Based on the analysis of status quo of metadata technology and the informationized freezing construction of an auxiliary shaft in Longgu mine, the necessity and feasibility of applying metadata standards for informati...Based on the analysis of status quo of metadata technology and the informationized freezing construction of an auxiliary shaft in Longgu mine, the necessity and feasibility of applying metadata standards for informationized construction is discussed. The prototype of metadata standard for the construction is designed and established by using a modeling method, and the framework with XML/RDF for such standard is given.展开更多
Objective:The study was to analyze the application effect of informationized teaching method based on evidence-based nursing in surgical nursing teaching.Methods:From December 2019 to December 2020,60 students were se...Objective:The study was to analyze the application effect of informationized teaching method based on evidence-based nursing in surgical nursing teaching.Methods:From December 2019 to December 2020,60 students were selected as the research objects and randomly divided into two groups,each with 30 students in the teaching group.The observation group applied informationized teaching based on evidence-based nursing method,and the control group used the traditional teaching model.The teaching effect was evaluated.Results:The test scores of subjective theoretical knowledge and objective theoretical knowledge of the observation group were significantly higher than those of the control group,and the comprehensive ability evaluation of the observation group was also higher(P<0.05).The majority of students accepted the informationized teaching method based on evidence-based nursing,and a few held a neutral or disapproval attitude.Conclusion:Informationized teaching method based on evidencebased nursing can improve students'theoretical and practical levels in surgical nursing teaching,and most students also accept this teaching method,which has application value.展开更多
为了保证运维阶段桥梁结构安全,提升桥梁运维工作的效率,开展公路混凝土梁式桥运维阶段建筑信息模型(building information modeling,BIM)技术应用研究。在对公路桥梁现行编码体系进行扩展的基础上,提出1种参数化快速建模方法,以快速完...为了保证运维阶段桥梁结构安全,提升桥梁运维工作的效率,开展公路混凝土梁式桥运维阶段建筑信息模型(building information modeling,BIM)技术应用研究。在对公路桥梁现行编码体系进行扩展的基础上,提出1种参数化快速建模方法,以快速完成桥梁构件族的创建与整体模型的集成。借助Autodesk Revit软件应用程序编程接口(application programming interface,API),采用C#语言,开发公路混凝土梁式桥智慧运维状态评估系统,以实际工程应用进行验证分析。研究结果表明:全面统一的桥梁信息编码体系,能够提高桥梁信息统计与检索效率;提出的快速建模方法能够显著减少建模工作量,建模时间较传统建模方法可减少60%,并保证模型的准确性与规范性;运维状态评估系统能够实现养护数据的充分利用与桥梁评定工作的自动化,通过对桥梁运维信息的有效组织,实现服役性能的长期追踪,从而确保运营期桥梁结构状态安全稳定。研究结果可为公路混凝土梁式桥运维管理提供技术支撑,提升桥梁运维的数字化水平。展开更多
Ecological monitoring vehicles are equipped with a range of sensors and monitoring devices designed to gather data on ecological and environmental factors.These vehicles are crucial in various fields,including environ...Ecological monitoring vehicles are equipped with a range of sensors and monitoring devices designed to gather data on ecological and environmental factors.These vehicles are crucial in various fields,including environmental science research,ecological and environmental monitoring projects,disaster response,and emergency management.A key method employed in these vehicles for achieving high-precision positioning is LiDAR(lightlaser detection and ranging)-Visual Simultaneous Localization and Mapping(SLAM).However,maintaining highprecision localization in complex scenarios,such as degraded environments or when dynamic objects are present,remains a significant challenge.To address this issue,we integrate both semantic and texture information from LiDAR and cameras to enhance the robustness and efficiency of data registration.Specifically,semantic information simplifies the modeling of scene elements,reducing the reliance on dense point clouds,which can be less efficient.Meanwhile,visual texture information complements LiDAR-Visual localization by providing additional contextual details.By incorporating semantic and texture details frompaired images and point clouds,we significantly improve the quality of data association,thereby increasing the success rate of localization.This approach not only enhances the operational capabilities of ecological monitoring vehicles in complex environments but also contributes to improving the overall efficiency and effectiveness of ecological monitoring and environmental protection efforts.展开更多
This study was aimed to prepare landslide susceptibility maps for the Pithoragarh district in Uttarakhand,India,using advanced ensemble models that combined Radial Basis Function Networks(RBFN)with three ensemble lear...This study was aimed to prepare landslide susceptibility maps for the Pithoragarh district in Uttarakhand,India,using advanced ensemble models that combined Radial Basis Function Networks(RBFN)with three ensemble learning techniques:DAGGING(DG),MULTIBOOST(MB),and ADABOOST(AB).This combination resulted in three distinct ensemble models:DG-RBFN,MB-RBFN,and AB-RBFN.Additionally,a traditional weighted method,Information Value(IV),and a benchmark machine learning(ML)model,Multilayer Perceptron Neural Network(MLP),were employed for comparison and validation.The models were developed using ten landslide conditioning factors,which included slope,aspect,elevation,curvature,land cover,geomorphology,overburden depth,lithology,distance to rivers and distance to roads.These factors were instrumental in predicting the output variable,which was the probability of landslide occurrence.Statistical analysis of the models’performance indicated that the DG-RBFN model,with an Area Under ROC Curve(AUC)of 0.931,outperformed the other models.The AB-RBFN model achieved an AUC of 0.929,the MB-RBFN model had an AUC of 0.913,and the MLP model recorded an AUC of 0.926.These results suggest that the advanced ensemble ML model DG-RBFN was more accurate than traditional statistical model,single MLP model,and other ensemble models in preparing trustworthy landslide susceptibility maps,thereby enhancing land use planning and decision-making.展开更多
The emergence of next generation networks(NextG),including 5G and beyond,is reshaping the technological landscape of cellular and mobile networks.These networks are sufficiently scaled to interconnect billions of user...The emergence of next generation networks(NextG),including 5G and beyond,is reshaping the technological landscape of cellular and mobile networks.These networks are sufficiently scaled to interconnect billions of users and devices.Researchers in academia and industry are focusing on technological advancements to achieve highspeed transmission,cell planning,and latency reduction to facilitate emerging applications such as virtual reality,the metaverse,smart cities,smart health,and autonomous vehicles.NextG continuously improves its network functionality to support these applications.Multiple input multiple output(MIMO)technology offers spectral efficiency,dependability,and overall performance in conjunctionwithNextG.This article proposes a secure channel estimation technique in MIMO topology using a norm-estimation model to provide comprehensive insights into protecting NextG network components against adversarial attacks.The technique aims to create long-lasting and secure NextG networks using this extended approach.The viability of MIMO applications and modern AI-driven methodologies to combat cybersecurity threats are explored in this research.Moreover,the proposed model demonstrates high performance in terms of reliability and accuracy,with a 20%reduction in the MalOut-RealOut-Diff metric compared to existing state-of-the-art techniques.展开更多
