiveness and generalizability of our approach.展开更多
Accurately recommending candidate news to users is a basic challenge of personalized news recommendation systems.Traditional methods are usually difficult to learn and acquire complex semantic information in news text...Accurately recommending candidate news to users is a basic challenge of personalized news recommendation systems.Traditional methods are usually difficult to learn and acquire complex semantic information in news texts,resulting in unsatisfactory recommendation results.Besides,these traditional methods are more friendly to active users with rich historical behaviors.However,they can not effectively solve the long tail problem of inactive users.To address these issues,this research presents a novel general framework that combines Large Language Models(LLM)and Knowledge Graphs(KG)into traditional methods.To learn the contextual information of news text,we use LLMs’powerful text understanding ability to generate news representations with rich semantic information,and then,the generated news representations are used to enhance the news encoding in traditional methods.In addition,multi-hops relationship of news entities is mined and the structural information of news is encoded using KG,thus alleviating the challenge of long-tail distribution.Experimental results demonstrate that compared with various traditional models,on evaluation indicators such as AUC,MRR,nDCG@5 and nDCG@10,the framework significantly improves the recommendation performance.The successful integration of LLM and KG in our framework has established a feasible way for achieving more accurate personalized news recommendation.Our code is available at https://github.com/Xuan-ZW/LKPNR.展开更多
This opinion paper explores the transformative potential of large language models(LLMs)in laparoscopic surgery and argues for their integration to enhance surgical education,decision support,reporting,and patient care...This opinion paper explores the transformative potential of large language models(LLMs)in laparoscopic surgery and argues for their integration to enhance surgical education,decision support,reporting,and patient care.LLMs can revolutionize surgical education by providing personalized learning experiences and accelerating skill acquisition.Intelligent decision support systems powered by LLMs can assist surgeons in making complex decisions,optimizing surgical workflows,and improving patient outcomes.Moreover,LLMs can automate surgical reporting and generate personalized patient education materials,streamlining documentation and improving patient engagement.However,challenges such as data scarcity,surgical semantic capture,real-time inference,and integration with existing systems need to be addressed for successful LLM integration.The future of laparoscopic surgery lies in the seamless integration of LLMs,enabling autonomous robotic surgery,predictive surgical planning,intraoperative decision support,virtual surgical assistants,and continuous learning.By harnessing the power of LLMs,laparoscopic surgery can be transformed,empowering surgeons and ultimately benefiting patients.展开更多
This letter evaluates the article by Gravina et al on ChatGPT’s potential in providing medical information for inflammatory bowel disease patients.While promising,it highlights the need for advanced techniques like r...This letter evaluates the article by Gravina et al on ChatGPT’s potential in providing medical information for inflammatory bowel disease patients.While promising,it highlights the need for advanced techniques like reasoning+action and retrieval-augmented generation to improve accuracy and reliability.Emphasizing that simple question and answer testing is insufficient,it calls for more nuanced evaluation methods to truly gauge large language models’capabilities in clinical applications.展开更多
基金supported by the National Key R&D Program of China(No.2021YFB0301200)National Natural Science Foundation of China(No.62025208).
文摘Large-scale Language Models(LLMs)have achieved significant breakthroughs in Natural Language Processing(NLP),driven by the pre-training and fine-tuning paradigm.While this approach allows models to specialize in specific tasks with reduced training costs,the substantial memory requirements during fine-tuning present a barrier to broader deployment.Parameter-Efficient Fine-Tuning(PEFT)techniques,such as Low-Rank Adaptation(LoRA),and parameter quantization methods have emerged as solutions to address these challenges by optimizing memory usage and computational efficiency.Among these,QLoRA,which combines PEFT and quantization,has demonstrated notable success in reducing memory footprints during fine-tuning,prompting the development of various QLoRA variants.Despite these advancements,the quantitative impact of key variables on the fine-tuning performance of quantized LLMs remains underexplored.This study presents a comprehensive analysis of these key variables,focusing on their influence across different layer types and depths within LLM architectures.Our investigation uncovers several critical findings:(1)Larger layers,such as MLP layers,can maintain performance despite reductions in adapter rank,while smaller layers,like self-attention layers,aremore sensitive to such changes;(2)The effectiveness of balancing factors depends more on specific values rather than layer type or depth;(3)In quantization-aware fine-tuning,larger layers can effectively utilize smaller adapters,whereas smaller layers struggle to do so.These insights suggest that layer type is a more significant determinant of fine-tuning success than layer depth when optimizing quantized LLMs.Moreover,for the same discount of trainable parameters,reducing the trainable parameters in a larger layer is more effective in preserving fine-tuning accuracy than in a smaller one.This study provides valuable guidance for more efficient fine-tuning strategies and opens avenues for further research into optimizing LLM fine-tuning in resource-constrained environments.
