The sciatic functional index(SFI) is a popular parameter for peripheral nerve evaluation that relies on footprints obtained with ink and paper. Drawbacks include smearing artefacts and a lack of dynamic information ...The sciatic functional index(SFI) is a popular parameter for peripheral nerve evaluation that relies on footprints obtained with ink and paper. Drawbacks include smearing artefacts and a lack of dynamic information during measurement. Modern applications use digitized systems that can deliver results with less analytical effort and fewer mice. However, the systems are expensive(€40,000). This study aimed to evaluate the applicability and precision of a self-made, low-cost infrared system for evaluating SFI in mice. Mice were subjected to unilateral sciatic nerve crush injury(crush group; n = 7) and sham operation(sham group; n = 4). They were evaluated on the day before surgery, the 2nd, 4th and 6th days after injury, and then every day up to the 23rd day after injury. We compared two SFI evaluation methods, i.e., conventional inkand-paper SFI(C-SFI) and our infrared system(I-SFI). Our apparatus visualized footprints with totally internally reflected infrared light(950 nm) and a camera that can only detect this wavelength. Additionally we performed an analysis with the ladder beam walking test(LBWT) as a reference test. I-SFI assessment reduced the standard deviation by about 33 percent, from 11.6 to 7.8, and cut the variance around the baseline to 21 percent. The system thus requires fewer measurement repetitions and fewer animals, and cuts the cost of keeping the animals. The apparatus cost €321 to build. Our results show that the process of obtaining the SFI can be made more precise via digitization with a self-made, low-cost infrared system.展开更多
Increasing performance parameters of hard disk drive (HDD) such as higher capacity and faster data access speed with decreasing physical size make HDD more susceptible to thermal effects. Contact temperature measureme...Increasing performance parameters of hard disk drive (HDD) such as higher capacity and faster data access speed with decreasing physical size make HDD more susceptible to thermal effects. Contact temperature measurement using thermocouple is not suitable for the rotating platter of HDD. Heat analysis using simulation software requires accurate initial parameter setting such as thermal (initial & boundary) conditions of certain regions. Temperature measurement using infrared (IR) system avoids these limitations;it is non-contact, responsive and does not require initial parameter setting. Thermal pattern distribution can be studied from the thermal images. However, emissivity of the target has to be known and calibration of the system is essential for accurate temperature reading. This paper showed that temperature within the HDD increases with ambient temperature and time, but the thermal distribution pattern in the HDD was not affected by different ambient temperatures. Three wall boundary conditions were conducted to study the thermal distribution pattern in the HDD. A solution was then proposed based on the results obtained from the experiments to improve the heat transfer rate and steady state temperature, and reduce the detrimental effects from high thermal generation in future prototypes. Another important finding was that the averaged temperature of the head cap was generally higher compared to that of the disk, as the spindle motor is the primary heat source within the HDD. Heat source analysis of HDD with IR system allows designers to have better visibility of the temperature generated in different components of the HDD. Proper cooling may enhance disk life as well as ensure the stability and integrity of the system.展开更多
In response to the scarcity of infrared aircraft samples and the tendency of traditional deep learning to overfit,a few-shot infrared aircraft classification method based on cross-correlation networks is proposed.This...In response to the scarcity of infrared aircraft samples and the tendency of traditional deep learning to overfit,a few-shot infrared aircraft classification method based on cross-correlation networks is proposed.This method combines two core modules:a simple parameter-free self-attention and cross-attention.By analyzing the self-correlation and cross-correlation between support images and query images,it achieves effective classification of infrared aircraft under few-shot conditions.The proposed cross-correlation network integrates these two modules and is trained in an end-to-end manner.The simple parameter-free self-attention is responsible for extracting the internal structure of the image while the cross-attention can calculate the cross-correlation between images further extracting and fusing the features between images.Compared with existing few-shot infrared target classification models,this model focuses on the geometric structure and thermal texture information of infrared images by modeling the semantic relevance between the features of the support set and query set,thus better attending to the target objects.Experimental results show that this method outperforms existing infrared aircraft classification methods in various classification tasks,with the highest classification accuracy improvement exceeding 3%.In addition,ablation experiments and comparative experiments also prove the effectiveness of the method.展开更多
The accuracy of spot centroid positioning has a significant impact on the tracking accuracy of the system and the stability of the laser link construction.In satellite laser communication systems,the use of short-wave...The accuracy of spot centroid positioning has a significant impact on the tracking accuracy of the system and the stability of the laser link construction.In satellite laser communication systems,the use of short-wave infrared wavelengths as beacon light can reduce atmospheric absorption and signal attenuation.However,there are strong non-uniformity and blind pixels in the short-wave infrared image,which makes the image distorted and leads to the decrease of spot centroid positioning accuracy.Therefore,the high-precision localization of the spot centroid of the short-wave infrared images is of great research significance.A high-precision spot centroid positioning model for short-wave infrared is proposed to correct for non-uniformity and blind pixels in short-wave infrared images and quantify the localization errors caused by the two,further model-based localization error simulations are performed,and a novel spot centroid positioning payload for satellite laser communications has been designed using the latest 640×512 planar array InGaAs shortwave infrared detector.The experimental results show that the non-uniformity of the corrected image is reduced from 7%to 0.6%,the blind pixels rejection rate reaches 100%,the frame rate can be up to 2000 Hz,and the spot centroid localization accuracy is as high as 0.1 pixel point,which realizes high-precision spot centroid localization of high-frame-frequency short-wave infrared images.展开更多
