期刊文献+
共找到32篇文章
< 1 2 >
每页显示 20 50 100
Strainburst process of marble in tunnel-excavation-induced stress path considering intermediate principal stress 被引量:25
1
作者 JIANG Bang-you GU Shi-tan +2 位作者 WANG Lian-guo ZHANG Guang-chao LI Wen-shuai 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第4期984-999,共16页
Strainburst is one type of rockburst that generally occurs in deep tunnel.In this study,the strainburst behaviors of marble specimens were investigated under tunnel-excavation-induced stress condition,and two stress p... Strainburst is one type of rockburst that generally occurs in deep tunnel.In this study,the strainburst behaviors of marble specimens were investigated under tunnel-excavation-induced stress condition,and two stress paths were designed,a commonly used stress path in true triaxial unloading rockburst tests and a new test path in which the intermediate principal stress was varied.During the tests,a high-speed camera was used to record the strainburst process,and an acoustic emission(AE)monitoring system was used to monitor the AE characteristics of failure.In these two stress paths,all the marble specimens exhibited strainbursts;however,when the intermediate principal stress was varied,the rockburst became more violent.The obtained results indicate that the intermediate principal stress has a significant effect on rockburst behavior of marble.Under a higher intermediate principal stress before the unloading,more elastic strain energy was accumulated in the specimen,and the cumulative AE energy was higher in the rockburst-induced failure,i.e.,more elastic strain energy was released during the failure.Therefore,more violent failure was observed:more rock fragments with a higher mass and larger size were ejected outward. 展开更多
关键词 strainburst true triaxial test intermediate principal stress acoustic emission MARBLE
在线阅读 下载PDF
Experimental study on failure characteristics of single-sided unloading rock under different intermediate principal stress conditions 被引量:12
2
作者 Chongyan Liu Guangming Zhao +4 位作者 Wensong Xu Xiangrui Meng Zhixi Liu Xiang Cheng Gang Lin 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第3期275-287,共13页
Investigation of unloading rock failure under differentσ_(2)facilitates the control mechanism of excavation surrounding rock.This study focused on single-sided unloading tests of granite specimens under true triaxial... Investigation of unloading rock failure under differentσ_(2)facilitates the control mechanism of excavation surrounding rock.This study focused on single-sided unloading tests of granite specimens under true triaxial conditions.The strength and failure characteristics were studied with micro-camera and acoustic emission(AE)monitoring.Furthermore,the choice of test path and the effect ofσ_(2)on fracture of unloading rock were discussed.Results show that the increasedσ_(2)can strengthen the stability of single-sided unloading rock.After unloading,the rock’s free surface underwent five phases,namely,inoculation,particle ejection,buckling rupture,stable failure,and unstable rockburst phases.Moreover,atσ_(2)≤30 MPa,the b value shows the following variation tendency:rising,dropping,significant fluctuation,and dropping,with dispersed damages signal.Atσ_(2)≥40 MPa,the tendency shows:a rise,a decrease,a slight fluctuation,and final drop,with concentrated damages signal.After unloading,AE energy is mainly concentrated in the micro-energy range.With the increasedσ_(2),the micro-energy ratio rises.In contrast,low,medium and large energy ratios drop gradually.The increased tensile fractures and decreased shear fractures indicate that the failure mode of the unloading rock gradually changes from tensile-shear mode to tensile-split one.The fractional dimension of the rock fragments first increases and then decreases with an inflection point at 20 MPa.The distribution of SIF on the planes changes asσ_(2)increases,resulting in strengthening and then weakening of the rock bearing capacity. 展开更多
关键词 Single-sided unloading Acoustic emission True triaxial intermediate principal stress stress intensity factor
在线阅读 下载PDF
Investigation of the influence of intermediate principal stress on the dynamic responses of rocks subjected to true triaxial stress state 被引量:9
3
作者 Wei You Feng Dai +2 位作者 Yi Liu Hongbo Du Ruochen Jiang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2021年第5期913-926,共14页