文摘Smart contracts on the Ethereum blockchain continue to revolutionize decentralized applications (dApps) by allowing for self-executing agreements. However, bad actors have continuously found ways to exploit smart contracts for personal financial gain, which undermines the integrity of the Ethereum blockchain. This paper proposes a computer program called SADA (Static and Dynamic Analyzer), a novel approach to smart contract vulnerability detection using multiple Large Language Model (LLM) agents to analyze and flag suspicious Solidity code for Ethereum smart contracts. SADA not only improves upon existing vulnerability detection methods but also paves the way for more secure smart contract development practices in the rapidly evolving blockchain ecosystem.
基金supported by the National Key R&D Program of China under Grant No.2022YFB3103500the National Natural Science Foundation of China under Grants No.62402087 and No.62020106013+3 种基金the Sichuan Science and Technology Program under Grant No.2023ZYD0142the Chengdu Science and Technology Program under Grant No.2023-XT00-00002-GXthe Fundamental Research Funds for Chinese Central Universities under Grants No.ZYGX2020ZB027 and No.Y030232063003002the Postdoctoral Innovation Talents Support Program under Grant No.BX20230060.
文摘The integration of artificial intelligence(AI)technology,particularly large language models(LLMs),has become essential across various sectors due to their advanced language comprehension and generation capabilities.Despite their transformative impact in fields such as machine translation and intelligent dialogue systems,LLMs face significant challenges.These challenges include safety,security,and privacy concerns that undermine their trustworthiness and effectiveness,such as hallucinations,backdoor attacks,and privacy leakage.Previous works often conflated safety issues with security concerns.In contrast,our study provides clearer and more reasonable definitions for safety,security,and privacy within the context of LLMs.Building on these definitions,we provide a comprehensive overview of the vulnerabilities and defense mechanisms related to safety,security,and privacy in LLMs.Additionally,we explore the unique research challenges posed by LLMs and suggest potential avenues for future research,aiming to enhance the robustness and reliability of LLMs in the face of emerging threats.
基金supported in part by the Teaching Reform Project of Chongqing University of Posts and Telecommunications,China under Grant No.XJG23234Chongqing Municipal Higher Education Teaching Reform Research Project under Grant No.203399the Doctoral Direct Train Project of Chongqing Science and Technology Bureau under Grant No.CSTB2022BSXM-JSX0007。
文摘The advent of large language models(LLMs)has made knowledge acquisition and content creation increasingly easier and cheaper,which in turn redefines learning and urges transformation in software engineering education.To do so,there is a need to understand the impact of LLMs on software engineering education.In this paper,we conducted a preliminary case study on three software requirements engineering classes where students are allowed to use LLMs to assist in their projects.Based on the students’experience,performance,and feedback from a survey conducted at the end of the courses,we characterized the challenges and benefits of applying LLMs in software engineering education.This research contributes to the ongoing discourse on the integration of LLMs in education,emphasizing both their prominent potential and the need for balanced,mindful usage.
文摘Cardiac rehabilitation is a crucial multidisciplinary approach to improve patient outcomes.There is a growing body of evidence that suggests that these programs contribute towards reducing cardiovascular mortality and recurrence.Despite this,cardiac rehabilitation is underutilized and adherence to these programs has been a demonstrated barrier in achieving these outcomes.As a result,there is a growing focus on innovating these programs,especially from the standpoint of digital health and personalized medicine.This editorial discusses the possible roles of large language models,such as their role in ChatGPT,in further personalizing cardiac rehabilitation programs through simplifying medical jargon and employing motivational interviewing techniques,thus boosting patient engagement and adherence.However,these possibilities must be further investigated in the clinical literature.Likewise,the integration of large language models in cardiac rehabilitation will be challenging in its nascent stages to ensure accurate and ethical information delivery.
基金Supported by National Natural Science Foundation of China(No.82160195,No.82460203)Degree and Postgraduate Education Teaching Reform Project of Jiangxi Province(No.JXYJG-2020-026).