With the rapid expansion of social media,analyzing emotions and their causes in texts has gained significant importance.Emotion-cause pair extraction enables the identification of causal relationships between emotions...With the rapid expansion of social media,analyzing emotions and their causes in texts has gained significant importance.Emotion-cause pair extraction enables the identification of causal relationships between emotions and their triggers within a text,facilitating a deeper understanding of expressed sentiments and their underlying reasons.This comprehension is crucial for making informed strategic decisions in various business and societal contexts.However,recent research approaches employing multi-task learning frameworks for modeling often face challenges such as the inability to simultaneouslymodel extracted features and their interactions,or inconsistencies in label prediction between emotion-cause pair extraction and independent assistant tasks like emotion and cause extraction.To address these issues,this study proposes an emotion-cause pair extraction methodology that incorporates joint feature encoding and task alignment mechanisms.The model consists of two primary components:First,joint feature encoding simultaneously generates features for emotion-cause pairs and clauses,enhancing feature interactions between emotion clauses,cause clauses,and emotion-cause pairs.Second,the task alignment technique is applied to reduce the labeling distance between emotion-cause pair extraction and the two assistant tasks,capturing deep semantic information interactions among tasks.The proposed method is evaluated on a Chinese benchmark corpus using 10-fold cross-validation,assessing key performance metrics such as precision,recall,and F1 score.Experimental results demonstrate that the model achieves an F1 score of 76.05%,surpassing the state-of-the-art by 1.03%.The proposed model exhibits significant improvements in emotion-cause pair extraction(ECPE)and cause extraction(CE)compared to existing methods,validating its effectiveness.This research introduces a novel approach based on joint feature encoding and task alignment mechanisms,contributing to advancements in emotion-cause pair extraction.However,the study’s limitation lies in the data sources,potentially restricting the generalizability of the findings.展开更多
Modal parameters can accurately characterize the structural dynamic properties and assess the physical state of the structure.Therefore,it is particularly significant to identify the structural modal parameters accordi...Modal parameters can accurately characterize the structural dynamic properties and assess the physical state of the structure.Therefore,it is particularly significant to identify the structural modal parameters according to the monitoring data information in the structural health monitoring(SHM)system,so as to provide a scientific basis for structural damage identification and dynamic model modification.In view of this,this paper reviews methods for identifying structural modal parameters under environmental excitation and briefly describes how to identify structural damages based on the derived modal parameters.The paper primarily introduces data-driven modal parameter recognition methods(e.g.,time-domain,frequency-domain,and time-frequency-domain methods,etc.),briefly describes damage identification methods based on the variations of modal parameters(e.g.,natural frequency,modal shapes,and curvature modal shapes,etc.)and modal validation methods(e.g.,Stability Diagram and Modal Assurance Criterion,etc.).The current status of the application of artificial intelligence(AI)methods in the direction of modal parameter recognition and damage identification is further discussed.Based on the pre-vious analysis,the main development trends of structural modal parameter recognition and damage identification methods are given to provide scientific references for the optimized design and functional upgrading of SHM systems.展开更多
We present a new perspective on the P vs NP problem by demonstrating that its answer is inherently observer-dependent in curved spacetime, revealing an oversight in the classical formulation of computational complexit...We present a new perspective on the P vs NP problem by demonstrating that its answer is inherently observer-dependent in curved spacetime, revealing an oversight in the classical formulation of computational complexity theory. By incorporating general relativistic effects into complexity theory through a gravitational correction factor, we prove that problems can transition between complexity classes depending on the observer’s reference frame and local gravitational environment. This insight emerges from recognizing that the definition of polynomial time implicitly assumes a universal time metric, an assumption that breaks down in curved spacetime due to gravitational time dilation. We demonstrate the existence of gravitational phase transitions in problem complexity, where an NP-complete problem in one reference frame becomes polynomially solvable in another frame experiencing extreme gravitational time dilation. Through rigorous mathematical formulation, we establish a gravitationally modified complexity theory that extends classical complexity classes to incorporate observer-dependent effects, leading to a complete framework for understanding how computational complexity transforms across different spacetime reference frames. This finding parallels other self-referential insights in mathematics and physics, such as Gödel’s incompleteness theorems and Einstein’s relativity, suggesting a deeper connection between computation, gravitation, and the nature of mathematical truth.展开更多
In reward-based crowdfunding, projects are to disclose the operational risks and mitigation strategies for delivering the physical rewards during the funding phase. However, limited knowledge exists regarding projects...In reward-based crowdfunding, projects are to disclose the operational risks and mitigation strategies for delivering the physical rewards during the funding phase. However, limited knowledge exists regarding projects’ operational risks and mitigation strategies during the funding phase. In contributing to the literature, the study uses data on Kickstarter.com and conducts a content analysis to explore themes and their relationships. The results reveal various operational risks and associated mitigation strategies. Among the identified themes, product-related, contract manufacturers, and supply markets are the most expected risks, while outsourced production and proactive sourcing are the popular mitigation strategies. Also, the finding reveals that proactive sourcing and outsourced production, in-house production and post-campaign sourcing, contract manufacturer risk, and project internal risk are themes forming clusters. The results extend crowdfunding risk disclosure literature and set the tone for future research in crowdfunding operational risk management. Finally, other business implications are drawn for crowdfunding practitioners.展开更多
New Rules to Label Al-generated Content to Increase Transparency,A new directive aimed at the AI sector has been released recently to increase transparency and user safety by enforcing mandatory labeling of Al-generat...New Rules to Label Al-generated Content to Increase Transparency,A new directive aimed at the AI sector has been released recently to increase transparency and user safety by enforcing mandatory labeling of Al-generated content.China's National Internet Information Office(NIIO),the Ministry of Industry and Information Technology and public security and broadcast agencies issued the finalized rules on March 14,which will come into force from September 1.The notice,Measures for the Labeling of AI-Generated Content Identification,comes in response to the spread of false information,Al-related fraud and the misuse of technologies which are becoming rife amid the fast development of AI,the NIIO said.展开更多