Precisely understanding the dynamic mechanical properties and failure modes of rocks subjected to true triaxial stress state(σ1>σ2>σ3,whereσ1,σ2,andσ3 are the major principal stress,intermediate principal ... Precisely understanding the dynamic mechanical properties and failure modes of rocks subjected to true triaxial stress state(σ1>σ2>σ3,whereσ1,σ2,andσ3 are the major principal stress,intermediate principal stress,and minor principal stress,respectively)is essential to the safety of underground engineering.However,in the laboratory,it is difficult to maintain the constant true triaxial stress state of rocks during the dynamic testing process.Herein,a numerical servo triaxial Hopkinson bar(NSTHB)was developed to study the dynamic responses of rocks confronted with a true triaxial stress state,in which lateral stresses can maintain constant.The results indicate that the dynamic strength and elastic modulus of rocks increase with the rise of intermediate principal stressσ2,while the dynamic elastic modulus is independent of the dynamic strain rate.Simulated acoustic emission distributions indicate that the intermediate principal stressσ2 dramatically affects dynamic failure modes of triaxial confined rocks.Asσ2 increases,the failure pattern switches from a single diagonal shear zone into two parallel shear zones with a small slant.Moreover,a recent triaxial Hopkinson bar experimental system using three bar pairs is also numerically established,and the measuring discrepancies are identified between the two numerical bar systems.The proposed NSTHB system provides a controllable tool for studying the dynamic triaxial behavior of rocks. 展开更多
关键词 Triaxial Hopkinson bar intermediate principal stress Dynamic strength Failure modes Numerical simulation True triaxial stress
在线阅读 下载PDF
Critical embedment depth of a rigid retaining wall against overturning in unsaturated soils considering intermediate principal stress and strength nonlinearity 被引量:4
4
作者 张常光 陈新栋 范文 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第4期944-954,共11页
The overturning stability is vital for the retaining wall design of foundation pits, where the surrounding soils are usually unsaturated due to water draining. Moreover, the intermediate principal stress does affect t... The overturning stability is vital for the retaining wall design of foundation pits, where the surrounding soils are usually unsaturated due to water draining. Moreover, the intermediate principal stress does affect the unsaturated soil strength; meanwhile, the relationship between the unsaturated soil strength and matric suction is nonlinear. This work is to present closed-form equations of critical embedment depth for a rigid retaining wall against overturning by means of moment equilibrium. Matric suction is considered to be distributed uniformly and linearly with depth. The unified shear strength formulation for unsaturated soils under the plane strain condition is adopted to characterize the intermediate principal stress effect, and strength nonlinearity is described by a hyperbolic model of suction angle. The result obtained is orderly series solutions rather than one specific answer; thus, it has wide theoretical significance and good applicability. The validity of this present work is demonstrated by comparing it with a lower bound solution. The traditional overturning designs for rigid retaining walls, in which the saturated soil mechanics neglecting matric suction or the unsaturated soil mechanics based on the Mohr-Coulomb criterion are employed, are special cases of the proposed result. Parametric studies about the intermediate principal stress, matric suction and its distributions along with two strength nonlinearity methods on a new defined critical buried coefficient are discussed. 展开更多
关键词 unsaturated soils retaining walls overturning stability critical embedment depth intermediate principal stress strength nonlinearity
在线阅读 下载PDF
Failure criterion for soft rocks considering intermediate principal stress 被引量:4
5
作者 Zhongwei Wang Quansheng Liu 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2021年第4期565-575,共11页
The significant differences between hard rocks(more brittle)and soft rocks(more ductile)may suggest the use of different failure criteria.A strength criterion for soft rocks that includes intermediate principal stress... The significant differences between hard rocks(more brittle)and soft rocks(more ductile)may suggest the use of different failure criteria.A strength criterion for soft rocks that includes intermediate principal stress was proposed.The new criterion includes two independent parameters:the uniaxial compressive strength(σ_(ci)),which can be obtained from common laboratory tests or indirectly estimated by alternative index tests in the laboratory or field;and f(joint),which is used to characterize the rock mass quality and can be easily estimated.The authors compared the predictive capabilities of the new criterion with other criteria using the database of soft rocks under two conditions:with and without triaxial data.For the estimation of triaxial and true-triaxial strengths,the new criterion generally produced a better fit.The proposed criterion is practical for an approximate first estimation of rock mass strength,even without triaxial data,as it balances accuracy(lower prediction error)and simplicity(fewer independent parameters). 展开更多
关键词 Soft rock intermediate principal stress Failure criterion True-triaxial Uniaxial compressive strength
在线阅读 下载PDF
Influence of intermediate principal stress on failure mechanism of hard rock with a pre-existing circular opening 被引量:5
