This paper analyzes the citrus input-output efficiency by using the DEA-Malmquist productivity index methods based on the data of six counties in Jiangxi Province from 2010 to 2013.The result shows that TFP of Jiangxi...This paper analyzes the citrus input-output efficiency by using the DEA-Malmquist productivity index methods based on the data of six counties in Jiangxi Province from 2010 to 2013.The result shows that TFP of Jiangxi citrus is at low level overall,but the development is rapid.Technological progress is the driving force to promote productivity growth.Based on the static analysis study of six counties in 2013,it is found that the available input factors on the whole are in an ideal condition,and the citrus input factors in a few counties are redundant.Therefore,according to the results,the following policy recommendations are proposed:speeding up the intensive production of citrus in Jiangxi Province,to maximize the scale effect;adjusting the input ratio of various factors of production,so as to improve the citrus input-output efficiency.展开更多
Trap-assisted charge recombination is one of the primary limitationsof restricting the performance of organic solar cells. However, effectivelyreducing the presence of traps in the photoactive layer remains challengin...Trap-assisted charge recombination is one of the primary limitationsof restricting the performance of organic solar cells. However, effectivelyreducing the presence of traps in the photoactive layer remains challenging.Herein, wide bandgap polymer donor PTzBI-dF is demonstrated as an effectivemodulator for enhancing the crystallinity of the bulk heterojunction active layerscomposed of D18 derivatives blended with Y6, leading to dense and orderedmolecular packings, and thus, improves photoluminescence quenching properties.As a result, the photovoltaic devices exhibit reduced trap-assisted charge recombinationlosses, achieving an optimized power conversion efficiency of over 19%.Besides the efficiency enhancement, the devices comprised of PTzBI-dF as athird component simultaneously attain decreased current leakage, improved chargecarrier mobilities, and suppressed bimolecular charge recombination, leading toreduced energy losses. The advanced crystalline structures induced by PTzBI-dFand its characteristics, such as well-aligned energy level, and complementaryabsorption spectra, are ascribed to the promising performance improvements.Our findings suggest that donor phase engineering is a feasible approach to tuning the molecular packings in the active layer, providingguidelines for designing effective morphology modulators for high-performance organic solar cells.展开更多
The growing need for sustainable energy solutions,driven by rising energy shortages,environmental concerns,and the depletion of conventional energy sources,has led to a significant focus on renewable energy.Solar ener...The growing need for sustainable energy solutions,driven by rising energy shortages,environmental concerns,and the depletion of conventional energy sources,has led to a significant focus on renewable energy.Solar energy,among the various renewable sources,is particularly appealing due to its abundant availability.However,the efficiency of commercial solar photovoltaic(PV)modules is hindered by several factors,notably their conversion efficiency,which averages around 19%.This efficiency can further decline to 10%–16%due to temperature increases during peak sunlight hours.This study investigates the cooling of PV modules by applying water to their front surface through Computational fluid dynamics(CFD).The study aimed to determine the optimal conditions for cooling the PV module by analyzing the interplay between water film thickness,Reynolds number,and their effects on temperature reduction and heat transfer.The CFD analysis revealed that the most effective cooling condition occurred with a 5 mm thick water film and a Reynolds number of 10.These specific parameters were found to maximize the heat transfer and temperature reduction efficiency.This finding is crucial for the development of practical and efficient cooling systems for PV modules,potentially leading to improved performance and longevity of solar panels.Alternative cooling fluids or advanced cooling techniques that might offer even better efficiency or practical benefits.展开更多
This study reviewed developments in provider utilization related to health care in the metropolitan area of the Syracuse hospitals between the twentieth century and the twenty first century with respect to major hospi...This study reviewed developments in provider utilization related to health care in the metropolitan area of the Syracuse hospitals between the twentieth century and the twenty first century with respect to major hospital services. In this study, a decline in the utilization of inpatient hospitals developed between 2020 and 2022. During this period, use of additional outpatient services such as ambulatory surgery, individual practitioners, outside hospitals, and the use of hospital emergency departments developed in the community. The study data demonstrated that between 2020 and 2022, the numbers of discharges from the combined hospitals declined for both adult medicine and adult surgery. Inpatient discharges declined by 2730 patients for adult medicine and 1961 patients for adult surgery. The data also demonstrated that between 2022 and 2024, the numbers of discharges increased by 1998 discharges for adult medicine and by 229 for adult surgery. As followup to this study, health care providers and payors should review approaches to efficiency in their communities and evaluate their impact on health care efficiency.展开更多
Ports are crucial to the economy of many nations;thus, numerous studies have been conducted on port efficiency and productivity. This study analyses the efficiency and productivity of some major global ports namely, P...Ports are crucial to the economy of many nations;thus, numerous studies have been conducted on port efficiency and productivity. This study analyses the efficiency and productivity of some major global ports namely, Port of Singapore, Rotterdam, Antwerp and Durban. The main objectives of this study are to determine the level of operational efficiency of the mentioned ports, measure and evaluate the ports’ productivity changes and lastly to investigate the factors influencing the productivity changes of the ports studied. To achieve these objectives, Data Envelopment Analysis (DEA-BCC) model was used to determine the technical and operational efficiencies of the ports and Malmquist productivity index was employed to calculate the various productivity levels. The results of the study can guide stakeholders to formulate their operational strategies for port efficiency and productivity. The study also has policy suggestions that are uniquely targeted to Africa’s issues and potential.展开更多
This study reviewed a combination of health care programs in the metropolitan area of Syracuse, New York. They were designed to improve care, however a major purpose was to support efficiency. The study described a nu...This study reviewed a combination of health care programs in the metropolitan area of Syracuse, New York. They were designed to improve care, however a major purpose was to support efficiency. The study described a number of individual programs that were developed in order to improve the quality and the efficiency of care. These programs were implemented by a combination of local providers and payors. They included the development of outpatient services such as ambulatory surgery, as well as preventive care, case management, telemedicine, and mental health. The impact of these programs was a combination of these services, rather than individual efforts. The impact of these efforts was the product of a range of individual services, especially care management. Additional efforts should make it possible to extend these efforts among providers and payors in the Syracuse area. This approach should make it possible to extend the impact of health care efficiency further.展开更多