In this paper the authors consider the operational problem of optimal signalling and control,called control-coding capacity(with feedback),C_(FB) in bits/second,of discrete-time nonlinear partially observable stochast...In this paper the authors consider the operational problem of optimal signalling and control,called control-coding capacity(with feedback),C_(FB) in bits/second,of discrete-time nonlinear partially observable stochastic systems in state space form,subject to an average cost constraint.C_(FB) is the maximum rate of encoding signals or messages into randomized controller-encoder strategies with feedback,which control the state of the system,and reproducing the messages at the output of the system using a decoder or estimator with arbitrary small asymptotic error probability.In the first part of the paper,the authors characterize C_(FB) by an information theoretic optimization problem of maximizing directed information from the inputs to the outputs of the system,over randomized strategies(controller-encoders).The authors derive equivalent characterizations of C_(FB),using randomized strategies generated by either uniform or arbitrary distributed random variables(RVs),sufficient statistics,and a posteriori distributions of nonlinear filtering theory.In the second part of the paper,the authors analyze C_(FB) for linear-quadratic Gaussian partially observable stochastic systems(LQG-POSSs).The authors show that randomized strategies consist of control,estimation and signalling parts,and the sufficient statistics are,two Kalman-filters and an orthogonal innovations process.The authors prove a semi-separation principle which states,the optimal control strategy is determined explicitly from the solution of a control matrix difference Riccati equation(DRE),independently of the estimation and signalling strategies.Finally,the authors express the optimization problem of C_(FB) in terms of two filtering matrix DREs,a control matrix DRE,and the covariance of the innovations process.Throughout the paper,the authors illustrate that the expression of C_(FB) includes as degenerate cases,problems of stochastic optimal control and channel capacity of information transmission.展开更多
Changing a person’s posture and low resolution are the key challenges for person re-identification(ReID)in various deep learning applications.In this paper,we introduce an innovative architecture using a dual attenti...Changing a person’s posture and low resolution are the key challenges for person re-identification(ReID)in various deep learning applications.In this paper,we introduce an innovative architecture using a dual attention network that includes an attentionmodule and a joint measurement module of spatial-temporal information.The proposed approach can be classified into two main tasks.Firstly,the spatial attention feature map is formed by aggregating features in the spatial dimension.Additionally,the same operation is carried out on the channel dimension to formchannel attention featuremaps.Therefore,the receptive field size is adjusted adaptively tomitigate the changing person posture issue.Secondly,we use a joint measurement method for the spatial-temporal information to fully harness the data,and it can also naturally integrate the information into the visual features of supervised ReID and hence overcome the low resolution problem.The experimental results indicate that our proposed algorithm markedly improves the accuracy in addressing changing human postures and low-resolution issues compared with contemporary leading techniques.The proposed method shows superior outcomes on widely recognized benchmarks,which are the Market-1501,MSMT17,and DukeMTMC-reID datasets.Furthermore,the proposed algorithmattains a Rank-1 accuracy of 97.4% and 94.9% mAP(mean Average Precision)on the Market-1501 dataset.Moreover,it achieves a 94.2% Rank-1 accuracy and 91.8% mAP on the DukeMTMC-reID dataset.展开更多
Climate downscaling is used to transform large-scale meteorological data into small-scale data with enhanced detail,which finds wide applications in climate modeling,numerical weather forecasting,and renewable energy....Climate downscaling is used to transform large-scale meteorological data into small-scale data with enhanced detail,which finds wide applications in climate modeling,numerical weather forecasting,and renewable energy.Although deeplearning-based downscaling methods effectively capture the complex nonlinear mapping between meteorological data of varying scales,the supervised deep-learning-based downscaling methods suffer from insufficient high-resolution data in practice,and unsupervised methods struggle with accurately inferring small-scale specifics from limited large-scale inputs due to small-scale uncertainty.This article presents DualDS,a dual-learning framework utilizing a Generative Adversarial Network–based neural network and subgrid-scale auxiliary information for climate downscaling.Such a learning method is unified in a two-stream framework through up-and downsamplers,where the downsampler is used to simulate the information loss process during the upscaling,and the upsampler is used to reconstruct lost details and correct errors incurred during the upscaling.This dual learning strategy can eliminate the dependence on high-resolution ground truth data in the training process and refine the downscaling results by constraining the mapping process.Experimental findings demonstrate that DualDS is comparable to several state-of-the-art deep learning downscaling approaches,both qualitatively and quantitatively.Specifically,for a single surface-temperature data downscaling task,our method is comparable with other unsupervised algorithms with the same dataset,and we can achieve a 0.469 dB higher peak signal-to-noise ratio,0.017 higher structural similarity,0.08 lower RMSE,and the best correlation coefficient.In summary,this paper presents a novel approach to addressing small-scale uncertainty issues in unsupervised downscaling processes.展开更多
This paper selects the Corporate Social Responsibility(CSR)index from Hexun.com(2010–2020)and the stock price crash index of China’s Shanghai and Shenzhen A-share listed companies from the China Stock Market&Acc...This paper selects the Corporate Social Responsibility(CSR)index from Hexun.com(2010–2020)and the stock price crash index of China’s Shanghai and Shenzhen A-share listed companies from the China Stock Market&Accounting Research Database(CSMAR)for empirical analysis.By examining the impact of CSR performance on stock price crash risk,this study identifies key relationships and further investigates the moderating role of media promotion and communication as an intermediary to explore the transmission mechanisms and influence between the two.The empirical results indicate that CSR performance is significantly negatively correlated with stock price crash risk,suggesting that strong CSR performance can effectively reduce the likelihood of a stock price crash.Furthermore,additional analysis reveals that media plays a moderating role in the relationship between CSR performance and stock price crash risk.This study aims to contribute to the understanding of the formation mechanisms and analytical paradigms of factors influencing stock price crash risk while providing theoretical support and reference value for risk prevention strategies.展开更多
General Rules Journal of Polyphenols publishes research articles,reviews and short communications in English,on the fields of the science and technology of plant polyphenols.