In sub nanometer carbon nanotubes,water exhibits unique dynamic characteristics,and in the high-frequency region of the infrared spectrum,where the stretching vibrations of the internal oxygen-hydrogen(O-H)bonds are c...In sub nanometer carbon nanotubes,water exhibits unique dynamic characteristics,and in the high-frequency region of the infrared spectrum,where the stretching vibrations of the internal oxygen-hydrogen(O-H)bonds are closely related to the hydrogen bonds(H-bonds)network between water molecules.Therefore,it is crucial to analyze the relationship between these two aspects.In this paper,the infrared spectrum and motion characteristics of the stretching vibrations of the O-H bonds in one-dimensional confined water(1DCW)and bulk water(BW)in(6,6)single-walled carbon nanotubes(SWNT)are studied by molecular dynamics simulations.The results show that the stretching vibrations of the two O-H bonds in 1DCW exhibit different frequencies in the infrared spectrum,while the O-H bonds in BW display two identical main frequency peaks.Further analysis using the spring oscillator model reveals that the difference in the stretching amplitude of the O-H bonds is the main factor causing the change in vibration frequency,where an increase in stretching amplitude leads to a decrease in spring stiffness and,consequently,a lower vibration frequency.A more in-depth study found that the interaction of H-bonds between water molecules is the fundamental cause of the increased stretching amplitude and decreased vibration frequency of the O-H bonds.Finally,by analyzing the motion trajectory of the H atoms,the dynamic differences between 1DCW and BW are clearly revealed.These findings provide a new perspective for understanding the behavior of water molecules at the nanoscale and are of significant importance in advancing the development of infrared spectroscopy detection technology.展开更多
Using 2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran(TCF)as a near-infrared fluorescent chromophore,we designed and synthesized a TCF-based fluorescent probe TCF-NS by introducing 2,4-dinitrophenyl ether ...Using 2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran(TCF)as a near-infrared fluorescent chromophore,we designed and synthesized a TCF-based fluorescent probe TCF-NS by introducing 2,4-dinitrophenyl ether as the recognized site for H_(2)S.The probe TCF-NS displayed a rapid-response fluorescent against H_(2)S with high sensitivity and selection but had no significant fluorescence response to other biothiols.Furthermore,TCF-NS was applied to sense H_(2)S in living cells successfully with minimized cytotoxicity and a large Stokes shift.展开更多
This communication looks at the photo-oxidation of polythene and polypropylene plastic bottle tops that are placed on soil in a hot arid environment. The degree of oxidation of the plastic is monitored by FT-IR spectr...This communication looks at the photo-oxidation of polythene and polypropylene plastic bottle tops that are placed on soil in a hot arid environment. The degree of oxidation of the plastic is monitored by FT-IR spectroscopy. It is noted that while different bottle top types photo-oxidize at different rates, all show an appreciable level of oxidation after half a year of exposure to the environment. The oxidation leads to brittleness of the plastic, which leads to fissure formation in bottle tops of little thickness. This leads to fragmentation of the material upon impact, making plastic bottle tops an appreciable source of microplastics.展开更多
Designing and fabricating a compatible low-reflectivity electromagnetic interference(EMI)shielding/high-temperature resistant infrared stealth material possesses a critical significance in the field of military.Hence,...Designing and fabricating a compatible low-reflectivity electromagnetic interference(EMI)shielding/high-temperature resistant infrared stealth material possesses a critical significance in the field of military.Hence,a hierarchical polyimide(PI)nonwoven fabric is fabricated by alkali treatment,in-situ growth of magnetic particles and"self-activated"electroless Ag plating process.Especially,the hierarchical impedance matching can be constructed by systematically assembling Fe_(3)O_(4)/Ag-loaded PI nonwoven fabric(PFA)and pure Ag-coated PI nonwoven fabric(PA),endowing it with an ultralowreflectivity EMI shielding performance.In addition,thermal insulation of fluffy three-dimensional(3D)space structure in PFA and low infrared emissivity of PA originated from Ag plating bring an excellent infrared stealth performance.More importantly,the strong bonding interaction between Fe_(3)O_(4),Ag,and PI fiber improves thermal stability in EMI shielding and high-temperature resistant infrared stealth performance.Such excellent comprehensive performance makes it promising for military tents to protect internal equipment from electromagnetic interference stemmed from adjacent equipment and/or enemy,and inhibit external infrared detection.展开更多
As modern communication and detection technologies advance at a swift pace,multifunctional electromagnetic interference(EMI)shielding materials with active/positive infrared stealth,hydrophobicity,and electric-thermal...As modern communication and detection technologies advance at a swift pace,multifunctional electromagnetic interference(EMI)shielding materials with active/positive infrared stealth,hydrophobicity,and electric-thermal conversion ability have received extensive attention.Meeting the aforesaid requirements simultaneously remains a huge challenge.In this research,the melamine foam(MF)/polypyrrole(PPy)nanowire arrays(MF@PPy)were fabricated via one-step electrochemical polymerization.The hierarchical MF@PPy foam was composed of three-dimensional PPy micro-skeleton and ordered PPy nanowire arrays.Due to the upwardly grown PPy nanowire arrays,the MF@PPy foam possessed good hydrophobicity ability with a water contact angle of 142.00°and outstanding stability under various harsh environments.Meanwhile,the MF@PPy foam showed excellent thermal insulation property on account of the low thermal conductivity and elongated ligament characteristic of PPy nanowire arrays.Furthermore,taking advantage of the high conductivity(128.2 S m^(-1)),the MF@PPy foam exhibited rapid Joule heating under 3 V,resulting in dynamic infrared stealth and thermal camouflage effects.More importantly,the MF@PPy foam exhibited remarkable EMI shielding effectiveness values of 55.77 dB and 19,928.57 dB cm^(2)g^(-1).Strong EMI shielding was put down to the hierarchically porous PPy structure,which offered outstanding impedance matching,conduction loss,and multiple attenuations.This innovative approach provides significant insights to the development of advanced multifunctional EMI shielding foams by constructing PPy nanowire arrays,showing great applications in both military and civilian fields.展开更多