The integration of digital tools and effective knowledge management practices is critical for enhancing administrative efficiency and institutional continuity in higher education. This study investigates the relations...The integration of digital tools and effective knowledge management practices is critical for enhancing administrative efficiency and institutional continuity in higher education. This study investigates the relationships between knowledge modeling, institutional memory, leadership styles, technology, and administrative efficiency at the University of Cape Coast (UCC). The study sought to identify the challenges and opportunities in integrating digital tools into administrative processes and to provide actionable recommendations for improvement. A mixed-methods research design was employed, combining quantitative analysis using Partial Least Squares Structural Equation Modeling (PLS-SEM) with qualitative thematic analysis of interviews. The findings revealed key challenges, including resistance to change, fragmented knowledge repositories, and inadequate funding, alongside opportunities such as centralized knowledge systems, cost-effective open-source tools, and capacity-building initiatives. The study highlights the importance of strategic leadership, robust policies, and investments in digital infrastructure to enhance administrative practices. Policy implications include the need for clear digital transformation guidelines and leadership training to foster innovation and collaboration. Recommendations include investing in scalable digital tools, implementing comprehensive capacity-building programs, and promoting stakeholder engagement to drive successful digital integration. These insights provide a roadmap for UCC and similar institutions seeking to optimize administrative efficiency through digital transformation.展开更多
This paper focuses on the research on the teaching efficiency of ideological and political classrooms under the background of blended teaching.It analyzes the connotation and characteristics of blended teaching,explor...This paper focuses on the research on the teaching efficiency of ideological and political classrooms under the background of blended teaching.It analyzes the connotation and characteristics of blended teaching,explores the impact of blended teaching on the teaching efficiency of ideological and political classrooms from multiple aspects,and conducts empirical research through case analysis and data collection.The results show that blended teaching can effectively improve the teaching efficiency of ideological and political classrooms,enhance students’learning enthusiasm and participation,and promote the improvement of students’ideological and political qualities.Finally,corresponding suggestions and countermeasures are put forward to provide a reference for the improvement of the teaching quality of ideological and political courses.展开更多
In the context of advancing towards dual carbon goals,numerous factories are actively engaging in energy efficiency upgrades and transformations.To accurately pinpoint energy efficiency bottlenecks within factories an...In the context of advancing towards dual carbon goals,numerous factories are actively engaging in energy efficiency upgrades and transformations.To accurately pinpoint energy efficiency bottlenecks within factories and prioritize renovation sequences,it is crucial to conduct comprehensive evaluations of the energy performance across various workshops.Therefore,this paper proposes an evaluation model for workshop energy efficiency based on the drive-state-response(DSR)framework combined with the fuzzy BORDA method.Firstly,an in-depth analysis of the relationships between different energy efficiency indicators was conducted.Based on the DSR model,evaluation criteria were selected from three dimensions-drive factors,state characteristics,and response measures-to establish a robust energy efficiency indicator system.Secondly,three distinct assessment techniques were selected:Grey Relational Analysis(GRA),Entropy Weight Method(EWM),and Technique for Order Preference by Similarity to Ideal Solution(TOPSIS)forming a diversified set of evaluation methods.Subsequently,by introducing the fuzzy BORDA method,a comprehensive energy efficiency evaluation model was developed,aimed at quantitatively ranking the energy performance status of each workshop.Using a real-world factory as a case study,applying our proposed evaluationmodel yielded detailed scores and rankings for each workshop.Furthermore,post hoc testing was performed using the Spearman correlation coefficient,revealing a statistic value of 10.209,which validates the effectiveness and reliability of the proposed evaluation model.This model not only assists in identifying underperforming workshops within the factory but also provides solid data support and a decision-making basis for future energy efficiency optimization strategies.展开更多
In this study,the hydraulic behavior and sand transport efficiency of the siphon automatic sand discharge device were studied by software simulation tests.By simulating the actual situation,this study analyzed how fac...In this study,the hydraulic behavior and sand transport efficiency of the siphon automatic sand discharge device were studied by software simulation tests.By simulating the actual situation,this study analyzed how factors such as the difference in water level,sediment concentration,and pipeline layout affected the sediment discharge effect.The results show that the sediment discharge device can effectively discharge sediment under diverse operating conditions and show adaptability to different environmental conditions,which indicates that it is suitable for various types of reservoir environments.展开更多
Gross primary production(GPP)is a crucial indicator representing the absorption of atmospheric CO_(2) by vegetation.At present,the estimation of GPP by remote sensing is mainly based on leaf-related vegetation indexes...Gross primary production(GPP)is a crucial indicator representing the absorption of atmospheric CO_(2) by vegetation.At present,the estimation of GPP by remote sensing is mainly based on leaf-related vegetation indexes and leaf-related biophysical para-meter leaf area index(LAI),which are not completely synchronized in seasonality with GPP.In this study,we proposed chlorophyll content-based light use efficiency model(CC-LUE)to improve GPP estimates,as chlorophyll is the direct site of photosynthesis,and only the light absorbed by chlorophyll is used in the photosynthetic process.The CC-LUE model is constructed by establishing a linear correlation between satellite-derived canopy chlorophyll content(Chlcanopy)and FPAR.This method was calibrated and validated utiliz-ing 7-d averaged in-situ GPP data from 14 eddy covariance flux towers covering deciduous broadleaf forest ecosystems across five dif-ferent climate zones.Results showed a relatively robust seasonal consistency between Chlcanopy with GPP in deciduous broadleaf forests under different climatic conditions.The CC-LUE model explained 88% of the in-situ GPP seasonality for all validation site-year and 56.0% of in-situ GPP variations through the growing season,outperforming the three widely used LUE models(MODIS-GPP algorithm,Vegetation Photosynthesis Model(VPM),and the eddy covariance-light use efficiency model(EC-LUE)).Additionally,the CC-LUE model(RMSE=0.50 g C/(m^(2)·d))significantly improved the underestimation of GPP during the growing season in semi-arid region,re-markably decreasing the root mean square error of averaged growing season GPP simulation and in-situ GPP by 75.4%,73.4%,and 37.5%,compared with MOD17(RMSE=2.03 g C/(m^(2)·d)),VPM(RMSE=1.88 g C/(m^(2)·d)),and EC-LUE(RMSE=0.80 g C/(m^(2)·d))model.The chlorophyll-based method proved superior in capturing the seasonal variations of GPP in forest ecosystems,thereby provid-ing the possibility of a more precise depiction of forest seasonal carbon uptake.展开更多