6
作者 张社荣 孙博 +1 位作者 王超 严磊 《Journal of Central South University》 SCIE EI CAS 2014年第4期1571-1582,共12页
Based on particle flow theory, the influences of the magnitude and direction of the intermediate principal stress on failure mechanism of hard rock with a pre-existing circular opening were studied by carrying out tru... Based on particle flow theory, the influences of the magnitude and direction of the intermediate principal stress on failure mechanism of hard rock with a pre-existing circular opening were studied by carrying out true triaxial tests on siltstone specimen. It is shown that peak strength of siltstone specimen increases firstly and subsequently decreases with the increase of the intermediate principal stress. And its turning point is related to the minimum principal stress and the direction of the intermediate principal stress. Failure characteristic(brittleness or ductility) of siltstone is determined by the minimum principal stress and the difference between the intermediate and minimum principal stress. The intermediate principal stress has a significant effect on the types and distributions of microcracks. The failure modes of the specimen are determined by the magnitude and direction of the intermediate principal stress, and related to weakening effect of the opening and inhibition effect of confining pressure in essence: when weakening effect of the opening is greater than inhibition effect of confining pressure, the failure surface is parallel to the x axis(such as σ2=σ3=0 MPa); conversely, the failure surface is parallel to the z axis(such as σ2=20 MPa, σ3=0 MPa). 展开更多
关键词 rock mechanics intermediate principal stress hard rock with pre-existing circular opening failure mechanism discrete element
在线阅读 下载PDF
New artificial neural networks for true triaxial stress state analysis and demonstration of intermediate principal stress effects on intact rock strength 被引量:4
7
作者 Rennie Kaunda 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2014年第4期338-347,共10页
Simulations are conducted using five new artificial neural networks developed herein to demonstrate and investigate the behavior of rock material under polyaxial loading. The effects of the intermediate principal stre... Simulations are conducted using five new artificial neural networks developed herein to demonstrate and investigate the behavior of rock material under polyaxial loading. The effects of the intermediate principal stress on the intact rock strength are investigated and compared with laboratory results from the literature. To normalize differences in laboratory testing conditions, the stress state is used as the objective parameter in the artificial neural network model predictions. The variations of major principal stress of rock material with intermediate principal stress, minor principal stress and stress state are investigated. The artificial neural network simulations show that for the rock types examined, none were independent of intermediate principal stress effects. In addition, the results of the artificial neural network models, in general agreement with observations made by others, show (a) a general trend of strength increasing and reaching a peak at some intermediate stress state factor, followed by a decline in strength for most rock types; (b) a post-peak strength behavior dependent on the minor principal stress, with respect to rock type; (c) sensitivity to the stress state, and to the interaction between the stress state and uniaxial compressive strength of the test data by the artificial neural networks models (two-way analysis of variance; 95% confidence interval). Artificial neural network modeling, a self-learning approach to polyaxial stress simulation, can thus complement the commonly observed difficult task of conducting true triaxial laboratory tests, and/or other methods that attempt to improve two-dimensional (2D) failure criteria by incorporating intermediate principal stress effects. 展开更多
关键词 Artificial neural networks Polyaxial loading intermediate principal stress Rock failure criteria True triaxial test
在线阅读 下载PDF
Effect of intermediate principal stress on strength of soft rock under complex stress states 被引量:1
8
作者 马宗源 廖红建 党发宁 《Journal of Central South University》 SCIE EI CAS 2014年第4期1583-1593,共11页