Traditional stealth materials do not fulfill the requirements of high absorption for radar waves and low emissivity for infrared waves.Furthermore,they can be detected by various technologies,considerably threatening ...Traditional stealth materials do not fulfill the requirements of high absorption for radar waves and low emissivity for infrared waves.Furthermore,they can be detected by various technologies,considerably threatening weapon safety.Therefore,a stealth material compatible with radar and infrared was designed based on the photonic bandgap characteristics of photonic crystals.The radar stealth lay-er(bottom layer)is a composite of carbonyl iron/silicon dioxide/epoxy resin,and the infrared stealth layer(top layer)is a 1D photonic crystal with alternately and periodically stacked germanium and silicon nitride.Through composition optimization and structural adjust-ment,the effective absorption bandwidth of the compatible stealth material with a reflection loss of less than-10 dB has reached 4.95 GHz.The average infrared emissivity of the proposed design is 0.1063,indicating good stealth performance.The theoretical analysis proves that photonic crystals with this structural design can produce infrared waves within the photonic bandgap,achieving high radar wave transmittance and low infrared emissivity.Infrared stealth is achieved without affecting the absorption performance of the radar stealth layer,and the conflict between radar and infrared stealth performance is resolved.This work aims to promote the application of photonic crystals in compatible stealth materials and the development of stealth technology and to provide a design and theoretical found-ation for related experiments and research.展开更多
Quantum well infrared photodetectors(QWIPs) based on intersubband transitions hold significant potential for high bandwidth operation. In this work, we establish a carrier transport optimization model incorporating el...Quantum well infrared photodetectors(QWIPs) based on intersubband transitions hold significant potential for high bandwidth operation. In this work, we establish a carrier transport optimization model incorporating electron injection at the emitter to investigate the carrier dynamics time and impedance spectroscopy in GaAs/AlGaAs QWIPs. Our findings provide novel evidence that the escape time of electrons is the key limiting factor for the 3-dB bandwidth of QWIPs. Moreover, to characterize the impact of carrier dynamics time and non-equilibrium space charge region on impedance, we developed an equivalent circuit model where depletion region resistance and capacitance are employed to describe non-equilibrium space charge region. Using this model, we discovered that under illumination, both net charge accumulation caused by variations in carrier dynamics times within quantum wells and changes in width of non-equilibrium space charge region exert different dominant influences on depletion region capacitance at various doping concentrations.展开更多
Objective:To evaluate the use of infrared thermography technology for objective and quantitative syndrome differentiation and treatment in traditional Chinese medicine(TCM),specifically in patients with Chaihu Guizhi ...Objective:To evaluate the use of infrared thermography technology for objective and quantitative syndrome differentiation and treatment in traditional Chinese medicine(TCM),specifically in patients with Chaihu Guizhi Ganjiang Decoction syndrome.Methods:Data were collected from over 100 patients diagnosed with Chaihu Guizhi Ganjiang Decoction syndrome at Professor Li Leyu’s endocrinology clinic,Zhongshan Hospital of Traditional Chinese Medicine,Guangdong Province,between April 2021 and April 2022.Body surface temperature data were obtained using the MTI-EXPRO-2013-B infrared thermography system.Principal component analysis(PCA)was applied to differentiate temperature distribution characteristics between genders,and a neural network prediction model was constructed for syndrome diagnosis.Results:Infrared thermography effectively captured surface temperature characteristics of patients with Chaihu Guizhi Ganjiang Decoction syndrome.PCA identified one principal component with a variance explanation rate of 73.953%for females and two principal components with a cumulative variance explanation rate of 77.627%for males.The neural network model demonstrated high predictive performance,with an area under the ROC curve of 0.9743 for the training set and 0.9889 for the validation set.Sensitivity was 1,specificity 0.8636,precision 0.8846,accuracy 0.9333,and the F1 score 0.9388.Conclusion:Infrared thermography provides an innovative,objective,and quantitative method for syndrome differentiation and treatment in TCM.It represents a significant advancement in transitioning from traditional empirical approaches to modern,visualized,and precise diagnosis and treatment.This study underscores the potential of integrating advanced technologies in TCM for enhanced clinical application and modernization.展开更多
Civil infrastructure is continuously subject to aging and deterioration due to multiple factors,which lead to a decline in performance and impact structural health.Accumulated damage on structures increases operationa...Civil infrastructure is continuously subject to aging and deterioration due to multiple factors,which lead to a decline in performance and impact structural health.Accumulated damage on structures increases operational costs and poses significant risks to public safety.Effective maintenance,repair,and rehabilitation strategies are needed to ensure civil infrastructure’s overall safety and reliability.Non-Destructive Evaluation(NDE)methods are utilized to assess latent damage and provide decision-makers with real-time information for mitigating hazards.Within the last decade,there has been a significant increase in the research and development of innovative NDE techniques to improve data processing and promote efficient and accurate infrastructure assessment.This paper aims to review one of those methods,namely,Infrared Thermography(IRT),and its applications in civil infrastructure.A comprehensive review is presented by investigating numerous journal articles,research papers,and technical reports describing numerous IRT applications for bridges,buildings,and general civil structures made from different materials.The capability of IRT to identify and pinpoint anomalies,typically in the early stages of degradation,has excellent potential to improve the safety and shore up the dependability of civil infrastructures while reducing expenses tied to maintenance and rehabilitation.Furthermore,the non-invasive nature of IRT is beneficial in mitigating disturbances and downtime that may occur during various inspection procedures.It is highlighted that IRT is a highly versatile and effective tool for infrastructure condition assessment.With further advancement and fine-tuning of the available techniques,it is likely that IRT will continue to gain significant popularity in maintaining and monitoring civil infrastructure.展开更多