We report a novel double-shelled nanoboxes photocatalyst architecture with tailored interfaces that accelerate quantum efficiency for photocatalytic CO_(2) reduction reaction(CO_(2)RR)via Mo–S bridging bonds sites in...We report a novel double-shelled nanoboxes photocatalyst architecture with tailored interfaces that accelerate quantum efficiency for photocatalytic CO_(2) reduction reaction(CO_(2)RR)via Mo–S bridging bonds sites in S_(v)–In_(2)S_(3)@2H–MoTe_(2).The X-ray absorption near-edge structure shows that the formation of S_(v)–In_(2)S_(3)@2H–MoTe_(2) adjusts the coordination environment via interface engineering and forms Mo–S polarized sites at the interface.The interfacial dynamics and catalytic behavior are clearly revealed by ultrafast femtosecond transient absorption,time-resolved,and in situ diffuse reflectance–Infrared Fourier transform spectroscopy.A tunable electronic structure through steric interaction of Mo–S bridging bonds induces a 1.7-fold enhancement in S_(v)–In_(2)S_(3)@2H–MoTe_(2)(5)photogenerated carrier concentration relative to pristine S_(v)–In_(2)S_(3).Benefiting from lower carrier transport activation energy,an internal quantum efficiency of 94.01%at 380 nm was used for photocatalytic CO_(2)RR.This study proposes a new strategy to design photocatalyst through bridging sites to adjust the selectivity of photocatalytic CO_(2)RR.展开更多
The redox couple of I^(0)/I^(-)in aqueous rechargeable iodine–zinc(I^(2)-Zn)batteries is a promising energy storage resource since it is safe and cost-effective,and provides steady output voltage.However,the cycle li...The redox couple of I^(0)/I^(-)in aqueous rechargeable iodine–zinc(I^(2)-Zn)batteries is a promising energy storage resource since it is safe and cost-effective,and provides steady output voltage.However,the cycle life and efficiency of these batteries remain unsatisfactory due to the uncontrolled shuttling of polyiodide(I_(3)^(-)and I_(5)^(-))and side reactions on the Zn anode.Starch is a very low-cost and widely sourced food used daily around the world.“Starch turns blue when it encounters iodine”is a classic chemical reaction,which results from the unique structure of the helix starch molecule–iodine complex.Inspired by this,we employ starch to confine the shuttling of polyiodide,and thus,the I^(0)/I^(-)conversion efficiency of an I^(2)-Zn battery is clearly enhanced.According to the detailed characterizations and theoretical DFT calculation results,the enhancement of I^(0)/I^(-)conversion efficiency is mainly originated from the strong bonding between the charged products of I_(3)^(-)and I_(5)^(-)and the rich hydroxyl groups in starch.This work provides inspiration for the rational design of high-performance and low-cost I^(2)-Zn in AZIBs.展开更多
Elevation is one of many components that influence agriculture, and this in turn affects the level of both inputs and outputs of farmers. This article focuses on the productivity and technical efficiency of 100 cocoa ...Elevation is one of many components that influence agriculture, and this in turn affects the level of both inputs and outputs of farmers. This article focuses on the productivity and technical efficiency of 100 cocoa farms using cross-sectional data from areas ranging from 190 to 1021 m above sea level which were classified as low, medium, and high elevation in Davao City, considered as the chocolate capital of the Philippines. Using stochastic frontier analysis, the results showed that the cost of inputs per ha and the number of cocoa trees per ha significantly increase yield. Farms at high elevations were less technically efficient, as this entails lower temperatures and increased rainfall, and cocoa farming in those areas and conditions can be more challenging, especially with changes in farming practices, terrain, and distance to markets. Other significant variables were age of cocoa farms, married farmers, and age of the farmers. Older farms may be more developed, farmers who are married benefit from their spouses being able to readily contribute as farm labor, and lastly, older farmers' inefficiency may likely stem from nonadaptation of newer farming practices. With an average technical efficiency of 0.61, 0.63, and 0.26 in low, medium, and high elevation areas, respectively, farmers therefore have an incentive to improve farm practices and consider topographical variations found in high elevation areas. Recommendations for the improvement of technical efficiency of cocoa farms are better connectivity to markets, enhancing farm practices, and continuation and improvement of government programs on cocoa with an added emphasis on research. For farmers in high elevation areas, mitigating solutions such as sustainable agriculture practices and ecolabelling are key to improving efficiency and minimizing the potential negative impact on upland farming systems. Moreover, such adaptation measures may also contribute to sustainability of cocoa farming in high elevation areas.展开更多
This study delves into the intricate relationship between iron(Fe)content in kaolinite and its impact on the adsorption behavior of sodium oleate.The effects of different iron concentrations on adsorption energy,hydro...This study delves into the intricate relationship between iron(Fe)content in kaolinite and its impact on the adsorption behavior of sodium oleate.The effects of different iron concentrations on adsorption energy,hydrogen bond kinetics and adsorption efficiency were studied through simulation and experimental verification.The results show that the presence of iron in the kaolinite structure significantly improves the adsorption capacity of sodium oleate.Kaolinite samples with high iron content have better adsorption properties,lower adsorption energy levels and shorter and stronger hydrogen bonds than pure kaolinite.The optimal concentration of oleic acid ions for achieving maximum adsorption efficiency was identified as 1.2 mmol/L across different kaolinite samples.At this concentration,the adsorption rates and capacities reach their peak,with Fe-enriched kaolinite samples exhibiting notably higher flotation recovery rates.This optimal concentration represents a balance between sufficient oleic acid ion availability for surface interactions and the prevention of self-aggregation phenomena that could hinder adsorption.This study offers promising avenues for optimizing the flotation process in mineral processing applications.展开更多
Experimental methods,including mercury pressure,nuclear magnetic resonance(NMR)and core(wateroil)displacement,are used to examine the effects of high-multiple water injection(i.e.water injection with high injected por...Experimental methods,including mercury pressure,nuclear magnetic resonance(NMR)and core(wateroil)displacement,are used to examine the effects of high-multiple water injection(i.e.water injection with high injected pore volume)on rock properties,pore structure and oil displacement efficiency of an oilfield in the western South China Sea.The results show an increase in the permeability of rocks along with particle migration,an increase in the pore volume and the average pore throat radius,and enhanced heterogeneity after high-multiple water injection.Compared with normal water injection methods,a high-multiple water injection is more effective in improving the oil displacement efficiency.The degree of recovery increases faster in the early stage due to the expansion of the swept area,and the transition from oil-wet to water-wet.The degree of recovery increases less in the late stage due to various factors,including the enhancement of heterogeneity in the rocks.Considering both the economic aspect and the production limit of water flooding,it is recommended to adopt other technologies to further enhance oil recovery after 300 PV water injection.展开更多