A series of numerical simulations of conventional and true triaxial tests for soft rock materials using the three-dimensional finite difference code FLAC3D were presented. A hexahedral element and a strain hardening/s... A series of numerical simulations of conventional and true triaxial tests for soft rock materials using the three-dimensional finite difference code FLAC3D were presented. A hexahedral element and a strain hardening/softening constitutive model based on the unified strength theory(UST) were used to simulate both the consolidated-undrained(CU) triaxial and the consolidated-drained(CD) true triaxial tests. Based on the results of the true triaxial tests simulation, the effect of the intermediate principal stress on the strength of soft rock was investigated. Finally, an example of an axial compression test for a hard rock pillar with a soft rock interlayer was analyzed using the two-dimensional finite difference code FLAC. The CD true triaxial test simulations for diatomaceous soft rock suggest the peak and residual strengths increase by 30% when the effect of the intermediate principal stress is taken into account. The axial compression for a rock pillar indicated the peak and residual strengths increase six-fold when the soft rock interlayer approached the vertical and the effect of the intermediate principal stress is taken into account. 展开更多
关键词 soft rock strength strain-softening complex stress state effect of intermediate principal stress
在线阅读 下载PDF
True triaxial unloading test on the mechanical behaviors of sandstone:Effects of the intermediate principal stress and structural plane
9
作者 Fan Feng Zhiwei Xie +3 位作者 Shaojie Chen Diyuan Li Siyu Peng Tong Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第4期2208-2226,共19页
A series of true triaxial unloading tests are conducted on sandstone specimens with a single structural plane to investigate their mechanical behaviors and failure characteristics under different in situ stress states... A series of true triaxial unloading tests are conducted on sandstone specimens with a single structural plane to investigate their mechanical behaviors and failure characteristics under different in situ stress states.The experimental results indicate that the dip angle of structural plane(θ)and the intermediate principal stress(σ2)have an important influence on the peak strength,cracking mode,and rockburst severity.The peak strength exhibits a first increase and then decrease as a function ofσ2 for a constantθ.However,whenσ2 is constant,the maximum peak strength is obtained atθof 90°,and the minimum peak strength is obtained atθof 30°or 45°.For the case of an inclined structural plane,the crack type at the tips of structural plane transforms from a mix of wing and anti-wing cracks to wing cracks with an increase inσ2,while the crack type around the tips of structural plane is always anti-wing cracks for the vertical structural plane,accompanied by a series of tensile cracks besides.The specimens with structural plane do not undergo slabbing failure regardless ofθ,and always exhibit composite tensile-shear failure whatever theσ2 value is.With an increase inσ2 andθ,the intensity of the rockburst is consistent with the tendency of the peak strength.By analyzing the relationship between the cohesion(c),internal friction angle(φ),andθin sandstone specimens,we incorporateθinto the true triaxial unloading strength criterion,and propose a modified linear Mogi-Coulomb criterion.Moreover,the crack propagation mechanism at the tips of structural plane,and closure degree of the structural plane under true triaxial unloading conditions are also discussed and summarized.This study provides theoretical guidance for stability assessment of surrounding rocks containing geological structures in deep complex stress environments. 展开更多
关键词 True triaxial unloading Dip angle of structural plane intermediate principal stress Mechanical behaviors Cracking modes Failure criterion
在线阅读 下载PDF
Influence of orientation of the intermediate principal stress on fracture reactivation in granite
10
作者 Wei Wang Fanzhen Meng +6 位作者 Zhufeng Yue Guanghao Cui Qijin Cai Zhiyuan Li Dongliang Tian Hui Zhou Zaiquan Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第2期859-876,共18页
Fracture(fault)reactivation can lead to dynamic geological hazards including earthquakes,rock collapses,landslides,and rock bursts.True triaxial compression tests were conducted to analyze the fracture reactivation pr... Fracture(fault)reactivation can lead to dynamic geological hazards including earthquakes,rock collapses,landslides,and rock bursts.True triaxial compression tests were conducted to analyze the fracture reactivation process under two different orientations of σ_(2),i.e.σ_(2) parallel to the fracture plane(Scheme 2)and σ_(2) cutting through the fracture plane(Scheme 3),under varying σ_(3) from 10 MPa to 40 MPa.The peak or fracture reactivation strength,deformation,failure mode,and post-peak mechanical behavior of intact(Scheme 1)and pre-fractured(Schemes 2 and 3)specimens were also compared.Results show that for intact specimens,the stress remains nearly constant in the residual sliding stage with no stick-slip,and the newly formed fracture surface only propagates along the σ_(2) direction when σ_(3) ranges from 10 MPa to 30 MPa,while it extends along both σ_(2) and σ_(3) directions when σ_(3) increases to 40 MPa;for the pre-fractured specimens,the fractures are usually reactivated under all the σ_(3) levels in Scheme 2,but fracture reactivation only occurs when σ_(3) is greater than 25 MPa in Scheme 3,below which new faulting traversing the original macro fracture