A high precision, high antijamming multipoint infrared telemetry system was developed to measure the piston temperature in internal combustion engine. The temperature at the measuring point is converted into correspon...A high precision, high antijamming multipoint infrared telemetry system was developed to measure the piston temperature in internal combustion engine. The temperature at the measuring point is converted into corresponding voltage signal by the thermo-couple first. Then after the V/F stage, the voltage signal is converted into the frequency signal to drive the infrared light-emitting diode to transmit infrared pulses. At the receiver end, a photosensitive audion receives the infrared pulses. After conversion, the voltage recorded by the receiver stands for the magnitude of temperature at the measuring point. Test results of the system indicate that the system is practical and the system can perform multipoint looping temperature measurements for the piston.展开更多
The infrared absorption method for methane concentration detection is an ideal way to detect methane at present. However, it is difficult to spread this method due to its high cost. In this paper, by using a wideband ...The infrared absorption method for methane concentration detection is an ideal way to detect methane at present. However, it is difficult to spread this method due to its high cost. In this paper, by using a wideband infrared light emitting di- ode (LED) accompanied with a PIN photo electric diode, a low-cost methane detection system was designed. To overcome the shortcomings caused by the wide working band, a differential light path was designed. By means of a differential ratio algo- rithm, the stability and the accuracy of the system were guaranteed. Finally, the validity of the system with the proposed algo- rithm was verified by the experiment results.展开更多
During the discharging of Tokamak devices, interactions between the core plasma and plasma-facing components (PFCs) may cause exorbitant heat deposition in the latter. This poses a grave threat to the lifetimes of PFC...During the discharging of Tokamak devices, interactions between the core plasma and plasma-facing components (PFCs) may cause exorbitant heat deposition in the latter. This poses a grave threat to the lifetimes of PFCs materials. An infrared (IR) diagnostic system consisting of an IR camera and an endoscope was installed on an Experimental Advanced Superconducting Tokamak (EAST) to monitor the surface temperature of the lower divertor target plate (LDTP) and to calculate the corresponding heat flux based on its surface temperature and physical structure, via the finite element method. First, the temperature obtained by the IR camera was calibrated against the temperature measured by the built-in thermocouple of EAST under baking conditions to determine the true temperature of the LDTP. Next, based on the finite element method, a target plate model was built and a discretization of the modeling domain was carried out. Then, a heat conduction equation and boundary conditions were determined. Finally, the heat flux was calculated. The new numerical tool provided results similar to those for DFLUX;this is important for future work on related physical processes and heat flux control.展开更多
The fabrication of Fe2O3-MnO2-Co2O3-CuO system ceramics, and the composite system ceramics of transitional metal oxides-cordierite and transitional metal oxides-kaolinit are presented in this work. The research was ca...The fabrication of Fe2O3-MnO2-Co2O3-CuO system ceramics, and the composite system ceramics of transitional metal oxides-cordierite and transitional metal oxides-kaolinit are presented in this work. The research was carried out with the main attention to the infrared emissivity in the band of 8 similar to 14 mu m at room temperature, the microstructure of the ceramics and the relation between them. High infrared emissivities exceeding 0.9 in the band of 8 similar to 14 mu m at room temperature were gained in the transitional metal oxide ceramics and the composite system ceramics. It is suggested that the formation of inverse spinels and partially inverse spinels, such as Fe3O4, CoFe2O4, CuFe2O4 and CuMn2O4, is beneficial to the enhancement of the infrared emissivity of the transitional metal oxide ceramics. The transitional metal oxides play an important role in determining the infrared emissivity of the composite system ceramics.展开更多
The infrared absorption spectra of different superconducting phase of high Tc super conductor Bi-Sb-Sr-Ca-Cu-O have been measured . The results show that only in the range of 400cm-1 -700cm-1,there is a group of peaks...The infrared absorption spectra of different superconducting phase of high Tc super conductor Bi-Sb-Sr-Ca-Cu-O have been measured . The results show that only in the range of 400cm-1 -700cm-1,there is a group of peaks which changes with different superconducting phases.According to group theory and infrared spectra of CuO, this group of peaks could be assigned to be the [CuO6]octahedron, the [CuO5] pyramid and the [CuO4]plane quadrilateral,but not CU-O plane or CU-O chain. Furthermore, the quasi-three dimensional Cu-O layers consisting of [CuO5] pyramids and proper coupling between them are essential factor for high Tc. It seems that the weaker compling of layers, the higher Tc展开更多
Infrared spectroscopy studies of 2 methyl 4,5 dimethoxy 3 oxo 2H pyridizine (MDOP) in 12 pure organic solvents were undertaken to investigate the solvent solute interactions. The frequencies of the carbonyl (C...Infrared spectroscopy studies of 2 methyl 4,5 dimethoxy 3 oxo 2H pyridizine (MDOP) in 12 pure organic solvents were undertaken to investigate the solvent solute interactions. The frequencies of the carbonyl (C=O) of MDOP were correlated with solvent properties such as solvent acceptor number (AN) and the linear solvation energy relationships (LSER). These frequencies showed a good correlation with the solvent acceptor number (AN) and the LSER.展开更多