Objective: This study evaluates the impact of handshake and information support on patients’ outcomes during laparoscopic cholecystectomy. It examines the effects on their physiological and psychological responses an...Objective: This study evaluates the impact of handshake and information support on patients’ outcomes during laparoscopic cholecystectomy. It examines the effects on their physiological and psychological responses and overall satisfaction with nursing care. Methods: A total of 84 patients scheduled for laparoscopic cholecystectomy were selected through convenient sampling and randomly assigned to either the control group or the intervention group using a random number table. Each group consisted of 42 patients. The control group received standard surgical nursing care. In addition to standard care, the intervention group received handshake and information support from the circulating nurse before anesthesia induction. Vital signs were recorded before surgery and before anesthesia induction. Anxiety levels were measured using the State-Trait Anxiety Inventory (STAI) and the State-Anxiety Inventory (S-AI), while nursing satisfaction was assessed using a numerical rating scale. Results: No significant differences were found between the two groups in systolic and diastolic blood pressures before surgery and anesthesia induction (P > 0.05). However, there was a significant difference in heart rate before anesthesia induction (P Conclusion: Providing handshake and information support before anesthesia induction effectively reduces stress, alleviates anxiety, and enhances comfort and satisfaction among patients undergoing laparoscopic cholecystectomy.展开更多
The security of information transmission and processing due to unknown vulnerabilities and backdoors in cyberspace is becoming increasingly problematic.However,there is a lack of effective theory to mathematically dem...The security of information transmission and processing due to unknown vulnerabilities and backdoors in cyberspace is becoming increasingly problematic.However,there is a lack of effective theory to mathematically demonstrate the security of information transmission and processing under nonrandom noise(or vulnerability backdoor attack)conditions in cyberspace.This paper first proposes a security model for cyberspace information transmission and processing channels based on error correction coding theory.First,we analyze the fault tolerance and non-randomness problem of Dynamic Heterogeneous Redundancy(DHR)structured information transmission and processing channel under the condition of non-random noise or attacks.Secondly,we use a mathematical statistical method to demonstrate that for non-random noise(or attacks)on discrete memory channels,there exists a DHR-structured channel and coding scheme that enables the average system error probability to be arbitrarily small.Finally,to construct suitable coding and heterogeneous channels,we take Turbo code as an example and simulate the effects of different heterogeneity,redundancy,output vector length,verdict algorithm and dynamism on the system,which is an important guidance for theory and engineering practice.展开更多
Objectives:This study aimed to evaluate the measurement properties and methodological quality of instruments developed to evaluate the quality of online health information.Methods:In this study,a systematic search was...Objectives:This study aimed to evaluate the measurement properties and methodological quality of instruments developed to evaluate the quality of online health information.Methods:In this study,a systematic search was conducted across a range of databases,including the China National Knowledge Infrastructure(CNKI),Wanfang,China Science and Technology Journal(VIP),SinoMed,PubMed,Web of Science,CINAHL,Embase,the Cochrane Library,PsycINFO,and Scopus.The search period spanned from the inception of the databases to October 2023.Two researchers independently conducted the literature screening and data extraction.The methodological quality of the included studies was assessed using the Consensus-based Standards for the Selection of Health Measurement Instruments(COSMIN)Risk of Bias checklist.The measurement properties were evaluated using the coSMIN criteria.The modified Grading,Recommendations,Assessment,Development,and Evaluation(GRADE)system was used to determine the quality grade.Results:A total of 18 studies were included,and the measurement properties of 17 scales were assessed.Fifteen scales had content validity,three had structural validity,six had internal consistency,two had test-retest reliability,nine had interater reliability,one had measurement error,six instruments had criterion validity,and three scales had hypotheses testing for construct validity;however,the evaluation of their methodological quality and measurement properties revealed deficiencies.Of these 17 scales,15 were assigned a Level B recommendation,and two received a Level C recommendation.Conclusions:The Health Information Website Evaluation Tool(HIWET)can be temporarily used to evaluate the quality of health information on websites.The Patient Education Materials Assessment Tool(PEMAT)can temporarily assess the quality of video-based health information.However,the effectiveness of both tools needs to be further verified.展开更多
The Internet of Things (IoT) and edge-assisted networking infrastructures are capable of bringing data processing and accessibility services locally at the respective edge rather than at a centralized module. These in...The Internet of Things (IoT) and edge-assisted networking infrastructures are capable of bringing data processing and accessibility services locally at the respective edge rather than at a centralized module. These infrastructures are very effective in providing a fast response to the respective queries of the requesting modules, but their distributed nature has introduced other problems such as security and privacy. To address these problems, various security-assisted communication mechanisms have been developed to safeguard every active module, i.e., devices and edges, from every possible vulnerability in the IoT. However, these methodologies have neglected one of the critical issues, which is the prediction of fraudulent devices, i.e., adversaries, preferably as early as possible in the IoT. In this paper, a hybrid communication mechanism is presented where the Hidden Markov Model (HMM) predicts the legitimacy of the requesting device (both source and destination), and the Advanced Encryption Standard (AES) safeguards the reliability of the transmitted data over a shared communication medium, preferably through a secret shared key, i.e., , and timestamp information. A device becomes trusted if it has passed both evaluation levels, i.e., HMM and message decryption, within a stipulated time interval. The proposed hybrid, along with existing state-of-the-art approaches, has been simulated in the realistic environment of the IoT to verify the security measures. These evaluations were carried out in the presence of intruders capable of launching various attacks simultaneously, such as man-in-the-middle, device impersonations, and masquerading attacks. Moreover, the proposed approach has been proven to be more effective than existing state-of-the-art approaches due to its exceptional performance in communication, processing, and storage overheads, i.e., 13%, 19%, and 16%, respectively. Finally, the proposed hybrid approach is pruned against well-known security attacks in the IoT.展开更多
文摘Based on the analysis of status quo of metadata technology and the informationized freezing construction of an auxiliary shaft in Longgu mine, the necessity and feasibility of applying metadata standards for informationized construction is discussed. The prototype of metadata standard for the construction is designed and established by using a modeling method, and the framework with XML/RDF for such standard is given.