occurs.In all the test schemes,both ε_(2) and ε_(3) experience an accumulative process of elongation,after which an abrupt change occurs at the point of the final failure;the degree of this change is dependent on the orientation of the new faulting or the slip direction of the original fracture,and it is generally more than 10 times larger in the slip direction of the original fracture than in the non-slip direction.Besides,the differential stress(peak stress)required for reactivation and the post-peak stress drop increase with increasing σ_(3).Post-peak stress drop and residual strength in Scheme 3 are generally greater than those in Scheme 2 at the same σ_(3) value.Our study clearly shows that intermediate principal stress orientation not only affects the fracture reactivation strength but also influences the slip deformation and failure modes.These new findings facilitate the mitigation of dynamic geological hazards associated with fracture and fault slip. 展开更多
关键词 True triaxial Fracture reactivation intermediate principal stress orientation Minimum principal stress levels Computed tomography
在线阅读 下载PDF
Factor of safety analysis for mine pillar considering the influence of the intermediate principal stress component
11
作者 Duncan Maina Heinz Konietzky 《Green and Smart Mining Engineering》 2024年第3期241-248,共8页
Failure of mine pillars,especially in deep underground mines,significantly threatens the safety of miners and equipment.Previous studies on mine pillar stability design have used classical constitutive models that ign... Failure of mine pillars,especially in deep underground mines,significantly threatens the safety of miners and equipment.Previous studies on mine pillar stability design have used classical constitutive models that ignore the intermediate principal stress component when determining the factor of safety.In this study,we develop and implement a three-dimensional modified Hoek-Brown(HB)constitutive model that incorporates the intermediate principal stress component into the numerical simulation tool FLAC3D.Furthermore,we propose and apply a strength-reduction technique to determine a more accurate factor of safety for mine pillars.This novel approach provides a more comprehensive and realistic method for geomechanical analysis and pillar design,enhancing our understanding of pillar stability.Through numerical analysis,we illustrate the impact of the intermediate principal stress component on mine pillar plasticity.The factor of safety is calculated via the strength reduction method,revealing a substantial improvement from 1.7 with the classical HB model to 2.0 with the 3D HB model.Including the intermediate principal stress component reduces the evolution of plasticity in the mine pillar.For instance,the volume of plastic zones diminishes,and the factor of safety increases as the width-to-height ratio increases.Exemplary simulations show that ignoring the effect of the intermediate principal stress component,including underestimating safety levels,designing suboptimal pillar design,and misinterpreting in situ observations and measurements,can lead to severe consequences. 展开更多
关键词 intermediate principal stress component Numerical analysis Factor of safety Mine pillar Hoek-Brown model
原文传递
Undrained response of reconstituted clay to cyclic pure principal stress rotation 被引量:1
12
作者 严佳佳 周建 +1 位作者 龚晓南 曹洋 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第1期280-289,共10页
A series of monotonic and rotational shearing tests are carried out on reconstituted clay using a hollow cylinder apparatus under undrained condition. In the rotational shearing tests, the principal stress axes rotate... A series of monotonic and rotational shearing tests are carried out on reconstituted clay using a hollow cylinder apparatus under undrained condition. In the rotational shearing tests, the principal stress axes rotate cyclically with the magnitudes of the principal stresses keeping constant. The anisotropy of the reconstituted clay is analyzed from the monotonic shearing tests. Obvious pore pressure is induced by the principal stress rotation alone even with shear stress q0=5 k Pa. Strain components also accumulate with increasing the number of cycles and increases suddenly at the onset of failure. The deviatoric shear strain of 7.5% can be taken as the failure criterion for clay subjected to the pure cyclic principal stress rotation. The intermediate principal stress parameter b plays a significant role in the development of pore pressure and strain. Specimens are weakened by cyclic rotational shearing as the shear modulus decreases with increasing the number of cycles, and the shear modulus reduces more quickly with larger b. Clear deviation between the directions of the principal plastic strain increment and the principal stress is observed during pure principal stress rotation. Both the coaxial and non-coaxial plastic mechanisms should be taken into consideration to simulate the deformation behavior of clay under pure principal stress rotation. The mechanism of the soil response to the pure principal stress rotation is discussed based on the experimental observations. 展开更多
