Some studies have confirmed the neuroprotective effect of remote ischemic conditioning against stroke. Although numerous animal researches have shown that the neuroprotective effect of remote ischemic conditioning may...Some studies have confirmed the neuroprotective effect of remote ischemic conditioning against stroke. Although numerous animal researches have shown that the neuroprotective effect of remote ischemic conditioning may be related to neuroinflammation, cellular immunity, apoptosis, and autophagy, the exact underlying molecular mechanisms are unclear. This review summarizes the current status of different types of remote ischemic conditioning methods in animal and clinical studies and analyzes their commonalities and differences in neuroprotective mechanisms and signaling pathways. Remote ischemic conditioning has emerged as a potential therapeutic approach for improving stroke-induced brain injury owing to its simplicity, non-invasiveness, safety, and patient tolerability. Different forms of remote ischemic conditioning exhibit distinct intervention patterns, timing, and application range. Mechanistically, remote ischemic conditioning can exert neuroprotective effects by activating the Notch1/phosphatidylinositol 3-kinase/Akt signaling pathway, improving cerebral perfusion, suppressing neuroinflammation, inhibiting cell apoptosis, activating autophagy, and promoting neural regeneration. While remote ischemic conditioning has shown potential in improving stroke outcomes, its full clinical translation has not yet been achieved.展开更多
Gassy soils are distributed in relatively shallow layers the Quaternary deposit in Hangzhou Bay area. The shallow gassy soils significantly affect the construction of underground projects. Proper characterization of s...Gassy soils are distributed in relatively shallow layers the Quaternary deposit in Hangzhou Bay area. The shallow gassy soils significantly affect the construction of underground projects. Proper characterization of spatial distribution of shallow gassy soils is indispensable prior to construction of underground projects in the area. Due to the costly conditions required in the site investigation for gassy soils, only a limited number of gas pressure data can be obtained in engineering practice, which leads to the uncertainty in characterizing spatial distribution of gassy soils. Determining the number of boreholes for investigating gassy soils and their corresponding locations is pivotal to reducing construction risk induced by gassy soils. However, this primarily relies on the engineering experience in the current site investigation practice. This study develops a probabilistic site investigation optimization method for planning investigation schemes (including the number and locations of boreholes) of gassy soils based on the conditional random field and Monte Carlo simulation. The proposed method aims to provide an optimal investigation scheme before the site investigation based on prior knowledge. Finally, the proposed approach is illustrated using a case study.展开更多
The study of the morphometric parameters of the three most abundant species in the lower course of the Kouilou River (Chrysichthys auratus, Liza falcipinnis and Pellonula vorax) was carried out. The standard length of...The study of the morphometric parameters of the three most abundant species in the lower course of the Kouilou River (Chrysichthys auratus, Liza falcipinnis and Pellonula vorax) was carried out. The standard length of Chrysichthys auratus varies between 43.57 and 210 mm, for an average of 96.70 ± 28.63 mm;the weight varies between 2.92 and 140.83 mg, an average of 73.03 ± 21.62 mg. The condition coefficient is equal to 4.42 ± 1.52. Liza falcipinnis has a standard length which varies between 59.9 mm and 158.08 mm for an average of 88.15 ± 29.74 mm;its weight varies between 4.77 and 76.21 mg, an average of 18.61 ± 11.82 mg. The condition coefficient is equal to 2.47 ± 1.57. Pellonula vorax has a standard length which varies between 60.33 mm and 117.72 mm;for an average of 80.48 ± 17.75 mm;the weight varies between 3.61 and 25.17 mg, an average of 9.03 ± 3.61 mg. The condition coefficient is equal to 2.17 ± 0.57. These three species have a minor allometric growth.展开更多
In cold regions,rock structures will be weakened by freeze-thaw cycles under various water immersion conditions.Determining how water immersion conditions impact rock deterioration under freeze-thaw cycles is critical...In cold regions,rock structures will be weakened by freeze-thaw cycles under various water immersion conditions.Determining how water immersion conditions impact rock deterioration under freeze-thaw cycles is critical to assess accurately the frost resistance of engineered rock.In this paper,freeze-thaw cycles(temperature range of-20℃-20℃)were performed on the sandstones in different water immersion conditions(fully,partially and non-immersed in water).Then,computed tomography(CT)tests were conducted on the sandstones when the freeze-thaw number reached 0,5,10,15,20 and 30.Next,the effects of water immersion conditions on the microstructure deterioration of sandstone under freezethaw cycles were evaluated using CT spatial imaging,porosity and damage factor.Finally,focusing on the partially immersed condition,the immersion volume rate was defined to understand the effects of immersion degree on the freeze-thaw damage