The multiple input multiple output(MIMO) systems using serial infrared(SIR),return to zero-inverted(RZI) and on off keying(OOK) modulation were studied. Also, by analyzing experimental results, curve fitting models we...The multiple input multiple output(MIMO) systems using serial infrared(SIR),return to zero-inverted(RZI) and on off keying(OOK) modulation were studied. Also, by analyzing experimental results, curve fitting models were established. Three infrared MIMO systems with 2X2, 2X4 and 4X4 MIMO channels using RZI and OOK modulation were designed and tested. Based on the experimental results, evaluations between BER, distance and displacement were discussed.展开更多
文摘The sciatic functional index(SFI) is a popular parameter for peripheral nerve evaluation that relies on footprints obtained with ink and paper. Drawbacks include smearing artefacts and a lack of dynamic information during measurement. Modern applications use digitized systems that can deliver results with less analytical effort and fewer mice. However, the systems are expensive(€40,000). This study aimed to evaluate the applicability and precision of a self-made, low-cost infrared system for evaluating SFI in mice. Mice were subjected to unilateral sciatic nerve crush injury(crush group; n = 7) and sham operation(sham group; n = 4). They were evaluated on the day before surgery, the 2nd, 4th and 6th days after injury, and then every day up to the 23rd day after injury. We compared two SFI evaluation methods, i.e., conventional inkand-paper SFI(C-SFI) and our infrared system(I-SFI). Our apparatus visualized footprints with totally internally reflected infrared light(950 nm) and a camera that can only detect this wavelength. Additionally we performed an analysis with the ladder beam walking test(LBWT) as a reference test. I-SFI assessment reduced the standard deviation by about 33 percent, from 11.6 to 7.8, and cut the variance around the baseline to 21 percent. The system thus requires fewer measurement repetitions and fewer animals, and cuts the cost of keeping the animals. The apparatus cost €321 to build. Our results show that the process of obtaining the SFI can be made more precise via digitization with a self-made, low-cost infrared system.
文摘Increasing performance parameters of hard disk drive (HDD) such as higher capacity and faster data access speed with decreasing physical size make HDD more susceptible to thermal effects. Contact temperature measurement using thermocouple is not suitable for the rotating platter of HDD. Heat analysis using simulation software requires accurate initial parameter setting such as thermal (initial & boundary) conditions of certain regions. Temperature measurement using infrared (IR) system avoids these limitations;it is non-contact, responsive and does not require initial parameter setting. Thermal pattern distribution can be studied from the thermal images. However, emissivity of the target has to be known and calibration of the system is essential for accurate temperature reading. This paper showed that temperature within the HDD increases with ambient temperature and time, but the thermal distribution pattern in the HDD was not affected by different ambient temperatures. Three wall boundary conditions were conducted to study the thermal distribution pattern in the HDD. A solution was then proposed based on the results obtained from the experiments to improve the heat transfer rate and steady state temperature, and reduce the detrimental effects from high thermal generation in future prototypes. Another important finding was that the averaged temperature of the head cap was generally higher compared to that of the disk, as the spindle motor is the primary heat source within the HDD. Heat source analysis of HDD with IR system allows designers to have better visibility of the temperature generated in different components of the HDD. Proper cooling may enhance disk life as well as ensure the stability and integrity of the system.
基金Supported by the National Pre-research Program during the 14th Five-Year Plan(514010405)。
文摘In response to the scarcity of infrared aircraft samples and the tendency of traditional deep learning to overfit,a few-shot infrared aircraft classification method based on cross-correlation networks is proposed.This method combines two core modules:a simple parameter-free self-attention and cross-attention.By analyzing the self-correlation and cross-correlation between support images and query images,it achieves effective classification of infrared aircraft under few-shot conditions.The proposed cross-correlation network integrates these two modules and is trained in an end-to-end manner.The simple parameter-free self-attention is responsible for extracting the internal structure of the image while the cross-attention can calculate the cross-correlation between images further extracting and fusing the features between images.Compared with existing few-shot infrared target classification models,this model focuses on the geometric structure and thermal texture information of infrared images by modeling the semantic relevance between the features of the support set and query set,thus better attending to the target objects.Experimental results show that this method outperforms existing infrared aircraft classification methods in various classification tasks,with the highest classification accuracy improvement exceeding 3%.In addition,ablation experiments and comparative experiments also prove the effectiveness of the method.
基金Supported by the Short-wave Infrared Camera Systems(B025F40622024)。
文摘The accuracy of spot centroid positioning has a significant impact on the tracking accuracy of the system and the stability of the laser link construction.In satellite laser communication systems,the use of short-wave infrared wavelengths as beacon light can reduce atmospheric absorption and signal attenuation.However,there are strong non-uniformity and blind pixels in the short-wave infrared image,which makes the image distorted and leads to the decrease of spot centroid positioning accuracy.Therefore,the high-precision localization of the spot centroid of the short-wave infrared images is of great research significance.A high-precision spot centroid positioning model for short-wave infrared is proposed to correct for non-uniformity and blind pixels in short-wave infrared images and quantify the localization errors caused by the two,further model-based localization error simulations are performed,and a novel spot centroid positioning payload for satellite laser communications has been designed using the latest 640×512 planar array InGaAs shortwave infrared detector.The experimental results show that the non-uniformity of the corrected image is reduced from 7%to 0.6%,the blind pixels rejection rate reaches 100%,the frame rate can be up to 2000 Hz,and the spot centroid localization accuracy is as high as 0.1 pixel point,which realizes high-precision spot centroid localization of high-frame-frequency short-wave infrared images.