文摘AIM:To assess the possibility of using different large language models(LLMs)in ocular surface diseases by selecting five different LLMS to test their accuracy in answering specialized questions related to ocular surface diseases:ChatGPT-4,ChatGPT-3.5,Claude 2,PaLM2,and SenseNova.METHODS:A group of experienced ophthalmology professors were asked to develop a 100-question singlechoice question on ocular surface diseases designed to assess the performance of LLMs and human participants in answering ophthalmology specialty exam questions.The exam includes questions on the following topics:keratitis disease(20 questions),keratoconus,keratomalaciac,corneal dystrophy,corneal degeneration,erosive corneal ulcers,and corneal lesions associated with systemic diseases(20 questions),conjunctivitis disease(20 questions),trachoma,pterygoid and conjunctival tumor diseases(20 questions),and dry eye disease(20 questions).Then the total score of each LLMs and compared their mean score,mean correlation,variance,and confidence were calculated.RESULTS:GPT-4 exhibited the highest performance in terms of LLMs.Comparing the average scores of the LLMs group with the four human groups,chief physician,attending physician,regular trainee,and graduate student,it was found that except for ChatGPT-4,the total score of the rest of the LLMs is lower than that of the graduate student group,which had the lowest score in the human group.Both ChatGPT-4 and PaLM2 were more likely to give exact and correct answers,giving very little chance of an incorrect answer.ChatGPT-4 showed higher credibility when answering questions,with a success rate of 59%,but gave the wrong answer to the question 28% of the time.CONCLUSION:GPT-4 model exhibits excellent performance in both answer relevance and confidence.PaLM2 shows a positive correlation(up to 0.8)in terms of answer accuracy during the exam.In terms of answer confidence,PaLM2 is second only to GPT4 and surpasses Claude 2,SenseNova,and GPT-3.5.Despite the fact that ocular surface disease is a highly specialized discipline,GPT-4 still exhibits superior performance,suggesting that its potential and ability to be applied in this field is enormous,perhaps with the potential to be a valuable resource for medical students and clinicians in the future.
文摘The recent interest in the deployment of Generative AI applications that use large language models (LLMs) has brought to the forefront significant privacy concerns, notably the leakage of Personally Identifiable Information (PII) and other confidential or protected information that may have been memorized during training, specifically during a fine-tuning or customization process. We describe different black-box attacks from potential adversaries and study their impact on the amount and type of information that may be recovered from commonly used and deployed LLMs. Our research investigates the relationship between PII leakage, memorization, and factors such as model size, architecture, and the nature of attacks employed. The study utilizes two broad categories of attacks: PII leakage-focused attacks (auto-completion and extraction attacks) and memorization-focused attacks (various membership inference attacks). The findings from these investigations are quantified using an array of evaluative metrics, providing a detailed understanding of LLM vulnerabilities and the effectiveness of different attacks.
基金National Key Research and Development Program(2023YFC3502604)National Natural Science Foundation of China(U23B2062 and 82374302).
文摘Objective To develop and evaluate a fine-tuned large language model(LLM)for traditional Chinese medicine(TCM)prescription recommendation named TCMLLM-PR.Methods First,we constructed an instruction-tuning dataset containing 68654 samples(ap-proximately 10 million tokens)by integrating data from eight sources,including four TCM textbooks,Pharmacopoeia of the People’s Republic of China 2020(CHP),Chinese Medicine Clinical Cases(CMCC),and hospital clinical records covering lung disease,liver disease,stroke,diabetes,and splenic-stomach disease.Then,we trained TCMLLM-PR using Chat-GLM-6B with P-Tuning v2 technology.The evaluation consisted of three aspects:(i)compari-son with traditional prescription recommendation models(PTM,TCMPR,and PresRecST);(ii)comparison with TCM-specific LLMs(ShenNong,Huatuo,and HuatuoGPT)and general-domain ChatGPT;(iii)assessment of model migration capability across different disease datasets.We employed precision,recall,and F1 score as evaluation metrics.Results The experiments showed that TCMLLM-PR significantly outperformed baseline models on TCM textbooks and CHP datasets,with F1@10 improvements of 31.80%and 59.48%,respectively.In cross-dataset validation,the model performed best when migrating from TCM textbooks to liver disease dataset,achieving an F1@10 of 0.1551.Analysis of real-world cases demonstrated that TCMLLM-PR's prescription recommendations most closely matched actual doctors’prescriptions.Conclusion This study integrated LLMs into TCM prescription recommendations,leverag-ing a tailored instruction-tuning dataset and developing TCMLLM-PR.This study will pub-licly release the best model parameters of TCMLLM-PR to promote the development of the decision-making process in TCM practices(https://github.com/2020MEAI/TCMLLM).