The massive connectivity and limited energy pose significant challenges to deploy the enormous devices in energy-efficient and environmentally friendly in the Internet of Things(IoT).Motivated by these challenges,this...The massive connectivity and limited energy pose significant challenges to deploy the enormous devices in energy-efficient and environmentally friendly in the Internet of Things(IoT).Motivated by these challenges,this paper investigates the energy efficiency(EE)maximization problem for downlink cooperative non-orthogonal multiple access(C-NOMA)systems with hardware impairments(HIs).The base station(BS)communicates with several users via a half-duplex(HD)amplified-and-forward(AF)relay.First,we formulate the EE maximization problem of the system under HIs by jointly optimizing transmit power and power allocated coefficient(PAC)at BS,and transmit power at the relay.The original EE maximization problem is a non-convex problem,which is challenging to give the optimal solution directly.First,we use fractional programming to convert the EE maximization problem as a series of subtraction form subproblems.Then,variable substitution and block coordinate descent(BCD)method are used to handle the sub-problems.Next,a resource allocation algorithm is proposed to maximize the EE of the systems.Finally,simulation results show that the proposed algorithm outperforms the downlink cooperative orthogonal multiple access(C-OMA)scheme.展开更多
The Linxing area within the Ordos Basin exhibits pronounced reservoir heterogeneity and intricate micro-pore structures,rendering it susceptible to water-blocking damage during imbibition extraction.This study delved ...The Linxing area within the Ordos Basin exhibits pronounced reservoir heterogeneity and intricate micro-pore structures,rendering it susceptible to water-blocking damage during imbibition extraction.This study delved into the traits of tight sandstone reservoirs in the 8th member of the Shihezi Formation(also referred to as the He 8 Member)in the study area,as well as their effects on fracturing fluid imbibition.Utilizing experimental techniques such as nuclear magnetic resonance(NMR),high-pressure mercury intrusion(HPMI),and gas adsorption,this study elucidated the reservoir characteristics and examined the factors affecting the imbibition through imbibition experiments.The findings reveal that:①The reservoir,with average porosity of 8.40%and average permeability of 0.642×10^(-3)μm^(2),consists principally of quartz,feldspar,and lithic fragments,with feldspathic litharenite serving as the primary rock type and illite as the chief clay mineral;②Nano-scale micro-pores and throats dominate the reservoir,with dissolution pores and intercrystalline pores serving as predominant pore types,exhibiting relatively high pore connectivity;③Imbibition efficiency is influenced by petrophysical properties,clay mineral content,and microscopic pore structure.Due to the heterogeneity of the tight sandstone reservoir,microscopic factors have a more significant impact on the imbibition efficiency of fracturing fluids;④A comparative analysis shows that average pore size correlates most strongly with imbibition efficiency,followed by petrophysical properties and clay mineral content.In contrast,the pore type has minimal impact.Micropores are vital in the imbibition process,while meso-pores and macro-pores offer primary spaces for imbibition.This study offers theoretical insights and guidance for enhancing the post-fracturing production of tight sandstone reservoirs by examining the effects of these factors on the imbibition efficiency of fracturing fluids in tight sandstones.展开更多
As the main link of ground engineering,crude oil gathering and transportation systems require huge energy consumption and complex structures.It is necessary to establish an energy efficiency evaluation system for crud...As the main link of ground engineering,crude oil gathering and transportation systems require huge energy consumption and complex structures.It is necessary to establish an energy efficiency evaluation system for crude oil gathering and transportation systems and identify the energy efficiency gaps.In this paper,the energy efficiency evaluation system of the crude oil gathering and transportation system in an oilfield in western China is established.Combined with the big data analysis method,the GA-BP neural network is used to establish the energy efficiency index prediction model for crude oil gathering and transportation systems.The comprehensive energy consumption,gas consumption,power consumption,energy utilization rate,heat utilization rate,and power utilization rate of crude oil gathering and transportation systems are predicted.Considering the efficiency and unit consumption index of the crude oil gathering and transportation system,the energy efficiency evaluation system of the crude oil gathering and transportation system is established based on a game theory combined weighting method and TOPSIS evaluation method,and the subjective weight is determined by the triangular fuzzy analytic hierarchy process.The entropy weight method determines the objective weight,and the combined weight of game theory combines subjectivity with objectivity to comprehensively evaluate the comprehensive energy efficiency of crude oil gathering and transportation systems and their subsystems.Finally,the weak links in energy utilization are identified,and energy conservation and consumption reduction are improved.The above research provides technical support for the green,efficient and intelligent development of crude oil gathering and transportation systems.展开更多
Local production of rice has struggled to meet local demand despite its suitability for cultivation in many parts of Nigeria.Using data from 240 rice farmers, this study examined the economic efficiency of rice produc...Local production of rice has struggled to meet local demand despite its suitability for cultivation in many parts of Nigeria.Using data from 240 rice farmers, this study examined the economic efficiency of rice production and the effects of financial inclusion on the economic efficiency of rice farming in Ogun State, Nigeria. Data were analyzed using the Stochastic Cost Frontier model with inefficiency effects.展开更多
文摘This paper analyzes the citrus input-output efficiency by using the DEA-Malmquist productivity index methods based on the data of six counties in Jiangxi Province from 2010 to 2013.The result shows that TFP of Jiangxi citrus is at low level overall,but the development is rapid.Technological progress is the driving force to promote productivity growth.Based on the static analysis study of six counties in 2013,it is found that the available input factors on the whole are in an ideal condition,and the citrus input factors in a few counties are redundant.Therefore,according to the results,the following policy recommendations are proposed:speeding up the intensive production of citrus in Jiangxi Province,to maximize the scale effect;adjusting the input ratio of various factors of production,so as to improve the citrus input-output efficiency.