of sandstone and to propose a damage model considering the freeze-thaw number and immersion degree.The results show that with increasing freeze-thaw number,the porosities and damage factors under fully and partially immersed conditions increase continuously,while those under non-immersed condition first increase and then remain approximately constant.The most severe freeze-thaw damage occurs in fully immersed condition,followed by partially immersed condition and finally non-immersed condition.Interestingly,the freeze-thaw number and the immersion volume rate both impact the microstructure deterioration of the partially immersed sandstone.For the same freeze-thaw number,the damage factor increases approximately linearly with increasing immersion volume rate,and the increasing immersion degree exacerbates the microstructure deterioration of sandstone.Moreover,the proposed model can effectively estimate the freeze-thaw damage of partially immersed sandstone with different immersion volume rates.展开更多
The initial stresses widely exist in elastic materials.While achieving a continuum stress-free configuration through compatible unloading is desirable,mechanical unloading alone frequently proves insufficient,posing c...The initial stresses widely exist in elastic materials.While achieving a continuum stress-free configuration through compatible unloading is desirable,mechanical unloading alone frequently proves insufficient,posing challenges in avoiding virtual stress-free configurations.In this paper,we introduce a novel concept of equivalent temperature variation to counteract the incompatible initial strain.Our focus is on initially stressed cylindrical and spherical elastomers,where we first derive the Saint-Venant,Beltrami-Michell,and Volterra integral conditions in orthogonal curvilinear coordinates using the exterior differential form theory.It is shown that for any given axially or spherically distributed initial stress,an equivalent temperature variation always exists.Furthermore,we propose two innovative initial stress forms based on the steady-state heat conduction.By introducing an equivalent temperature variation,the initial stress can be released through a compatible thermo-mechanical unloading process,offering valuable insights into the constitutive theory of initially stressed elastic materials.展开更多
Dolichospermum spp.and Microcystis spp.are two common cyanobacteria that form blooms in the Changjiang(Yangtze)River basin,but the environmental conditions for their succession in large lakes are still unclear.Based o...Dolichospermum spp.and Microcystis spp.are two common cyanobacteria that form blooms in the Changjiang(Yangtze)River basin,but the environmental conditions for their succession in large lakes are still unclear.Based on daily monitoring data from Meiliang Bay in Taihu Lake from March to June,2016-2018,we studied the environmental conditions necessary for the succession of these two cyanobacteria.Results show that from March to June,the dominant genera of cyanobacteria experienced succession and co-dominated with Microcystis.The succession process included three stages.In StageⅠ,the biomass of Dolichospermum and Microcystis was similar(March),but Dolichospermum was dominant for most of the period.In StageⅡ,dominance alternated between Dolichospermum and Microcystis(April to mid-May).In StageⅢ,the biomass of Microcystis dominated(mid-May to June).In addition,temperature and nutrients across the three stages varied significantly.The average temperature increased continuously from 10.9 to 18.4,and to 24.2℃.The total nitrogen content decreased from 2.87 to 2.40,and to 1.86 mg/L.The total phosphorus content increased from 0.08 to 0.09,and to 0.12 mg/L.Correlation analysis revealed that Microcystis biomass was positively correlated with temperature and total phosphorus.Dolichospermum biomass was positively correlated with total nitrogen.Classification and regression tree displays that when the temperature was below 18.1℃,Dolichospermum dominated;above 18.1℃,Microcystis took over.Further analysis revealed that when temperature reached 18℃,the biomass of Microcystis increased exponentially,and the biomass of Dolichospermum exhibited a Gaussian distribution trend.This finding indicated that temperature was the key factor in the succession of Dolichospermum and Microcystis in nutrient-rich shallow lakes.As nitrogen and phosphorus concentrations decrease,the dominant species of cyanobacteria will diversify its development.The results of this study provide a foundation for risk prediction and control strategies for cyanobacterial blooms in lakes and reservoirs.展开更多