文摘Large Language Models (LLMs) have revolutionized Generative Artificial Intelligence (GenAI) tasks, becoming an integral part of various applications in society, including text generation, translation, summarization, and more. However, their widespread usage emphasizes the critical need to enhance their security posture to ensure the integrity and reliability of their outputs and minimize harmful effects. Prompt injections and training data poisoning attacks are two of the most prominent vulnerabilities in LLMs, which could potentially lead to unpredictable and undesirable behaviors, such as biased outputs, misinformation propagation, and even malicious content generation. The Common Vulnerability Scoring System (CVSS) framework provides a standardized approach to capturing the principal characteristics of vulnerabilities, facilitating a deeper understanding of their severity within the security and AI communities. By extending the current CVSS framework, we generate scores for these vulnerabilities such that organizations can prioritize mitigation efforts, allocate resources effectively, and implement targeted security measures to defend against potential risks.
基金the National Natural Science Foundation of China(Grant Nos.52279103 and 52379103)。
文摘With the improvement of multisource information sensing and data acquisition capabilities inside tunnels,the availability of multimodal data in tunnel engineering has significantly increased.However,due to structural differences in multimodal data,traditional intelligent advanced geological prediction models have limited capacity for data fusion.Furthermore,the lack of pre-trained models makes it difficult for neural networks trained from scratch to deeply explore the features of multimodal data.To address these challenges,we utilize the fusion capability of knowledge graph for multimodal data and the pre-trained knowledge of large language models(LLMs)to establish an intelligent advanced geological prediction model(GeoPredict-LLM).First,we develop an advanced geological prediction ontology model,forming a knowledge graph database.Using knowledge graph embeddings,multisource and multimodal data are transformed into low-dimensional vectors with a unified structure.Secondly,pre-trained LLMs,through reprogramming,reconstruct these low-dimensional vectors,imparting linguistic characteristics to the data.This transformation effectively reframes the complex task of advanced geological prediction as a"language-based"problem,enabling the model to approach the task from a linguistic perspective.Moreover,we propose the prompt-as-prefix method,which enables output generation,while freezing the core of the LLM,thereby significantly reduces the number of training parameters.Finally,evaluations show that compared to neural network models without pre-trained models,GeoPredict-LLM significantly improves prediction accuracy.It is worth noting that as long as a knowledge graph database can be established,GeoPredict-LLM can be adapted to multimodal data mining tasks with minimal modifications.
基金We acknowledge funding from NSFC Grant 62306283.
文摘Since the 1950s,when the Turing Test was introduced,there has been notable progress in machine language intelligence.Language modeling,crucial for AI development,has evolved from statistical to neural models over the last two decades.Recently,transformer-based Pre-trained Language Models(PLM)have excelled in Natural Language Processing(NLP)tasks by leveraging large-scale training corpora.Increasing the scale of these models enhances performance significantly,introducing abilities like context learning that smaller models lack.The advancement in Large Language Models,exemplified by the development of ChatGPT,has made significant impacts both academically and industrially,capturing widespread societal interest.This survey provides an overview of the development and prospects from Large Language Models(LLM)to Large Multimodal Models(LMM).It first discusses the contributions and technological advancements of LLMs in the field of natural language processing,especially in text generation and language understanding.Then,it turns to the discussion of LMMs,which integrates various data modalities such as text,images,and sound,demonstrating advanced capabilities in understanding and generating cross-modal content,paving new pathways for the adaptability and flexibility of AI systems.Finally,the survey highlights the prospects of LMMs in terms of technological development and application potential,while also pointing out challenges in data integration,cross-modal understanding accuracy,providing a comprehensive perspective on the latest developments in this field.
文摘Modern technological advancements have made social media an essential component of daily life.Social media allow individuals to share thoughts,emotions,and ideas.Sentiment analysis plays the function of evaluating whether the sentiment of the text is positive,negative,neutral,or any other personal emotion to understand the sentiment context of the text.Sentiment analysis is essential in business and society because it impacts strategic decision-making.Sentiment analysis involves challenges due to lexical variation,an unlabeled dataset,and text distance correlations.The execution time increases due to the sequential processing of the sequence models.However,the calculation times for the Transformer models are reduced because of the parallel processing.This study uses a hybrid deep learning strategy to combine the strengths of the Transformer and Sequence models while ignoring their limitations.In particular,the proposed model integrates the Decoding-enhanced with Bidirectional Encoder Representations from Transformers(BERT)attention(DeBERTa)and the Gated Recurrent Unit(GRU)for sentiment analysis.Using the Decoding-enhanced BERT technique,the words are mapped into a compact,semantic word embedding space,and the Gated Recurrent Unit model can capture the distance contextual semantics correctly.The proposed hybrid model achieves F1-scores of 97%on the Twitter Large Language Model(LLM)dataset,which is much higher than the performance of new techniques.