基金support from the National Natural Science Foundation of China(62275057)the Guangxi Natural Science Foundation(2023GXNSFFA026004 and 2022GXNSFDA035066)+2 种基金the Innovation Project of Guangxi Graduate Education(YCBZ2024034)Natural Science Foundation of Ningbo under grant(2022J149)Natural Science Foundation of Ningbo under grant(2022A-230-G)
文摘Trap-assisted charge recombination is one of the primary limitationsof restricting the performance of organic solar cells. However, effectivelyreducing the presence of traps in the photoactive layer remains challenging.Herein, wide bandgap polymer donor PTzBI-dF is demonstrated as an effectivemodulator for enhancing the crystallinity of the bulk heterojunction active layerscomposed of D18 derivatives blended with Y6, leading to dense and orderedmolecular packings, and thus, improves photoluminescence quenching properties.As a result, the photovoltaic devices exhibit reduced trap-assisted charge recombinationlosses, achieving an optimized power conversion efficiency of over 19%.Besides the efficiency enhancement, the devices comprised of PTzBI-dF as athird component simultaneously attain decreased current leakage, improved chargecarrier mobilities, and suppressed bimolecular charge recombination, leading toreduced energy losses. The advanced crystalline structures induced by PTzBI-dFand its characteristics, such as well-aligned energy level, and complementaryabsorption spectra, are ascribed to the promising performance improvements.Our findings suggest that donor phase engineering is a feasible approach to tuning the molecular packings in the active layer, providingguidelines for designing effective morphology modulators for high-performance organic solar cells.
文摘The growing need for sustainable energy solutions,driven by rising energy shortages,environmental concerns,and the depletion of conventional energy sources,has led to a significant focus on renewable energy.Solar energy,among the various renewable sources,is particularly appealing due to its abundant availability.However,the efficiency of commercial solar photovoltaic(PV)modules is hindered by several factors,notably their conversion efficiency,which averages around 19%.This efficiency can further decline to 10%–16%due to temperature increases during peak sunlight hours.This study investigates the cooling of PV modules by applying water to their front surface through Computational fluid dynamics(CFD).The study aimed to determine the optimal conditions for cooling the PV module by analyzing the interplay between water film thickness,Reynolds number,and their effects on temperature reduction and heat transfer.The CFD analysis revealed that the most effective cooling condition occurred with a 5 mm thick water film and a Reynolds number of 10.These specific parameters were found to maximize the heat transfer and temperature reduction efficiency.This finding is crucial for the development of practical and efficient cooling systems for PV modules,potentially leading to improved performance and longevity of solar panels.Alternative cooling fluids or advanced cooling techniques that might offer even better efficiency or practical benefits.
文摘This study reviewed developments in provider utilization related to health care in the metropolitan area of the Syracuse hospitals between the twentieth century and the twenty first century with respect to major hospital services. In this study, a decline in the utilization of inpatient hospitals developed between 2020 and 2022. During this period, use of additional outpatient services such as ambulatory surgery, individual practitioners, outside hospitals, and the use of hospital emergency departments developed in the community. The study data demonstrated that between 2020 and 2022, the numbers of discharges from the combined hospitals declined for both adult medicine and adult surgery. Inpatient discharges declined by 2730 patients for adult medicine and 1961 patients for adult surgery. The data also demonstrated that between 2022 and 2024, the numbers of discharges increased by 1998 discharges for adult medicine and by 229 for adult surgery. As followup to this study, health care providers and payors should review approaches to efficiency in their communities and evaluate their impact on health care efficiency.
文摘Ports are crucial to the economy of many nations;thus, numerous studies have been conducted on port efficiency and productivity. This study analyses the efficiency and productivity of some major global ports namely, Port of Singapore, Rotterdam, Antwerp and Durban. The main objectives of this study are to determine the level of operational efficiency of the mentioned ports, measure and evaluate the ports’ productivity changes and lastly to investigate the factors influencing the productivity changes of the ports studied. To achieve these objectives, Data Envelopment Analysis (DEA-BCC) model was used to determine the technical and operational efficiencies of the ports and Malmquist productivity index was employed to calculate the various productivity levels. The results of the study can guide stakeholders to formulate their operational strategies for port efficiency and productivity. The study also has policy suggestions that are uniquely targeted to Africa’s issues and potential.
文摘This study reviewed a combination of health care programs in the metropolitan area of Syracuse, New York. They were designed to improve care, however a major purpose was to support efficiency. The study described a number of individual programs that were developed in order to improve the quality and the efficiency of care. These programs were implemented by a combination of local providers and payors. They included the development of outpatient services such as ambulatory surgery, as well as preventive care, case management, telemedicine, and mental health. The impact of these programs was a combination of these services, rather than individual efforts. The impact of these efforts was the product of a range of individual services, especially care management. Additional efforts should make it possible to extend these efforts among providers and payors in the Syracuse area. This approach should make it possible to extend the impact of health care efficiency further.