文摘Objective:The study was to analyze the application effect of informationized teaching method based on evidence-based nursing in surgical nursing teaching.Methods:From December 2019 to December 2020,60 students were selected as the research objects and randomly divided into two groups,each with 30 students in the teaching group.The observation group applied informationized teaching based on evidence-based nursing method,and the control group used the traditional teaching model.The teaching effect was evaluated.Results:The test scores of subjective theoretical knowledge and objective theoretical knowledge of the observation group were significantly higher than those of the control group,and the comprehensive ability evaluation of the observation group was also higher(P<0.05).The majority of students accepted the informationized teaching method based on evidence-based nursing,and a few held a neutral or disapproval attitude.Conclusion:Informationized teaching method based on evidencebased nursing can improve students'theoretical and practical levels in surgical nursing teaching,and most students also accept this teaching method,which has application value.
基金supported by the project“GEF9874:Strengthening Coordinated Approaches to Reduce Invasive Alien Species(lAS)Threats to Globally Significant Agrobiodiversity and Agroecosystems in China”funding from the Excellent Talent Training Funding Project in Dongcheng District,Beijing,with project number 2024-dchrcpyzz-9.
文摘Ecological monitoring vehicles are equipped with a range of sensors and monitoring devices designed to gather data on ecological and environmental factors.These vehicles are crucial in various fields,including environmental science research,ecological and environmental monitoring projects,disaster response,and emergency management.A key method employed in these vehicles for achieving high-precision positioning is LiDAR(lightlaser detection and ranging)-Visual Simultaneous Localization and Mapping(SLAM).However,maintaining highprecision localization in complex scenarios,such as degraded environments or when dynamic objects are present,remains a significant challenge.To address this issue,we integrate both semantic and texture information from LiDAR and cameras to enhance the robustness and efficiency of data registration.Specifically,semantic information simplifies the modeling of scene elements,reducing the reliance on dense point clouds,which can be less efficient.Meanwhile,visual texture information complements LiDAR-Visual localization by providing additional contextual details.By incorporating semantic and texture details frompaired images and point clouds,we significantly improve the quality of data association,thereby increasing the success rate of localization.This approach not only enhances the operational capabilities of ecological monitoring vehicles in complex environments but also contributes to improving the overall efficiency and effectiveness of ecological monitoring and environmental protection efforts.
基金the University of Transport Technology under the project entitled“Application of Machine Learning Algorithms in Landslide Susceptibility Mapping in Mountainous Areas”with grant number DTTD2022-16.
文摘This study was aimed to prepare landslide susceptibility maps for the Pithoragarh district in Uttarakhand,India,using advanced ensemble models that combined Radial Basis Function Networks(RBFN)with three ensemble learning techniques:DAGGING(DG),MULTIBOOST(MB),and ADABOOST(AB).This combination resulted in three distinct ensemble models:DG-RBFN,MB-RBFN,and AB-RBFN.Additionally,a traditional weighted method,Information Value(IV),and a benchmark machine learning(ML)model,Multilayer Perceptron Neural Network(MLP),were employed for comparison and validation.The models were developed using ten landslide conditioning factors,which included slope,aspect,elevation,curvature,land cover,geomorphology,overburden depth,lithology,distance to rivers and distance to roads.These factors were instrumental in predicting the output variable,which was the probability of landslide occurrence.Statistical analysis of the models’performance indicated that the DG-RBFN model,with an Area Under ROC Curve(AUC)of 0.931,outperformed the other models.The AB-RBFN model achieved an AUC of 0.929,the MB-RBFN model had an AUC of 0.913,and the MLP model recorded an AUC of 0.926.These results suggest that the advanced ensemble ML model DG-RBFN was more accurate than traditional statistical model,single MLP model,and other ensemble models in preparing trustworthy landslide susceptibility maps,thereby enhancing land use planning and decision-making.
基金funding from King Saud University through Researchers Supporting Project number(RSP2024R387),King Saud University,Riyadh,Saudi Arabia.
文摘The emergence of next generation networks(NextG),including 5G and beyond,is reshaping the technological landscape of cellular and mobile networks.These networks are sufficiently scaled to interconnect billions of users and devices.Researchers in academia and industry are focusing on technological advancements to achieve highspeed transmission,cell planning,and latency reduction to facilitate emerging applications such as virtual reality,the metaverse,smart cities,smart health,and autonomous vehicles.NextG continuously improves its network functionality to support these applications.Multiple input multiple output(MIMO)technology offers spectral efficiency,dependability,and overall performance in conjunctionwithNextG.This article proposes a secure channel estimation technique in MIMO topology using a norm-estimation model to provide comprehensive insights into protecting NextG network components against adversarial attacks.The technique aims to create long-lasting and secure NextG networks using this extended approach.The viability of MIMO applications and modern AI-driven methodologies to combat cybersecurity threats are explored in this research.Moreover,the proposed model demonstrates high performance in terms of reliability and accuracy,with a 20%reduction in the MalOut-RealOut-Diff metric compared to existing state-of-the-art techniques.