关键词 clay principal stress rotation intermediate principal stress undrained behavior
在线阅读 下载PDF
Unified semi-analytical solution for elastic-plastic stress of deep circular hydraulic tunnel with support yielding 被引量:2
13
作者 曾开华 许家雄 《Journal of Central South University》 SCIE EI CAS 2013年第6期1742-1749,共8页
A unified semi-analytical solution is presented for elastic-plastic stress of a deep circular hydraulic tunnel with support yielding under plane strain conditions.The rock mass is assumed to be elastic-perfectly plast... A unified semi-analytical solution is presented for elastic-plastic stress of a deep circular hydraulic tunnel with support yielding under plane strain conditions.The rock mass is assumed to be elastic-perfectly plastic and governed by the unified strength theory (UST).Different major principal stresses in different engineering situations and different support yielding conditions are both considered.The unified solution obtained in this work is a series of results,rather than one specific solution,hence it is suitable for a wide range of rock masses.In addition,parametric study is conducted to investigate the effect of intermediate principal stress.The result shows the major principal stress should be rationally chosen according to different engineering conditions.Finally,the applicability of the unified solution is discussed according to the critical pressures. 展开更多
关键词 unified strength theory (UST) intermediate principal stress support yielding choice of major principal stress
在线阅读 下载PDF
Definition of failure criterion for frozen soil under directional shear-stress path 被引量:1
14
作者 Dun Chen Wei Ma +3 位作者 GuoYu Li ZhiWei Zhou YanHu Mu ShiJie Chen 《Research in Cold and Arid Regions》 CSCD 2019年第6期428-434,共7页
A series of directional shear tests on remolded frozen soil was carried out at 10°C by using a hollow cylinder apparatus to study failure criterion under a directional shear-stress path.Directional shear tests we... A series of directional shear tests on remolded frozen soil was carried out at 10°C by using a hollow cylinder apparatus to study failure criterion under a directional shear-stress path.Directional shear tests were conducted at five shear rates(10,20,30,40,and 50 kPa/min)and five intermediate principal stress coefficients(b=0,0.25,0.5,0.75,and 1),with the mean principal stress(p=4.5 MPa)kept constant.The results show that the torsional strength and the generalized strength both increase with the increase of the shear rates.According to the failure modes of frozen soil under different shear rates,the specimens present obvious plastic failure and shear band;and the torsional shear component dominates the failure modes of hollow cylindrical specimens.A shear rate of 30 kPa/min is chosen as the loading rate in the directional shear tests of frozen soil.The shape of the failure curve in theπplane is dependent on the directional anglesαof the major prin cipal stress.It is reasonable to use the strain-hardening curves to define the deviatoric stress value atγg=15%(generalized shear strain)as the failure criterion of frozen soil under a directional shear-stress path. 展开更多
关键词 frozen soil hollow cylinder apparatus intermediate principal stress coefficient failure criterion directional shear-stress path
在线阅读 下载PDF
A STRESS VECTOR-BASED CONSTITUTIVE MODEL FOR COHESIONLESS SOIL (Ⅰ)-THEORY
15
作者 SHI Hong-yan(史宏彦) +1 位作者 XIE Djng-yi(谢定义) 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2002年第3期329-340,共12页
On the basis of the sufficient consideration of vectorial characteristics of stress, a new nonlinear constitutive model for cohesionless soil under plane strain and 3-D conditions was presented in a way that the actio... On the basis of the sufficient consideration of vectorial characteristics of stress, a new nonlinear constitutive model for cohesionless soil under plane strain and 3-D conditions was presented in a way that the action effects of stress vector are decomposed into the action effect of mean effective stress and that of the stress ratio vector (ratio of deviatoric stress vector to mean effective stress). The constitutive model can take account of the influence of both numerical and directional changes of stress vector on deformation of soil simultaneously, and is applicable of both static and dynamic loading. 展开更多
关键词 cohesionless soil rotation of principal stress axes intermediate principal stress stress vector constitutive model THEORY
在线阅读 下载PDF
A generalized nonlinear three-dimensional Hoek‒Brown failure criterion 被引量:2
16
作者 Jiaxin Wang Shunchuan Wu +3 位作者 Haiyong Cheng Junlong Sun Xiaolong Wang Yaxi Shen 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第8期3149-3164,共16页