文摘The integration of digital tools and effective knowledge management practices is critical for enhancing administrative efficiency and institutional continuity in higher education. This study investigates the relationships between knowledge modeling, institutional memory, leadership styles, technology, and administrative efficiency at the University of Cape Coast (UCC). The study sought to identify the challenges and opportunities in integrating digital tools into administrative processes and to provide actionable recommendations for improvement. A mixed-methods research design was employed, combining quantitative analysis using Partial Least Squares Structural Equation Modeling (PLS-SEM) with qualitative thematic analysis of interviews. The findings revealed key challenges, including resistance to change, fragmented knowledge repositories, and inadequate funding, alongside opportunities such as centralized knowledge systems, cost-effective open-source tools, and capacity-building initiatives. The study highlights the importance of strategic leadership, robust policies, and investments in digital infrastructure to enhance administrative practices. Policy implications include the need for clear digital transformation guidelines and leadership training to foster innovation and collaboration. Recommendations include investing in scalable digital tools, implementing comprehensive capacity-building programs, and promoting stakeholder engagement to drive successful digital integration. These insights provide a roadmap for UCC and similar institutions seeking to optimize administrative efficiency through digital transformation.
文摘This paper focuses on the research on the teaching efficiency of ideological and political classrooms under the background of blended teaching.It analyzes the connotation and characteristics of blended teaching,explores the impact of blended teaching on the teaching efficiency of ideological and political classrooms from multiple aspects,and conducts empirical research through case analysis and data collection.The results show that blended teaching can effectively improve the teaching efficiency of ideological and political classrooms,enhance students’learning enthusiasm and participation,and promote the improvement of students’ideological and political qualities.Finally,corresponding suggestions and countermeasures are put forward to provide a reference for the improvement of the teaching quality of ideological and political courses.
基金funded by the National Social Science Fund of China(Grant No.23BGL234).
文摘In the context of advancing towards dual carbon goals,numerous factories are actively engaging in energy efficiency upgrades and transformations.To accurately pinpoint energy efficiency bottlenecks within factories and prioritize renovation sequences,it is crucial to conduct comprehensive evaluations of the energy performance across various workshops.Therefore,this paper proposes an evaluation model for workshop energy efficiency based on the drive-state-response(DSR)framework combined with the fuzzy BORDA method.Firstly,an in-depth analysis of the relationships between different energy efficiency indicators was conducted.Based on the DSR model,evaluation criteria were selected from three dimensions-drive factors,state characteristics,and response measures-to establish a robust energy efficiency indicator system.Secondly,three distinct assessment techniques were selected:Grey Relational Analysis(GRA),Entropy Weight Method(EWM),and Technique for Order Preference by Similarity to Ideal Solution(TOPSIS)forming a diversified set of evaluation methods.Subsequently,by introducing the fuzzy BORDA method,a comprehensive energy efficiency evaluation model was developed,aimed at quantitatively ranking the energy performance status of each workshop.Using a real-world factory as a case study,applying our proposed evaluationmodel yielded detailed scores and rankings for each workshop.Furthermore,post hoc testing was performed using the Spearman correlation coefficient,revealing a statistic value of 10.209,which validates the effectiveness and reliability of the proposed evaluation model.This model not only assists in identifying underperforming workshops within the factory but also provides solid data support and a decision-making basis for future energy efficiency optimization strategies.
基金Supported by the National Undergraduate Innovation Training Program(Project No.202211437036).
文摘In this study,the hydraulic behavior and sand transport efficiency of the siphon automatic sand discharge device were studied by software simulation tests.By simulating the actual situation,this study analyzed how factors such as the difference in water level,sediment concentration,and pipeline layout affected the sediment discharge effect.The results show that the sediment discharge device can effectively discharge sediment under diverse operating conditions and show adaptability to different environmental conditions,which indicates that it is suitable for various types of reservoir environments.
基金Under the auspices of the National Key Research and Development Program of China(No.2019YFA0606603)。
文摘Gross primary production(GPP)is a crucial indicator representing the absorption of atmospheric CO_(2) by vegetation.At present,the estimation of GPP by remote sensing is mainly based on leaf-related vegetation indexes and leaf-related biophysical para-meter leaf area index(LAI),which are not completely synchronized in seasonality with GPP.In this study,we proposed chlorophyll content-based light use efficiency model(CC-LUE)to improve GPP estimates,as chlorophyll is the direct site of photosynthesis,and only the light absorbed by chlorophyll is used in the photosynthetic process.The CC-LUE model is constructed by establishing a linear correlation between satellite-derived canopy chlorophyll content(Chlcanopy)and FPAR.This method was calibrated and validated utiliz-ing 7-d averaged in-situ GPP data from 14 eddy covariance flux towers covering deciduous broadleaf forest ecosystems across five dif-ferent climate zones.Results showed a relatively robust seasonal consistency between Chlcanopy with GPP in deciduous broadleaf forests under different climatic conditions.The CC-LUE model explained 88% of the in-situ GPP seasonality for all validation site-year and 56.0% of in-situ GPP variations through the growing season,outperforming the three widely used LUE models(MODIS-GPP algorithm,Vegetation Photosynthesis Model(VPM),and the eddy covariance-light use efficiency model(EC-LUE)).Additionally,the CC-LUE model(RMSE=0.50 g C/(m^(2)·d))significantly improved the underestimation of GPP during the growing season in semi-arid region,re-markably decreasing the root mean square error of averaged growing season GPP simulation and in-situ GPP by 75.4%,73.4%,and 37.5%,compared with MOD17(RMSE=2.03 g C/(m^(2)·d)),VPM(RMSE=1.88 g C/(m^(2)·d)),and EC-LUE(RMSE=0.80 g C/(m^(2)·d))model.The chlorophyll-based method proved superior in capturing the seasonal variations of GPP in forest ecosystems,thereby provid-ing the possibility of a more precise depiction of forest seasonal carbon uptake.