基金supported by the National Natural Science Foundation of China(Grant No.81974355 and No.82172524).
文摘Objective This study aimed to evaluate and compare the effectiveness of knowledge base-optimized and unoptimized large language models(LLMs)in the field of orthopedics to explore optimization strategies for the application of LLMs in specific fields.Methods This research constructed a specialized knowledge base using clinical guidelines from the American Academy of Orthopaedic Surgeons(AAOS)and authoritative orthopedic publications.A total of 30 orthopedic-related questions covering aspects such as anatomical knowledge,disease diagnosis,fracture classification,treatment options,and surgical techniques were input into both the knowledge base-optimized and unoptimized versions of the GPT-4,ChatGLM,and Spark LLM,with their generated responses recorded.The overall quality,accuracy,and comprehensiveness of these responses were evaluated by 3 experienced orthopedic surgeons.Results Compared with their unoptimized LLMs,the optimized version of GPT-4 showed improvements of 15.3%in overall quality,12.5%in accuracy,and 12.8%in comprehensiveness;ChatGLM showed improvements of 24.8%,16.1%,and 19.6%,respectively;and Spark LLM showed improvements of 6.5%,14.5%,and 24.7%,respectively.Conclusion The optimization of knowledge bases significantly enhances the quality,accuracy,and comprehensiveness of the responses provided by the 3 models in the orthopedic field.Therefore,knowledge base optimization is an effective method for improving the performance of LLMs in specific fields.
基金Supported by the National Talent Fund of the Ministry of Science and Technology of China(20230240011)China University of Geosciences(Wuhan)Research Fund(162301192687)。
文摘A large language model(LLM)is constructed to address the sophisticated demands of data retrieval and analysis,detailed well profiling,computation of key technical indicators,and the solutions to complex problems in reservoir performance analysis(RPA).The LLM is constructed for RPA scenarios with incremental pre-training,fine-tuning,and functional subsystems coupling.Functional subsystem and efficient coupling methods are proposed based on named entity recognition(NER),tool invocation,and Text-to-SQL construction,all aimed at resolving pivotal challenges in developing the specific application of LLMs for RDA.This study conducted a detailed accuracy test on feature extraction models,tool classification models,data retrieval models and analysis recommendation models.The results indicate that these models have demonstrated good performance in various key aspects of reservoir dynamic analysis.The research takes some injection and production well groups in the PK3 Block of the Daqing Oilfield as an example for testing.Testing results show that our model has significant potential and practical value in assisting reservoir engineers with RDA.The research results provide a powerful support to the application of LLM in reservoir performance analysis.
基金National Research Foundation(NRF)Singapore,under its NRF Fellowship(Grant No.NRFNRFF11-2019-0002).
文摘High-angle annular dark field(HAADF)imaging in scanning transmission electron microscopy(STEM)has become an indispensable tool in materials science due to its ability to offer sub-°A resolution and provide chemical information through Z-contrast.This study leverages large language models(LLMs)to conduct a comprehensive bibliometric analysis of a large amount of HAADF-related literature(more than 41000 papers).By using LLMs,specifically ChatGPT,we were able to extract detailed information on applications,sample preparation methods,instruments used,and study conclusions.The findings highlight the capability of LLMs to provide a new perspective into HAADF imaging,underscoring its increasingly important role in materials science.Moreover,the rich information extracted from these publications can be harnessed to develop AI models that enhance the automation and intelligence of electron microscopes.
文摘Sentence classification is the process of categorizing a sentence based on the context of the sentence.Sentence categorization requires more semantic highlights than other tasks,such as dependence parsing,which requires more syntactic elements.Most existing strategies focus on the general semantics of a conversation without involving the context of the sentence,recognizing the progress and comparing impacts.An ensemble pre-trained language model was taken up here to classify the conversation sentences from the conversation corpus.The conversational sentences are classified into four categories:information,question,directive,and commission.These classification label sequences are for analyzing the conversation progress and predicting the pecking order of the conversation.Ensemble of Bidirectional Encoder for Representation of Transformer(BERT),Robustly Optimized BERT pretraining Approach(RoBERTa),Generative Pre-Trained Transformer(GPT),DistilBERT and Generalized Autoregressive Pretraining for Language Understanding(XLNet)models are trained on conversation corpus with hyperparameters.Hyperparameter tuning approach is carried out for better performance on sentence classification.This Ensemble of Pre-trained Language Models with a Hyperparameter Tuning(EPLM-HT)system is trained on an annotated conversation dataset.The proposed approach outperformed compared to the base BERT,GPT,DistilBERT and XLNet transformer models.The proposed ensemble model with the fine-tuned parameters achieved an F1_score of 0.88.