基金Supported by the Natural Science Foundation of China(51705326,52075339)。
文摘In sub nanometer carbon nanotubes,water exhibits unique dynamic characteristics,and in the high-frequency region of the infrared spectrum,where the stretching vibrations of the internal oxygen-hydrogen(O-H)bonds are closely related to the hydrogen bonds(H-bonds)network between water molecules.Therefore,it is crucial to analyze the relationship between these two aspects.In this paper,the infrared spectrum and motion characteristics of the stretching vibrations of the O-H bonds in one-dimensional confined water(1DCW)and bulk water(BW)in(6,6)single-walled carbon nanotubes(SWNT)are studied by molecular dynamics simulations.The results show that the stretching vibrations of the two O-H bonds in 1DCW exhibit different frequencies in the infrared spectrum,while the O-H bonds in BW display two identical main frequency peaks.Further analysis using the spring oscillator model reveals that the difference in the stretching amplitude of the O-H bonds is the main factor causing the change in vibration frequency,where an increase in stretching amplitude leads to a decrease in spring stiffness and,consequently,a lower vibration frequency.A more in-depth study found that the interaction of H-bonds between water molecules is the fundamental cause of the increased stretching amplitude and decreased vibration frequency of the O-H bonds.Finally,by analyzing the motion trajectory of the H atoms,the dynamic differences between 1DCW and BW are clearly revealed.These findings provide a new perspective for understanding the behavior of water molecules at the nanoscale and are of significant importance in advancing the development of infrared spectroscopy detection technology.
基金financially supported by the Natural Science Foundation of Jiangsu Province(Grant No.BK20241181)the State Key Laboratory of AnalyticalChemistry for Life Science,School of Chemistry and Chemical Engineering,Nanjing University(Grant No.SKLACLS2419)。
文摘Using 2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran(TCF)as a near-infrared fluorescent chromophore,we designed and synthesized a TCF-based fluorescent probe TCF-NS by introducing 2,4-dinitrophenyl ether as the recognized site for H_(2)S.The probe TCF-NS displayed a rapid-response fluorescent against H_(2)S with high sensitivity and selection but had no significant fluorescence response to other biothiols.Furthermore,TCF-NS was applied to sense H_(2)S in living cells successfully with minimized cytotoxicity and a large Stokes shift.
文摘This communication looks at the photo-oxidation of polythene and polypropylene plastic bottle tops that are placed on soil in a hot arid environment. The degree of oxidation of the plastic is monitored by FT-IR spectroscopy. It is noted that while different bottle top types photo-oxidize at different rates, all show an appreciable level of oxidation after half a year of exposure to the environment. The oxidation leads to brittleness of the plastic, which leads to fissure formation in bottle tops of little thickness. This leads to fragmentation of the material upon impact, making plastic bottle tops an appreciable source of microplastics.
基金support from the National Natural Science Foundation of China(52373077,52003106,52103074,52233006,52161135302)the Research Foundation Flanders(G0F2322N)Innovation Program of Shanghai Municipal Education Commission(2021-01-07-00-03-E00108).
文摘Designing and fabricating a compatible low-reflectivity electromagnetic interference(EMI)shielding/high-temperature resistant infrared stealth material possesses a critical significance in the field of military.Hence,a hierarchical polyimide(PI)nonwoven fabric is fabricated by alkali treatment,in-situ growth of magnetic particles and"self-activated"electroless Ag plating process.Especially,the hierarchical impedance matching can be constructed by systematically assembling Fe_(3)O_(4)/Ag-loaded PI nonwoven fabric(PFA)and pure Ag-coated PI nonwoven fabric(PA),endowing it with an ultralowreflectivity EMI shielding performance.In addition,thermal insulation of fluffy three-dimensional(3D)space structure in PFA and low infrared emissivity of PA originated from Ag plating bring an excellent infrared stealth performance.More importantly,the strong bonding interaction between Fe_(3)O_(4),Ag,and PI fiber improves thermal stability in EMI shielding and high-temperature resistant infrared stealth performance.Such excellent comprehensive performance makes it promising for military tents to protect internal equipment from electromagnetic interference stemmed from adjacent equipment and/or enemy,and inhibit external infrared detection.
基金supported by the Key Research and Development Program of Sichuan Province(Grant No.2023ZHCG0050)the Fundamental Research Funds for the Central Universities of China(Grant No.2682024QZ006 and 2682024ZTPY042)the Analytic and Testing Center of Southwest Jiaotong University.
文摘As modern communication and detection technologies advance at a swift pace,multifunctional electromagnetic interference(EMI)shielding materials with active/positive infrared stealth,hydrophobicity,and electric-thermal conversion ability have received extensive attention.Meeting the aforesaid requirements simultaneously remains a huge challenge.In this research,the melamine foam(MF)/polypyrrole(PPy)nanowire arrays(MF@PPy)were fabricated via one-step electrochemical polymerization.The hierarchical MF@PPy foam was composed of three-dimensional PPy micro-skeleton and ordered PPy nanowire arrays.Due to the upwardly grown PPy nanowire arrays,the MF@PPy foam possessed good hydrophobicity ability with a water contact angle of 142.00°and outstanding stability under various harsh environments.Meanwhile,the MF@PPy foam showed excellent thermal insulation property on account of the low thermal conductivity and elongated ligament characteristic of PPy nanowire arrays.Furthermore,taking advantage of the high conductivity(128.2 S m^(-1)),the MF@PPy foam exhibited rapid Joule heating under 3 V,resulting in dynamic infrared stealth and thermal camouflage effects.More importantly,the MF@PPy foam exhibited remarkable EMI shielding effectiveness values of 55.77 dB and 19,928.57 dB cm^(2)g^(-1).Strong EMI shielding was put down to the hierarchically porous PPy structure,which offered outstanding impedance matching,conduction loss,and multiple attenuations.This innovative approach provides significant insights to the development of advanced multifunctional EMI shielding foams by constructing PPy nanowire arrays,showing great applications in both military and civilian fields.