文摘With the rapid expansion of social media,analyzing emotions and their causes in texts has gained significant importance.Emotion-cause pair extraction enables the identification of causal relationships between emotions and their triggers within a text,facilitating a deeper understanding of expressed sentiments and their underlying reasons.This comprehension is crucial for making informed strategic decisions in various business and societal contexts.However,recent research approaches employing multi-task learning frameworks for modeling often face challenges such as the inability to simultaneouslymodel extracted features and their interactions,or inconsistencies in label prediction between emotion-cause pair extraction and independent assistant tasks like emotion and cause extraction.To address these issues,this study proposes an emotion-cause pair extraction methodology that incorporates joint feature encoding and task alignment mechanisms.The model consists of two primary components:First,joint feature encoding simultaneously generates features for emotion-cause pairs and clauses,enhancing feature interactions between emotion clauses,cause clauses,and emotion-cause pairs.Second,the task alignment technique is applied to reduce the labeling distance between emotion-cause pair extraction and the two assistant tasks,capturing deep semantic information interactions among tasks.The proposed method is evaluated on a Chinese benchmark corpus using 10-fold cross-validation,assessing key performance metrics such as precision,recall,and F1 score.Experimental results demonstrate that the model achieves an F1 score of 76.05%,surpassing the state-of-the-art by 1.03%.The proposed model exhibits significant improvements in emotion-cause pair extraction(ECPE)and cause extraction(CE)compared to existing methods,validating its effectiveness.This research introduces a novel approach based on joint feature encoding and task alignment mechanisms,contributing to advancements in emotion-cause pair extraction.However,the study’s limitation lies in the data sources,potentially restricting the generalizability of the findings.
基金supported by the Innovation Foundation of Provincial Education Department of Gansu(2024B-005)the Gansu Province National Science Foundation(22YF7GA182)the Fundamental Research Funds for the Central Universities(No.lzujbky2022-kb01)。
文摘Modal parameters can accurately characterize the structural dynamic properties and assess the physical state of the structure.Therefore,it is particularly significant to identify the structural modal parameters according to the monitoring data information in the structural health monitoring(SHM)system,so as to provide a scientific basis for structural damage identification and dynamic model modification.In view of this,this paper reviews methods for identifying structural modal parameters under environmental excitation and briefly describes how to identify structural damages based on the derived modal parameters.The paper primarily introduces data-driven modal parameter recognition methods(e.g.,time-domain,frequency-domain,and time-frequency-domain methods,etc.),briefly describes damage identification methods based on the variations of modal parameters(e.g.,natural frequency,modal shapes,and curvature modal shapes,etc.)and modal validation methods(e.g.,Stability Diagram and Modal Assurance Criterion,etc.).The current status of the application of artificial intelligence(AI)methods in the direction of modal parameter recognition and damage identification is further discussed.Based on the pre-vious analysis,the main development trends of structural modal parameter recognition and damage identification methods are given to provide scientific references for the optimized design and functional upgrading of SHM systems.
文摘We present a new perspective on the P vs NP problem by demonstrating that its answer is inherently observer-dependent in curved spacetime, revealing an oversight in the classical formulation of computational complexity theory. By incorporating general relativistic effects into complexity theory through a gravitational correction factor, we prove that problems can transition between complexity classes depending on the observer’s reference frame and local gravitational environment. This insight emerges from recognizing that the definition of polynomial time implicitly assumes a universal time metric, an assumption that breaks down in curved spacetime due to gravitational time dilation. We demonstrate the existence of gravitational phase transitions in problem complexity, where an NP-complete problem in one reference frame becomes polynomially solvable in another frame experiencing extreme gravitational time dilation. Through rigorous mathematical formulation, we establish a gravitationally modified complexity theory that extends classical complexity classes to incorporate observer-dependent effects, leading to a complete framework for understanding how computational complexity transforms across different spacetime reference frames. This finding parallels other self-referential insights in mathematics and physics, such as Gödel’s incompleteness theorems and Einstein’s relativity, suggesting a deeper connection between computation, gravitation, and the nature of mathematical truth.
文摘In reward-based crowdfunding, projects are to disclose the operational risks and mitigation strategies for delivering the physical rewards during the funding phase. However, limited knowledge exists regarding projects’ operational risks and mitigation strategies during the funding phase. In contributing to the literature, the study uses data on Kickstarter.com and conducts a content analysis to explore themes and their relationships. The results reveal various operational risks and associated mitigation strategies. Among the identified themes, product-related, contract manufacturers, and supply markets are the most expected risks, while outsourced production and proactive sourcing are the popular mitigation strategies. Also, the finding reveals that proactive sourcing and outsourced production, in-house production and post-campaign sourcing, contract manufacturer risk, and project internal risk are themes forming clusters. The results extend crowdfunding risk disclosure literature and set the tone for future research in crowdfunding operational risk management. Finally, other business implications are drawn for crowdfunding practitioners.
文摘New Rules to Label Al-generated Content to Increase Transparency,A new directive aimed at the AI sector has been released recently to increase transparency and user safety by enforcing mandatory labeling of Al-generated content.China's National Internet Information Office(NIIO),the Ministry of Industry and Information Technology and public security and broadcast agencies issued the finalized rules on March 14,which will come into force from September 1.The notice,Measures for the Labeling of AI-Generated Content Identification,comes in response to the spread of false information,Al-related fraud and the misuse of technologies which are becoming rife amid the fast development of AI,the NIIO said.