基金the Natural Science Foundation of China(11922415,12274471)Guangdong Basic and Applied Basic Research Foundation(2022A1515011168,2019A1515011718,2019A1515011337)the Key Research and Development Program of Guangdong Province,China(2019B110209003).
文摘We report a novel double-shelled nanoboxes photocatalyst architecture with tailored interfaces that accelerate quantum efficiency for photocatalytic CO_(2) reduction reaction(CO_(2)RR)via Mo–S bridging bonds sites in S_(v)–In_(2)S_(3)@2H–MoTe_(2).The X-ray absorption near-edge structure shows that the formation of S_(v)–In_(2)S_(3)@2H–MoTe_(2) adjusts the coordination environment via interface engineering and forms Mo–S polarized sites at the interface.The interfacial dynamics and catalytic behavior are clearly revealed by ultrafast femtosecond transient absorption,time-resolved,and in situ diffuse reflectance–Infrared Fourier transform spectroscopy.A tunable electronic structure through steric interaction of Mo–S bridging bonds induces a 1.7-fold enhancement in S_(v)–In_(2)S_(3)@2H–MoTe_(2)(5)photogenerated carrier concentration relative to pristine S_(v)–In_(2)S_(3).Benefiting from lower carrier transport activation energy,an internal quantum efficiency of 94.01%at 380 nm was used for photocatalytic CO_(2)RR.This study proposes a new strategy to design photocatalyst through bridging sites to adjust the selectivity of photocatalytic CO_(2)RR.
基金financially supported by the National Natural Science Foundation of China(Nos.U20A20246 and 51872108)the Fundamental Research Funds for the Central Universitiesthe Advanced Talents Incubation Program of Hebei University(521100221039)
文摘The redox couple of I^(0)/I^(-)in aqueous rechargeable iodine–zinc(I^(2)-Zn)batteries is a promising energy storage resource since it is safe and cost-effective,and provides steady output voltage.However,the cycle life and efficiency of these batteries remain unsatisfactory due to the uncontrolled shuttling of polyiodide(I_(3)^(-)and I_(5)^(-))and side reactions on the Zn anode.Starch is a very low-cost and widely sourced food used daily around the world.“Starch turns blue when it encounters iodine”is a classic chemical reaction,which results from the unique structure of the helix starch molecule–iodine complex.Inspired by this,we employ starch to confine the shuttling of polyiodide,and thus,the I^(0)/I^(-)conversion efficiency of an I^(2)-Zn battery is clearly enhanced.According to the detailed characterizations and theoretical DFT calculation results,the enhancement of I^(0)/I^(-)conversion efficiency is mainly originated from the strong bonding between the charged products of I_(3)^(-)and I_(5)^(-)and the rich hydroxyl groups in starch.This work provides inspiration for the rational design of high-performance and low-cost I^(2)-Zn in AZIBs.
文摘Elevation is one of many components that influence agriculture, and this in turn affects the level of both inputs and outputs of farmers. This article focuses on the productivity and technical efficiency of 100 cocoa farms using cross-sectional data from areas ranging from 190 to 1021 m above sea level which were classified as low, medium, and high elevation in Davao City, considered as the chocolate capital of the Philippines. Using stochastic frontier analysis, the results showed that the cost of inputs per ha and the number of cocoa trees per ha significantly increase yield. Farms at high elevations were less technically efficient, as this entails lower temperatures and increased rainfall, and cocoa farming in those areas and conditions can be more challenging, especially with changes in farming practices, terrain, and distance to markets. Other significant variables were age of cocoa farms, married farmers, and age of the farmers. Older farms may be more developed, farmers who are married benefit from their spouses being able to readily contribute as farm labor, and lastly, older farmers' inefficiency may likely stem from nonadaptation of newer farming practices. With an average technical efficiency of 0.61, 0.63, and 0.26 in low, medium, and high elevation areas, respectively, farmers therefore have an incentive to improve farm practices and consider topographical variations found in high elevation areas. Recommendations for the improvement of technical efficiency of cocoa farms are better connectivity to markets, enhancing farm practices, and continuation and improvement of government programs on cocoa with an added emphasis on research. For farmers in high elevation areas, mitigating solutions such as sustainable agriculture practices and ecolabelling are key to improving efficiency and minimizing the potential negative impact on upland farming systems. Moreover, such adaptation measures may also contribute to sustainability of cocoa farming in high elevation areas.
基金supported by the Natural Science Foundation of China(No.52174232)the Project was supported by Open Research Grant of Joint National-Local Engineering Research Centre for Safe and Precise Coal Mining(Nos.EC2022003 and EC2023005)+1 种基金Anhui University of Science and Technology 2023 Graduate Student Innovation Fund(No.2023cx2106)Open Research Grant of Anhui Engineering Research Center for Coal Clean Processing and Carbon Emission Reduction(No.CCCE-2023003).
文摘This study delves into the intricate relationship between iron(Fe)content in kaolinite and its impact on the adsorption behavior of sodium oleate.The effects of different iron concentrations on adsorption energy,hydrogen bond kinetics and adsorption efficiency were studied through simulation and experimental verification.The results show that the presence of iron in the kaolinite structure significantly improves the adsorption capacity of sodium oleate.Kaolinite samples with high iron content have better adsorption properties,lower adsorption energy levels and shorter and stronger hydrogen bonds than pure kaolinite.The optimal concentration of oleic acid ions for achieving maximum adsorption efficiency was identified as 1.2 mmol/L across different kaolinite samples.At this concentration,the adsorption rates and capacities reach their peak,with Fe-enriched kaolinite samples exhibiting notably higher flotation recovery rates.This optimal concentration represents a balance between sufficient oleic acid ion availability for surface interactions and the prevention of self-aggregation phenomena that could hinder adsorption.This study offers promising avenues for optimizing the flotation process in mineral processing applications.