基金supported by the National Natural Science Foundation of China(Nos.52071053,U1704253,and 52103334).
文摘Traditional stealth materials do not fulfill the requirements of high absorption for radar waves and low emissivity for infrared waves.Furthermore,they can be detected by various technologies,considerably threatening weapon safety.Therefore,a stealth material compatible with radar and infrared was designed based on the photonic bandgap characteristics of photonic crystals.The radar stealth lay-er(bottom layer)is a composite of carbonyl iron/silicon dioxide/epoxy resin,and the infrared stealth layer(top layer)is a 1D photonic crystal with alternately and periodically stacked germanium and silicon nitride.Through composition optimization and structural adjust-ment,the effective absorption bandwidth of the compatible stealth material with a reflection loss of less than-10 dB has reached 4.95 GHz.The average infrared emissivity of the proposed design is 0.1063,indicating good stealth performance.The theoretical analysis proves that photonic crystals with this structural design can produce infrared waves within the photonic bandgap,achieving high radar wave transmittance and low infrared emissivity.Infrared stealth is achieved without affecting the absorption performance of the radar stealth layer,and the conflict between radar and infrared stealth performance is resolved.This work aims to promote the application of photonic crystals in compatible stealth materials and the development of stealth technology and to provide a design and theoretical found-ation for related experiments and research.
基金financially supported by the National Natural Science Foundation of China (Grant No. 61991442)。
文摘Quantum well infrared photodetectors(QWIPs) based on intersubband transitions hold significant potential for high bandwidth operation. In this work, we establish a carrier transport optimization model incorporating electron injection at the emitter to investigate the carrier dynamics time and impedance spectroscopy in GaAs/AlGaAs QWIPs. Our findings provide novel evidence that the escape time of electrons is the key limiting factor for the 3-dB bandwidth of QWIPs. Moreover, to characterize the impact of carrier dynamics time and non-equilibrium space charge region on impedance, we developed an equivalent circuit model where depletion region resistance and capacitance are employed to describe non-equilibrium space charge region. Using this model, we discovered that under illumination, both net charge accumulation caused by variations in carrier dynamics times within quantum wells and changes in width of non-equilibrium space charge region exert different dominant influences on depletion region capacitance at various doping concentrations.
基金Zhongshan Science and Technology Bureau Project“The Application of Infrared Thermography in the Syndrome Differentiation of Chaihu Guizhi Ganjiang Decoction”(Project No.2021B1066)Zhongshan Science and Technology Bureau Project“Exploring the Diagnostic Approach of the TCM Syndrome Type‘Chaihu Guizhi Ganjiang Decoction’Based on Infrared Thermal Imaging Systems and Digital Modeling Methods of Ancient and Modern Literature”(Project No.2022B1131)。
文摘Objective:To evaluate the use of infrared thermography technology for objective and quantitative syndrome differentiation and treatment in traditional Chinese medicine(TCM),specifically in patients with Chaihu Guizhi Ganjiang Decoction syndrome.Methods:Data were collected from over 100 patients diagnosed with Chaihu Guizhi Ganjiang Decoction syndrome at Professor Li Leyu’s endocrinology clinic,Zhongshan Hospital of Traditional Chinese Medicine,Guangdong Province,between April 2021 and April 2022.Body surface temperature data were obtained using the MTI-EXPRO-2013-B infrared thermography system.Principal component analysis(PCA)was applied to differentiate temperature distribution characteristics between genders,and a neural network prediction model was constructed for syndrome diagnosis.Results:Infrared thermography effectively captured surface temperature characteristics of patients with Chaihu Guizhi Ganjiang Decoction syndrome.PCA identified one principal component with a variance explanation rate of 73.953%for females and two principal components with a cumulative variance explanation rate of 77.627%for males.The neural network model demonstrated high predictive performance,with an area under the ROC curve of 0.9743 for the training set and 0.9889 for the validation set.Sensitivity was 1,specificity 0.8636,precision 0.8846,accuracy 0.9333,and the F1 score 0.9388.Conclusion:Infrared thermography provides an innovative,objective,and quantitative method for syndrome differentiation and treatment in TCM.It represents a significant advancement in transitioning from traditional empirical approaches to modern,visualized,and precise diagnosis and treatment.This study underscores the potential of integrating advanced technologies in TCM for enhanced clinical application and modernization.