To understand the strengths of rocks under complex stress states,a generalized nonlinear threedimensional(3D)Hoek‒Brown failure(NGHB)criterion was proposed in this study.This criterion shares the same parameters with ... To understand the strengths of rocks under complex stress states,a generalized nonlinear threedimensional(3D)Hoek‒Brown failure(NGHB)criterion was proposed in this study.This criterion shares the same parameters with the generalized HB(GHB)criterion and inherits the parameter advantages of GHB.Two new parameters,b,and n,were introduced into the NGHB criterion that primarily controls the deviatoric plane shape of the NGHB criterion under triaxial tension and compression,respectively.The NGHB criterion can consider the influence of intermediate principal stress(IPS),where the deviatoric plane shape satisfies the smoothness requirements,while the HB criterion not.This criterion can degenerate into the two modified 3D HB criteria,the Priest criterion under triaxial compression condition and the HB criterion under triaxial compression and tension condition.This criterion was verified using true triaxial test data for different parameters,six types of rocks,and two kinds of in situ rock masses.For comparison,three existing 3D HB criteria were selected for performance comparison research.The result showed that the NGHB criterion gave better prediction performance than other criteria.The prediction errors of the strength of six types of rocks and two kinds of in situ rock masses were in the range of 2.0724%-3.5091%and 1.0144%-3.2321%,respectively.The proposed criterion lays a preliminary theoretical foundation for prediction of engineering rock mass strength under complex in situ stress conditions. 展开更多
关键词 Rock mechanics HoekeBrown criterion Failure criterion intermediate principal stress True triaxial test Smoothness and convexity
在线阅读 下载PDF
Retrospective and prospective review of the generalized nonlinear strength theory for geomaterials
17
作者 Shunchuan Wu Jiaxin Wang +3 位作者 Shihuai Zhang Shigui Huang Lei Xia Qianping Zhao 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第8期1767-1787,共21页
Strength theory is the basic theory for calculating and designing the strength of engineering materials in civil,hydraulic,mechanical,aerospace,military,and other engineering disciplines.Therefore,the comprehensive st... Strength theory is the basic theory for calculating and designing the strength of engineering materials in civil,hydraulic,mechanical,aerospace,military,and other engineering disciplines.Therefore,the comprehensive study of the generalized nonlinear strength theory(GNST)of geomaterials has significance for the construction of engineering rock strength.This paper reviews the GNST of geomaterials to demonstrate the research status of nonlinear strength characteristics of geomaterials under complex stress paths.First,it systematically summarizes the research progress of GNST(classical and empirical criteria).Then,the latest research the authors conducted over the past five years on the GNST is introduced,and a generalized three-dimensional(3D)nonlinear Hoek‒Brown(HB)criterion(NGHB criterion)is proposed for practical applications.This criterion can be degenerated into the existing three modified HB criteria and has a better prediction performance.The strength prediction errors for six rocks and two in-situ rock masses are 2.0724%-3.5091%and 1.0144%-3.2321%,respectively.Finally,the development and outlook of the GNST are expounded,and a new topic about the building strength index of rock mass and determining the strength of in-situ engineering rock mass is proposed.The summarization of the GNST provides theoretical traceability and optimization for constructing in-situ engineering rock mass strength. 展开更多
关键词 rock mechanics rock mass strength strength theory failure criterion Hoek-Brown criterion intermediate principal stress deviatoric plane smoothness and convexity
在线阅读 下载PDF
Analysis of strength characteristics of loess before and after freezing using a hollow cylinder torsional shear apparatus
18
作者 Peng Shen QingZhi Wang +2 位作者 JianHong Fang ChenWei Wang Kui Zhang 《Research in Cold and Arid Regions》 CSCD 2024年第2期63-72,共10页
This paper aims to comprehensively analyze the influence of the principal stress angle rotation and intermediate principal stress on loess's strength and deformation characteristics. A hollow cylinder torsional sh... This paper aims to comprehensively analyze the influence of the principal stress angle rotation and intermediate principal stress on loess's strength and deformation characteristics. A hollow cylinder torsional shear apparatus was utilized to conduct tests on remolded samples under both normal and frozen conditions to investigate the mechanical properties and deformation behavior of loess under complex stress conditions. The results indicate significant differences in the internal changes of soil particles, unfrozen water, and relative positions in soil samples under normal and frozen conditions, leading to noticeable variations in strength and strain development.In frozen state, loess experiences