文摘In this paper the authors consider the operational problem of optimal signalling and control,called control-coding capacity(with feedback),C_(FB) in bits/second,of discrete-time nonlinear partially observable stochastic systems in state space form,subject to an average cost constraint.C_(FB) is the maximum rate of encoding signals or messages into randomized controller-encoder strategies with feedback,which control the state of the system,and reproducing the messages at the output of the system using a decoder or estimator with arbitrary small asymptotic error probability.In the first part of the paper,the authors characterize C_(FB) by an information theoretic optimization problem of maximizing directed information from the inputs to the outputs of the system,over randomized strategies(controller-encoders).The authors derive equivalent characterizations of C_(FB),using randomized strategies generated by either uniform or arbitrary distributed random variables(RVs),sufficient statistics,and a posteriori distributions of nonlinear filtering theory.In the second part of the paper,the authors analyze C_(FB) for linear-quadratic Gaussian partially observable stochastic systems(LQG-POSSs).The authors show that randomized strategies consist of control,estimation and signalling parts,and the sufficient statistics are,two Kalman-filters and an orthogonal innovations process.The authors prove a semi-separation principle which states,the optimal control strategy is determined explicitly from the solution of a control matrix difference Riccati equation(DRE),independently of the estimation and signalling strategies.Finally,the authors express the optimization problem of C_(FB) in terms of two filtering matrix DREs,a control matrix DRE,and the covariance of the innovations process.Throughout the paper,the authors illustrate that the expression of C_(FB) includes as degenerate cases,problems of stochastic optimal control and channel capacity of information transmission.
基金supported by the Young Doctoral Research Initiation Fund Project of Harbin University“Research on Wood Recognition Methods Based on Deep Learning Fusion Model”(Project no.HUDF2022110)the Self-Funded Project of Harbin Science and Technology Plan“Research on Computer Vision Recognition Technology of Wood Species Based on Transfer Learning FusionModel”(Project no.ZC2022ZJ010027)the Fundamental Research Funds for the Central Universities(2572017PZ10).
文摘Changing a person’s posture and low resolution are the key challenges for person re-identification(ReID)in various deep learning applications.In this paper,we introduce an innovative architecture using a dual attention network that includes an attentionmodule and a joint measurement module of spatial-temporal information.The proposed approach can be classified into two main tasks.Firstly,the spatial attention feature map is formed by aggregating features in the spatial dimension.Additionally,the same operation is carried out on the channel dimension to formchannel attention featuremaps.Therefore,the receptive field size is adjusted adaptively tomitigate the changing person posture issue.Secondly,we use a joint measurement method for the spatial-temporal information to fully harness the data,and it can also naturally integrate the information into the visual features of supervised ReID and hence overcome the low resolution problem.The experimental results indicate that our proposed algorithm markedly improves the accuracy in addressing changing human postures and low-resolution issues compared with contemporary leading techniques.The proposed method shows superior outcomes on widely recognized benchmarks,which are the Market-1501,MSMT17,and DukeMTMC-reID datasets.Furthermore,the proposed algorithmattains a Rank-1 accuracy of 97.4% and 94.9% mAP(mean Average Precision)on the Market-1501 dataset.Moreover,it achieves a 94.2% Rank-1 accuracy and 91.8% mAP on the DukeMTMC-reID dataset.
基金supported by the following funding bodies:the National Key Research and Development Program of China(Grant No.2020YFA0608000)National Science Foundation of China(Grant Nos.42075142,42375148,42125503+2 种基金42130608)FY-APP-2022.0609,Sichuan Province Key Tech nology Research and Development project(Grant Nos.2024ZHCG0168,2024ZHCG0176,2023YFG0305,2023YFG-0124,and 23ZDYF0091)the CUIT Science and Technology Innovation Capacity Enhancement Program project(Grant No.KYQN202305)。
文摘Climate downscaling is used to transform large-scale meteorological data into small-scale data with enhanced detail,which finds wide applications in climate modeling,numerical weather forecasting,and renewable energy.Although deeplearning-based downscaling methods effectively capture the complex nonlinear mapping between meteorological data of varying scales,the supervised deep-learning-based downscaling methods suffer from insufficient high-resolution data in practice,and unsupervised methods struggle with accurately inferring small-scale specifics from limited large-scale inputs due to small-scale uncertainty.This article presents DualDS,a dual-learning framework utilizing a Generative Adversarial Network–based neural network and subgrid-scale auxiliary information for climate downscaling.Such a learning method is unified in a two-stream framework through up-and downsamplers,where the downsampler is used to simulate the information loss process during the upscaling,and the upsampler is used to reconstruct lost details and correct errors incurred during the upscaling.This dual learning strategy can eliminate the dependence on high-resolution ground truth data in the training process and refine the downscaling results by constraining the mapping process.Experimental findings demonstrate that DualDS is comparable to several state-of-the-art deep learning downscaling approaches,both qualitatively and quantitatively.Specifically,for a single surface-temperature data downscaling task,our method is comparable with other unsupervised algorithms with the same dataset,and we can achieve a 0.469 dB higher peak signal-to-noise ratio,0.017 higher structural similarity,0.08 lower RMSE,and the best correlation coefficient.In summary,this paper presents a novel approach to addressing small-scale uncertainty issues in unsupervised downscaling processes.
基金R&D Program of Beijing Municipal Education Commission(Grant No.SM202210005007)。
文摘This paper selects the Corporate Social Responsibility(CSR)index from Hexun.com(2010–2020)and the stock price crash index of China’s Shanghai and Shenzhen A-share listed companies from the China Stock Market&Accounting Research Database(CSMAR)for empirical analysis.By examining the impact of CSR performance on stock price crash risk,this study identifies key relationships and further investigates the moderating role of media promotion and communication as an intermediary to explore the transmission mechanisms and influence between the two.The empirical results indicate that CSR performance is significantly negatively correlated with stock price crash risk,suggesting that strong CSR performance can effectively reduce the likelihood of a stock price crash.Furthermore,additional analysis reveals that media plays a moderating role in the relationship between CSR performance and stock price crash risk.This study aims to contribute to the understanding of the formation mechanisms and analytical paradigms of factors influencing stock price crash risk while providing theoretical support and reference value for risk prevention strategies.