文摘Civil infrastructure is continuously subject to aging and deterioration due to multiple factors,which lead to a decline in performance and impact structural health.Accumulated damage on structures increases operational costs and poses significant risks to public safety.Effective maintenance,repair,and rehabilitation strategies are needed to ensure civil infrastructure’s overall safety and reliability.Non-Destructive Evaluation(NDE)methods are utilized to assess latent damage and provide decision-makers with real-time information for mitigating hazards.Within the last decade,there has been a significant increase in the research and development of innovative NDE techniques to improve data processing and promote efficient and accurate infrastructure assessment.This paper aims to review one of those methods,namely,Infrared Thermography(IRT),and its applications in civil infrastructure.A comprehensive review is presented by investigating numerous journal articles,research papers,and technical reports describing numerous IRT applications for bridges,buildings,and general civil structures made from different materials.The capability of IRT to identify and pinpoint anomalies,typically in the early stages of degradation,has excellent potential to improve the safety and shore up the dependability of civil infrastructures while reducing expenses tied to maintenance and rehabilitation.Furthermore,the non-invasive nature of IRT is beneficial in mitigating disturbances and downtime that may occur during various inspection procedures.It is highlighted that IRT is a highly versatile and effective tool for infrastructure condition assessment.With further advancement and fine-tuning of the available techniques,it is likely that IRT will continue to gain significant popularity in maintaining and monitoring civil infrastructure.
文摘A high precision, high antijamming multipoint infrared telemetry system was developed to measure the piston temperature in internal combustion engine. The temperature at the measuring point is converted into corresponding voltage signal by the thermo-couple first. Then after the V/F stage, the voltage signal is converted into the frequency signal to drive the infrared light-emitting diode to transmit infrared pulses. At the receiver end, a photosensitive audion receives the infrared pulses. After conversion, the voltage recorded by the receiver stands for the magnitude of temperature at the measuring point. Test results of the system indicate that the system is practical and the system can perform multipoint looping temperature measurements for the piston.
文摘The infrared absorption method for methane concentration detection is an ideal way to detect methane at present. However, it is difficult to spread this method due to its high cost. In this paper, by using a wideband infrared light emitting di- ode (LED) accompanied with a PIN photo electric diode, a low-cost methane detection system was designed. To overcome the shortcomings caused by the wide working band, a differential light path was designed. By means of a differential ratio algo- rithm, the stability and the accuracy of the system were guaranteed. Finally, the validity of the system with the proposed algo- rithm was verified by the experiment results.
基金supported by the National Natural Science Foundation of China(Nos.51505120 and 11105028)the National Magnetic Confinement Fusion Science Program of China(No.2015GB102004)
文摘During the discharging of Tokamak devices, interactions between the core plasma and plasma-facing components (PFCs) may cause exorbitant heat deposition in the latter. This poses a grave threat to the lifetimes of PFCs materials. An infrared (IR) diagnostic system consisting of an IR camera and an endoscope was installed on an Experimental Advanced Superconducting Tokamak (EAST) to monitor the surface temperature of the lower divertor target plate (LDTP) and to calculate the corresponding heat flux based on its surface temperature and physical structure, via the finite element method. First, the temperature obtained by the IR camera was calibrated against the temperature measured by the built-in thermocouple of EAST under baking conditions to determine the true temperature of the LDTP. Next, based on the finite element method, a target plate model was built and a discretization of the modeling domain was carried out. Then, a heat conduction equation and boundary conditions were determined. Finally, the heat flux was calculated. The new numerical tool provided results similar to those for DFLUX;this is important for future work on related physical processes and heat flux control.
基金The research is supported by the Foundation for Excellent Youth of Wuhan Science and Technology Commission and Opening Foundation of Stae Key Laboratory of Advanced Technology for Materials Synthesis and Process of Wuhan University of Technology.
文摘The fabrication of Fe2O3-MnO2-Co2O3-CuO system ceramics, and the composite system ceramics of transitional metal oxides-cordierite and transitional metal oxides-kaolinit are presented in this work. The research was carried out with the main attention to the infrared emissivity in the band of 8 similar to 14 mu m at room temperature, the microstructure of the ceramics and the relation between them. High infrared emissivities exceeding 0.9 in the band of 8 similar to 14 mu m at room temperature were gained in the transitional metal oxide ceramics and the composite system ceramics. It is suggested that the formation of inverse spinels and partially inverse spinels, such as Fe3O4, CoFe2O4, CuFe2O4 and CuMn2O4, is beneficial to the enhancement of the infrared emissivity of the transitional metal oxide ceramics. The transitional metal oxides play an important role in determining the infrared emissivity of the composite system ceramics.
文摘The infrared absorption spectra of different superconducting phase of high Tc super conductor Bi-Sb-Sr-Ca-Cu-O have been measured . The results show that only in the range of 400cm-1 -700cm-1,there is a group of peaks which changes with different superconducting phases.According to group theory and infrared spectra of CuO, this group of peaks could be assigned to be the [CuO6]octahedron, the [CuO5] pyramid and the [CuO4]plane quadrilateral,but not CU-O plane or CU-O chain. Furthermore, the quasi-three dimensional Cu-O layers consisting of [CuO5] pyramids and proper coupling between them are essential factor for high Tc. It seems that the weaker compling of layers, the higher Tc
文摘Infrared spectroscopy studies of 2 methyl 4,5 dimethoxy 3 oxo 2H pyridizine (MDOP) in 12 pure organic solvents were undertaken to investigate the solvent solute interactions. The frequencies of the carbonyl (C=O) of MDOP were correlated with solvent properties such as solvent acceptor number (AN) and the linear solvation energy relationships (LSER). These frequencies showed a good correlation with the solvent acceptor number (AN) and the LSER.
基金Supported by the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDA17040401)
文摘The multiple input multiple output(MIMO) systems using serial infrared(SIR),return to zero-inverted(RZI) and on off keying(OOK) modulation were studied. Also, by analyzing experimental results, curve fitting models were established. Three infrared MIMO systems with 2X2, 2X4 and 4X4 MIMO channels using RZI and OOK modulation were designed and tested. Based on the experimental results, evaluations between BER, distance and displacement were discussed.