A graph G is k-covered if each edge of G belongs to a k-factor of G. We determine some valuee of k for which every r-regular graph with edge-connectivity λ is k-covered.
We investigate a role of k-covers in selection principles theory. Some results about relationships between Ramsey theory and game theory and selection principles that involve k-covers are also given.
为解决均值漂移聚类算法聚类效果依赖于带宽参数的主观选取,以及处理密度变化大的数据集时聚类结果精确度问题,提出一种基于覆盖树的自适应均值漂移聚类算法MSCT(MeanShift based on Cover-Tree)。构建一个覆盖树数据集,在计算漂移向量...为解决均值漂移聚类算法聚类效果依赖于带宽参数的主观选取,以及处理密度变化大的数据集时聚类结果精确度问题,提出一种基于覆盖树的自适应均值漂移聚类算法MSCT(MeanShift based on Cover-Tree)。构建一个覆盖树数据集,在计算漂移向量过程中结合覆盖树数据集获得新的漂移向量结果KnnShift,在不同数据密度分布的数据集上都能自适应产生带宽参数,所有数据点完成漂移过程后获得聚类结果。实验结果表明,MSCT算法的聚类效果整体上优于MS、DBSCAN等算法。展开更多
The prevalence of unwholesome land use practices and population pressure exacerbates soil loss which is worsening the problem of sedimentation of the Kubanni dam. This study was conducted at the Kubanni drainage basin...The prevalence of unwholesome land use practices and population pressure exacerbates soil loss which is worsening the problem of sedimentation of the Kubanni dam. This study was conducted at the Kubanni drainage basin covering a spatial area of 56.7 Km2 in Samaru, Zaria, Nigeria to estimate annual soil loss using the RUSLE model. Satellite images of Landsat OLI for December 2014, 2016, 2018, February, July and November 2022;soil data, rainfall data from 2010 to 2022, and DEM of 30-meter resolution were utilized for the study. All factors of the RUSLE model were calculated for the basin using assembled data. The erosivity (R-factor) was discovered to be 553.437 MJ∙mm∙ha−1∙h−1∙yr−1. The average erodibility (K-factor) value was 0.1 Mg∙h∙h∙ha−1∙MJ−1∙mm−1∙yr−1. The Slope Length and Steepness factor (LS-factor) in the basin ranged between 0% and 13.47%. The Crop Management Factor (C-factor) values were obtained from a rescaling of the NDVI values derived for the study area and ranged from 0.26 to 0.55. Support practice (P-factors) were computed from the prevalent tillage practice in the basin and ranged from 0.27 to 0.40. The soil loss amount for the Kubanni basin was found to be 28441.482 tons∙ha−1∙yr−1, while the annual soil loss for the entire Kubanni drainage basin was found to be 49780.257 tons∙yr−1. The study has demonstrated the viability of coupling RUSLE model and Remote Sensing and Geographic Information System (GIS) techniques for the estimation of soil loss in the Kubanni drainage basin.展开更多
In this paper, we consider the relationship between the binding number and the existence of fractional k-factors of graphs. The binding number of G is defined by Woodall as bind(G)=min{ | NG(X) || X |:∅≠X⊆V(G) }. It ...In this paper, we consider the relationship between the binding number and the existence of fractional k-factors of graphs. The binding number of G is defined by Woodall as bind(G)=min{ | NG(X) || X |:∅≠X⊆V(G) }. It is proved that a graph G has a fractional 1-factor if bind(G)≥1and has a fractional k-factor if bind(G)≥k−1k. Furthermore, it is showed that both results are best possible in some sense.展开更多
This study evaluated the potential of Botswana’s sustainable energy production using ERA5 reanalysis data of solar irradiance variability on an optimally inclined plane from 1971 to 2020. Spatial-temporal solar irrad...This study evaluated the potential of Botswana’s sustainable energy production using ERA5 reanalysis data of solar irradiance variability on an optimally inclined plane from 1971 to 2020. Spatial-temporal solar irradiance fluctuations were the focus of the study, and the relation to cloud cover and aerosol optical depth was investigated. The key findings suggest that the summer/rainfall season (November to March) is the peak season with average monthly solar irradiance of 313 - 445 W/m2 across southern, central, and northern parts of Botswana, the Kalahari Desert and the Makgadikgadi Pans being identified as prime sites for solar energy projects. The long-term trend analysis showed a decrease in solar irradiance in December but a consistent increase from August to October, indicating a potential shift in solar resources toward an earlier season. Contrary to other studies that found that aerosol optical depth dominates effects on long-term trends and year-to-year variability of solar irradiance, for this case, cloud cover, particularly mid-level clouds, is found to have a more dominant role in Botswana. Solar irradiance characteristics of three distinct regions were identified through K-means clustering. Moreover, Ensemble Empirical Mode Decomposition (EEMD) analysis showed the commonality and time scale linkage between solar irradiance and cloud cover between the identified regions. These results highlight the importance of including cloud-related weather patterns under the global warming scenario in solar energy planning and emphasize the secondary role of aerosols in Botswana, thus providing critical information for the region’s solar energy development and policy formulation.展开更多
文摘A graph G is k-covered if each edge of G belongs to a k-factor of G. We determine some valuee of k for which every r-regular graph with edge-connectivity λ is k-covered.