文摘General Rules Journal of Polyphenols publishes research articles,reviews and short communications in English,on the fields of the science and technology of plant polyphenols.
文摘Objective: This study evaluates the impact of handshake and information support on patients’ outcomes during laparoscopic cholecystectomy. It examines the effects on their physiological and psychological responses and overall satisfaction with nursing care. Methods: A total of 84 patients scheduled for laparoscopic cholecystectomy were selected through convenient sampling and randomly assigned to either the control group or the intervention group using a random number table. Each group consisted of 42 patients. The control group received standard surgical nursing care. In addition to standard care, the intervention group received handshake and information support from the circulating nurse before anesthesia induction. Vital signs were recorded before surgery and before anesthesia induction. Anxiety levels were measured using the State-Trait Anxiety Inventory (STAI) and the State-Anxiety Inventory (S-AI), while nursing satisfaction was assessed using a numerical rating scale. Results: No significant differences were found between the two groups in systolic and diastolic blood pressures before surgery and anesthesia induction (P > 0.05). However, there was a significant difference in heart rate before anesthesia induction (P Conclusion: Providing handshake and information support before anesthesia induction effectively reduces stress, alleviates anxiety, and enhances comfort and satisfaction among patients undergoing laparoscopic cholecystectomy.
基金supported by National Key R&D Program of China for Young Scientists:Cyberspace Endogenous Security Mechanisms and Evaluation Methods(No.2022YFB3102800).
文摘The security of information transmission and processing due to unknown vulnerabilities and backdoors in cyberspace is becoming increasingly problematic.However,there is a lack of effective theory to mathematically demonstrate the security of information transmission and processing under nonrandom noise(or vulnerability backdoor attack)conditions in cyberspace.This paper first proposes a security model for cyberspace information transmission and processing channels based on error correction coding theory.First,we analyze the fault tolerance and non-randomness problem of Dynamic Heterogeneous Redundancy(DHR)structured information transmission and processing channel under the condition of non-random noise or attacks.Secondly,we use a mathematical statistical method to demonstrate that for non-random noise(or attacks)on discrete memory channels,there exists a DHR-structured channel and coding scheme that enables the average system error probability to be arbitrarily small.Finally,to construct suitable coding and heterogeneous channels,we take Turbo code as an example and simulate the effects of different heterogeneity,redundancy,output vector length,verdict algorithm and dynamism on the system,which is an important guidance for theory and engineering practice.
基金supported by President Foundation of the Third Affiliated Hospital of Southern Medical University(YH202207)。
文摘Objectives:This study aimed to evaluate the measurement properties and methodological quality of instruments developed to evaluate the quality of online health information.Methods:In this study,a systematic search was conducted across a range of databases,including the China National Knowledge Infrastructure(CNKI),Wanfang,China Science and Technology Journal(VIP),SinoMed,PubMed,Web of Science,CINAHL,Embase,the Cochrane Library,PsycINFO,and Scopus.The search period spanned from the inception of the databases to October 2023.Two researchers independently conducted the literature screening and data extraction.The methodological quality of the included studies was assessed using the Consensus-based Standards for the Selection of Health Measurement Instruments(COSMIN)Risk of Bias checklist.The measurement properties were evaluated using the coSMIN criteria.The modified Grading,Recommendations,Assessment,Development,and Evaluation(GRADE)system was used to determine the quality grade.Results:A total of 18 studies were included,and the measurement properties of 17 scales were assessed.Fifteen scales had content validity,three had structural validity,six had internal consistency,two had test-retest reliability,nine had interater reliability,one had measurement error,six instruments had criterion validity,and three scales had hypotheses testing for construct validity;however,the evaluation of their methodological quality and measurement properties revealed deficiencies.Of these 17 scales,15 were assigned a Level B recommendation,and two received a Level C recommendation.Conclusions:The Health Information Website Evaluation Tool(HIWET)can be temporarily used to evaluate the quality of health information on websites.The Patient Education Materials Assessment Tool(PEMAT)can temporarily assess the quality of video-based health information.However,the effectiveness of both tools needs to be further verified.
基金supported by the Deanship of Graduate Studies and Scientific Research at Qassim University via Grant No.(QU-APC-2025).
文摘The Internet of Things (IoT) and edge-assisted networking infrastructures are capable of bringing data processing and accessibility services locally at the respective edge rather than at a centralized module. These infrastructures are very effective in providing a fast response to the respective queries of the requesting modules, but their distributed nature has introduced other problems such as security and privacy. To address these problems, various security-assisted communication mechanisms have been developed to safeguard every active module, i.e., devices and edges, from every possible vulnerability in the IoT. However, these methodologies have neglected one of the critical issues, which is the prediction of fraudulent devices, i.e., adversaries, preferably as early as possible in the IoT. In this paper, a hybrid communication mechanism is presented where the Hidden Markov Model (HMM) predicts the legitimacy of the requesting device (both source and destination), and the Advanced Encryption Standard (AES) safeguards the reliability of the transmitted data over a shared communication medium, preferably through a secret shared key, i.e., , and timestamp information. A device becomes trusted if it has passed both evaluation levels, i.e., HMM and message decryption, within a stipulated time interval. The proposed hybrid, along with existing state-of-the-art approaches, has been simulated in the realistic environment of the IoT to verify the security measures. These evaluations were carried out in the presence of intruders capable of launching various attacks simultaneously, such as man-in-the-middle, device impersonations, and masquerading attacks. Moreover, the proposed approach has been proven to be more effective than existing state-of-the-art approaches due to its exceptional performance in communication, processing, and storage overheads, i.e., 13%, 19%, and 16%, respectively. Finally, the proposed hybrid approach is pruned against well-known security attacks in the IoT.