primarily compressive failure with a slow growth of cracks, while at normal temperature, it predominantly exhibits shear failure. With the increase in the principal stress angle, the deformation patterns of the soil samples under different conditions become essentially consistent, gradually transitioning from compression to extension, accompanied by a reduction in axial strength. The gradual increase in the principal stress axis angle(α) reduces the strength of the generalized shear stress and shear strain curves.Under an increasing α, frozen soil exhibits strain-hardening characteristics, with the maximum shear strength occurring at α = 45°. The intermediate principal stress coefficient(b) also significantly impacts the strength of frozen soil, with an increasing b resulting in a gradual decrease in generalized shear stress strength. This study provides a reference for comprehensively exploring the mechanical properties of soil under traffic load and a reliable theoretical basis for the design and maintenance of roadbeds. 展开更多
关键词 LOESS Hollow cylinder torsional shear apparatus Major principal stress angle intermediate principal stress coefficient
在线阅读 下载PDF
Experimental investigations on mechanical performance of rocks under fatigue loads and biaxial confinements 被引量:8
19
作者 DU Kun LI Xue-feng +3 位作者 YANG Cheng-zhi ZHOU Jian CHEN Shao-jie MANOJ Khandelwal 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第10期2985-2998,共14页
In this research,a series of biaxial compression and biaxial fatigue tests were conducted to investigate the mechanical behaviors of marble and sandstone under biaxial confinements.Experimental results demonstrate tha... In this research,a series of biaxial compression and biaxial fatigue tests were conducted to investigate the mechanical behaviors of marble and sandstone under biaxial confinements.Experimental results demonstrate that the biaxial compressive strength of rocks under biaxial compression increases firstly,and subsequently decreases with increase of the intermediate principal stress.The fatigue failure characteristics of the rocks in biaxial fatigue tests are functions of the peak value of fatigue loads,the intermediate principal stress and the rock lithology.With the increase of the peak values of fatigue loads,the fatigue lives of rocks decrease.The intermediate principal stress strengthens the resistance ability of rocks to fatigue loads except considering the strength increasing under biaxial confinements.The fatigue lives of rocks increase with the increase of the intermediate principal stress under the same ratio of the fatigue load and their biaxial compressive strength.The acoustic emission(AE)and fragments studies showed that the sandstone has higher ability to resist the fatigue loads compared to the marble,and the marble generated a greater number of smaller fragments after fatigue failure compared to the sandstone.So,it can be inferred that the rock breaking efficiency and rock burst is higher or severer induced by fatigue loading than that induced by monotonous quasi-static loading,especially for hard rocks. 展开更多
关键词 biaxial confinements fatigue loading acoustic emission FRAGMENTS intermediate principal stress
在线阅读 下载PDF
A simplified three-dimensional extension of Hoek-Brown strength criterion 被引量:8
20
作者 Hangzhou Li Tong Guo +1 位作者 Yalin Nan Bo Han 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2021年第3期568-578,共11页
The Hoek-Brown(HB)strength criterion has been applied widely in a large number of projects around the world.However,this criterion ignores the intermediate principal stress s2.Many evidences have demonstrated that the... The Hoek-Brown(HB)strength criterion has been applied widely in a large number of projects around the world.However,this criterion ignores the intermediate principal stress s2.Many evidences have demonstrated that the rock strength is dependent on s2.Thus it is necessary to extend the HB criterion into a three-dimensional(3D)form.In this study,the effect of s2 on the strength of rocks is identified by reviewing the true triaxial tests of various rock types reported in the literature.A simple 3D strength criterion is developed.The modified criterion is verified by the true triaxial tests of 13 rock types.The results indicate that the modified criterion can achieve a good fit to most of rock types.It can represent a series of criteria as b varies.For comparisons,several existing 3D versions of the HB criterion are selected to predict the strengths of these rock types.It is indicated that the proposed criterion works better than other criteria.A substantial relationship between parameter b and the unconfined compressive strength is established,which guarantees that the proposed criterion can still work well even in the absence of true triaxial test data. 展开更多
关键词 Hoek-Brown(HB)strength criterion Three-dimensional(3D)strength criterion intermediate principal stress Failure envelope
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部