文摘Experimental methods,including mercury pressure,nuclear magnetic resonance(NMR)and core(wateroil)displacement,are used to examine the effects of high-multiple water injection(i.e.water injection with high injected pore volume)on rock properties,pore structure and oil displacement efficiency of an oilfield in the western South China Sea.The results show an increase in the permeability of rocks along with particle migration,an increase in the pore volume and the average pore throat radius,and enhanced heterogeneity after high-multiple water injection.Compared with normal water injection methods,a high-multiple water injection is more effective in improving the oil displacement efficiency.The degree of recovery increases faster in the early stage due to the expansion of the swept area,and the transition from oil-wet to water-wet.The degree of recovery increases less in the late stage due to various factors,including the enhancement of heterogeneity in the rocks.Considering both the economic aspect and the production limit of water flooding,it is recommended to adopt other technologies to further enhance oil recovery after 300 PV water injection.
基金partially supported by the National Natural Science Foundation of China under Grant 61701064Chongqing Natural Science Foundation under Grant cstc2019jcyj-msxmX0264Sichuan Science and Technology Program under Grant 2022YFQ0017。
文摘The massive connectivity and limited energy pose significant challenges to deploy the enormous devices in energy-efficient and environmentally friendly in the Internet of Things(IoT).Motivated by these challenges,this paper investigates the energy efficiency(EE)maximization problem for downlink cooperative non-orthogonal multiple access(C-NOMA)systems with hardware impairments(HIs).The base station(BS)communicates with several users via a half-duplex(HD)amplified-and-forward(AF)relay.First,we formulate the EE maximization problem of the system under HIs by jointly optimizing transmit power and power allocated coefficient(PAC)at BS,and transmit power at the relay.The original EE maximization problem is a non-convex problem,which is challenging to give the optimal solution directly.First,we use fractional programming to convert the EE maximization problem as a series of subtraction form subproblems.Then,variable substitution and block coordinate descent(BCD)method are used to handle the sub-problems.Next,a resource allocation algorithm is proposed to maximize the EE of the systems.Finally,simulation results show that the proposed algorithm outperforms the downlink cooperative orthogonal multiple access(C-OMA)scheme.
基金funded by the National key R&D Program of China(No.2023YFE0120700)the National Natural Science Foundation of China(No.51934005)+2 种基金the Shaanxi Province 2023 Innovation Capability Support Plan(No.2023KJXX-122)the Technology Innovation Leading Program of Shaanxi(No.2022 PT-08)the Project of Youth Innovation Team of Shaanxi Universities(No.22JP063).
文摘The Linxing area within the Ordos Basin exhibits pronounced reservoir heterogeneity and intricate micro-pore structures,rendering it susceptible to water-blocking damage during imbibition extraction.This study delved into the traits of tight sandstone reservoirs in the 8th member of the Shihezi Formation(also referred to as the He 8 Member)in the study area,as well as their effects on fracturing fluid imbibition.Utilizing experimental techniques such as nuclear magnetic resonance(NMR),high-pressure mercury intrusion(HPMI),and gas adsorption,this study elucidated the reservoir characteristics and examined the factors affecting the imbibition through imbibition experiments.The findings reveal that:①The reservoir,with average porosity of 8.40%and average permeability of 0.642×10^(-3)μm^(2),consists principally of quartz,feldspar,and lithic fragments,with feldspathic litharenite serving as the primary rock type and illite as the chief clay mineral;②Nano-scale micro-pores and throats dominate the reservoir,with dissolution pores and intercrystalline pores serving as predominant pore types,exhibiting relatively high pore connectivity;③Imbibition efficiency is influenced by petrophysical properties,clay mineral content,and microscopic pore structure.Due to the heterogeneity of the tight sandstone reservoir,microscopic factors have a more significant impact on the imbibition efficiency of fracturing fluids;④A comparative analysis shows that average pore size correlates most strongly with imbibition efficiency,followed by petrophysical properties and clay mineral content.In contrast,the pore type has minimal impact.Micropores are vital in the imbibition process,while meso-pores and macro-pores offer primary spaces for imbibition.This study offers theoretical insights and guidance for enhancing the post-fracturing production of tight sandstone reservoirs by examining the effects of these factors on the imbibition efficiency of fracturing fluids in tight sandstones.
基金This work was financially supported by the National Natural Science Foundation of China(52074089 and 52104064)Natural Science Foundation of Heilongjiang Province of China(LH2019E019).
文摘As the main link of ground engineering,crude oil gathering and transportation systems require huge energy consumption and complex structures.It is necessary to establish an energy efficiency evaluation system for crude oil gathering and transportation systems and identify the energy efficiency gaps.In this paper,the energy efficiency evaluation system of the crude oil gathering and transportation system in an oilfield in western China is established.Combined with the big data analysis method,the GA-BP neural network is used to establish the energy efficiency index prediction model for crude oil gathering and transportation systems.The comprehensive energy consumption,gas consumption,power consumption,energy utilization rate,heat utilization rate,and power utilization rate of crude oil gathering and transportation systems are predicted.Considering the efficiency and unit consumption index of the crude oil gathering and transportation system,the energy efficiency evaluation system of the crude oil gathering and transportation system is established based on a game theory combined weighting method and TOPSIS evaluation method,and the subjective weight is determined by the triangular fuzzy analytic hierarchy process.The entropy weight method determines the objective weight,and the combined weight of game theory combines subjectivity with objectivity to comprehensively evaluate the comprehensive energy efficiency of crude oil gathering and transportation systems and their subsystems.Finally,the weak links in energy utilization are identified,and energy conservation and consumption reduction are improved.The above research provides technical support for the green,efficient and intelligent development of crude oil gathering and transportation systems.
文摘Local production of rice has struggled to meet local demand despite its suitability for cultivation in many parts of Nigeria.Using data from 240 rice farmers, this study examined the economic efficiency of rice production and the effects of financial inclusion on the economic efficiency of rice farming in Ogun State, Nigeria. Data were analyzed using the Stochastic Cost Frontier model with inefficiency effects.