文摘We investigate a role of k-covers in selection principles theory. Some results about relationships between Ramsey theory and game theory and selection principles that involve k-covers are also given.
文摘为解决均值漂移聚类算法聚类效果依赖于带宽参数的主观选取,以及处理密度变化大的数据集时聚类结果精确度问题,提出一种基于覆盖树的自适应均值漂移聚类算法MSCT(MeanShift based on Cover-Tree)。构建一个覆盖树数据集,在计算漂移向量过程中结合覆盖树数据集获得新的漂移向量结果KnnShift,在不同数据密度分布的数据集上都能自适应产生带宽参数,所有数据点完成漂移过程后获得聚类结果。实验结果表明,MSCT算法的聚类效果整体上优于MS、DBSCAN等算法。
文摘The prevalence of unwholesome land use practices and population pressure exacerbates soil loss which is worsening the problem of sedimentation of the Kubanni dam. This study was conducted at the Kubanni drainage basin covering a spatial area of 56.7 Km2 in Samaru, Zaria, Nigeria to estimate annual soil loss using the RUSLE model. Satellite images of Landsat OLI for December 2014, 2016, 2018, February, July and November 2022;soil data, rainfall data from 2010 to 2022, and DEM of 30-meter resolution were utilized for the study. All factors of the RUSLE model were calculated for the basin using assembled data. The erosivity (R-factor) was discovered to be 553.437 MJ∙mm∙ha−1∙h−1∙yr−1. The average erodibility (K-factor) value was 0.1 Mg∙h∙h∙ha−1∙MJ−1∙mm−1∙yr−1. The Slope Length and Steepness factor (LS-factor) in the basin ranged between 0% and 13.47%. The Crop Management Factor (C-factor) values were obtained from a rescaling of the NDVI values derived for the study area and ranged from 0.26 to 0.55. Support practice (P-factors) were computed from the prevalent tillage practice in the basin and ranged from 0.27 to 0.40. The soil loss amount for the Kubanni basin was found to be 28441.482 tons∙ha−1∙yr−1, while the annual soil loss for the entire Kubanni drainage basin was found to be 49780.257 tons∙yr−1. The study has demonstrated the viability of coupling RUSLE model and Remote Sensing and Geographic Information System (GIS) techniques for the estimation of soil loss in the Kubanni drainage basin.
文摘In this paper, we consider the relationship between the binding number and the existence of fractional k-factors of graphs. The binding number of G is defined by Woodall as bind(G)=min{ | NG(X) || X |:∅≠X⊆V(G) }. It is proved that a graph G has a fractional 1-factor if bind(G)≥1and has a fractional k-factor if bind(G)≥k−1k. Furthermore, it is showed that both results are best possible in some sense.
文摘This study evaluated the potential of Botswana’s sustainable energy production using ERA5 reanalysis data of solar irradiance variability on an optimally inclined plane from 1971 to 2020. Spatial-temporal solar irradiance fluctuations were the focus of the study, and the relation to cloud cover and aerosol optical depth was investigated. The key findings suggest that the summer/rainfall season (November to March) is the peak season with average monthly solar irradiance of 313 - 445 W/m2 across southern, central, and northern parts of Botswana, the Kalahari Desert and the Makgadikgadi Pans being identified as prime sites for solar energy projects. The long-term trend analysis showed a decrease in solar irradiance in December but a consistent increase from August to October, indicating a potential shift in solar resources toward an earlier season. Contrary to other studies that found that aerosol optical depth dominates effects on long-term trends and year-to-year variability of solar irradiance, for this case, cloud cover, particularly mid-level clouds, is found to have a more dominant role in Botswana. Solar irradiance characteristics of three distinct regions were identified through K-means clustering. Moreover, Ensemble Empirical Mode Decomposition (EEMD) analysis showed the commonality and time scale linkage between solar irradiance and cloud cover between the identified regions. These results highlight the importance of including cloud-related weather patterns under the global warming scenario in solar energy planning and emphasize the secondary role of aerosols in Botswana, thus providing critical information for the region’s solar energy development and policy formulation.