基金Science and Technology Innovation 2030-Major Project of“New Generation Artificial Intelligence”granted by Ministry of Science and Technology,Grant Number 2020AAA0109300.
文摘In the process of constructing domain-specific knowledge graphs,the task of relational triple extraction plays a critical role in transforming unstructured text into structured information.Existing relational triple extraction models facemultiple challenges when processing domain-specific data,including insufficient utilization of semantic interaction information between entities and relations,difficulties in handling challenging samples,and the scarcity of domain-specific datasets.To address these issues,our study introduces three innovative components:Relation semantic enhancement,data augmentation,and a voting strategy,all designed to significantly improve the model’s performance in tackling domain-specific relational triple extraction tasks.We first propose an innovative attention interaction module.This method significantly enhances the semantic interaction capabilities between entities and relations by integrating semantic information fromrelation labels.Second,we propose a voting strategy that effectively combines the strengths of large languagemodels(LLMs)and fine-tuned small pre-trained language models(SLMs)to reevaluate challenging samples,thereby improving the model’s adaptability in specific domains.Additionally,we explore the use of LLMs for data augmentation,aiming to generate domain-specific datasets to alleviate the scarcity of domain data.Experiments conducted on three domain-specific datasets demonstrate that our model outperforms existing comparative models in several aspects,with F1 scores exceeding the State of the Art models by 2%,1.6%,and 0.6%,respectively,validating the effectiveness and generalizability of our approach.
基金supported by National Key R&D Program of China(2022QY2000-02).
文摘Accurately recommending candidate news to users is a basic challenge of personalized news recommendation systems.Traditional methods are usually difficult to learn and acquire complex semantic information in news texts,resulting in unsatisfactory recommendation results.Besides,these traditional methods are more friendly to active users with rich historical behaviors.However,they can not effectively solve the long tail problem of inactive users.To address these issues,this research presents a novel general framework that combines Large Language Models(LLM)and Knowledge Graphs(KG)into traditional methods.To learn the contextual information of news text,we use LLMs’powerful text understanding ability to generate news representations with rich semantic information,and then,the generated news representations are used to enhance the news encoding in traditional methods.In addition,multi-hops relationship of news entities is mined and the structural information of news is encoded using KG,thus alleviating the challenge of long-tail distribution.Experimental results demonstrate that compared with various traditional models,on evaluation indicators such as AUC,MRR,nDCG@5 and nDCG@10,the framework significantly improves the recommendation performance.The successful integration of LLM and KG in our framework has established a feasible way for achieving more accurate personalized news recommendation.Our code is available at https://github.com/Xuan-ZW/LKPNR.
文摘This opinion paper explores the transformative potential of large language models(LLMs)in laparoscopic surgery and argues for their integration to enhance surgical education,decision support,reporting,and patient care.LLMs can revolutionize surgical education by providing personalized learning experiences and accelerating skill acquisition.Intelligent decision support systems powered by LLMs can assist surgeons in making complex decisions,optimizing surgical workflows,and improving patient outcomes.Moreover,LLMs can automate surgical reporting and generate personalized patient education materials,streamlining documentation and improving patient engagement.However,challenges such as data scarcity,surgical semantic capture,real-time inference,and integration with existing systems need to be addressed for successful LLM integration.The future of laparoscopic surgery lies in the seamless integration of LLMs,enabling autonomous robotic surgery,predictive surgical planning,intraoperative decision support,virtual surgical assistants,and continuous learning.By harnessing the power of LLMs,laparoscopic surgery can be transformed,empowering surgeons and ultimately benefiting patients.
文摘This letter evaluates the article by Gravina et al on ChatGPT’s potential in providing medical information for inflammatory bowel disease patients.While promising,it highlights the need for advanced techniques like reasoning+action and retrieval-augmented generation to improve accuracy and reliability.Emphasizing that simple question and answer testing is insufficient,it calls for more nuanced evaluation methods to truly gauge large language models’capabilities in clinical applications.