Human dental pulp stem cell transplantation has been shown to be an effective therapeutic strategy for spinal cord injury.However,whether the human dental pulp stem cell secretome can contribute to functional recovery...Human dental pulp stem cell transplantation has been shown to be an effective therapeutic strategy for spinal cord injury.However,whether the human dental pulp stem cell secretome can contribute to functional recovery after spinal cord injury remains unclear.In the present study,we established a rat model of spinal cord injury based on impact injury from a dropped weight and then intraperitoneally injected the rats with conditioned medium from human dental pulp stem cells.We found that the conditioned medium effectively promoted the recovery of sensory and motor functions in rats with spinal cord injury,decreased expression of the microglial pyroptosis markers NLRP3,GSDMD,caspase-1,and interleukin-1β,promoted axonal and myelin regeneration,and inhibited the formation of glial scars.In addition,in a lipopolysaccharide-induced BV2 microglia model,conditioned medium from human dental pulp stem cells protected cells from pyroptosis by inhibiting the NLRP3/caspase-1/interleukin-1βpathway.These results indicate that conditioned medium from human dental pulp stem cells can reduce microglial pyroptosis by inhibiting the NLRP3/caspase-1/interleukin-1βpathway,thereby promoting the recovery of neurological function after spinal cord injury.Therefore,conditioned medium from human dental pulp stem cells may become an alternative therapy for spinal cord injury.展开更多
In the existing landslide susceptibility prediction(LSP)models,the influences of random errors in landslide conditioning factors on LSP are not considered,instead the original conditioning factors are directly taken a...In the existing landslide susceptibility prediction(LSP)models,the influences of random errors in landslide conditioning factors on LSP are not considered,instead the original conditioning factors are directly taken as the model inputs,which brings uncertainties to LSP results.This study aims to reveal the influence rules of the different proportional random errors in conditioning factors on the LSP un-certainties,and further explore a method which can effectively reduce the random errors in conditioning factors.The original conditioning factors are firstly used to construct original factors-based LSP models,and then different random errors of 5%,10%,15% and 20%are added to these original factors for con-structing relevant errors-based LSP models.Secondly,low-pass filter-based LSP models are constructed by eliminating the random errors using low-pass filter method.Thirdly,the Ruijin County of China with 370 landslides and 16 conditioning factors are used as study case.Three typical machine learning models,i.e.multilayer perceptron(MLP),support vector machine(SVM)and random forest(RF),are selected as LSP models.Finally,the LSP uncertainties are discussed and results show that:(1)The low-pass filter can effectively reduce the random errors in conditioning factors to decrease the LSP uncertainties.(2)With the proportions of random errors increasing from 5%to 20%,the LSP uncertainty increases continuously.(3)The original factors-based models are feasible for LSP in the absence of more accurate conditioning factors.(4)The influence degrees of two uncertainty issues,machine learning models and different proportions of random errors,on the LSP modeling are large and basically the same.(5)The Shapley values effectively explain the internal mechanism of machine learning model predicting landslide sus-ceptibility.In conclusion,greater proportion of random errors in conditioning factors results in higher LSP uncertainty,and low-pass filter can effectively reduce these random errors.展开更多
Copula functions have been widely used in stochastic simulation and prediction of streamflow.However,existing models are usually limited to single two-dimensional or three-dimensional copulas with the same bivariate b...Copula functions have been widely used in stochastic simulation and prediction of streamflow.However,existing models are usually limited to single two-dimensional or three-dimensional copulas with the same bivariate block for all months.To address this limitation,this study developed a mixed D-vine copula-based conditional quantile model that can capture temporal correlations.This model can generate streamflow by selecting different historical streamflow variables as the conditions for different months and by exploiting the conditional quantile functions of streamflows in different months with mixed D-vine copulas.The up-to-down sequential method,which couples the maximum weight approach with the Akaike information criteria and the maximum likelihood approach,was used to determine the structures of multivariate Dvine copulas.The developed model was used in a case study to synthesize the monthly streamflow at the Tangnaihai hydrological station,the inflow control station of the Longyangxia Reservoir in the Yellow River Basin.The results showed that the developed model outperformed the commonly used bivariate copula model in terms of the performance in simulating the seasonality and interannual variability of streamflow.This model provides useful information for water-related natural hazard risk assessment and integrated water resources management and utilization.展开更多
Neuromorphic hardware equipped with associative learn-ing capabilities presents fascinating applications in the next generation of artificial intelligence.However,research into synaptic devices exhibiting complex asso...Neuromorphic hardware equipped with associative learn-ing capabilities presents fascinating applications in the next generation of artificial intelligence.However,research into synaptic devices exhibiting complex associative learning behaviors is still nascent.Here,an optoelec-tronic memristor based on Ag/TiO_(2) Nanowires:ZnO Quantum dots/FTO was proposed and constructed to emulate the biological associative learning behaviors.Effective implementation of synaptic behaviors,including long and short-term plasticity,and learning-forgetting-relearning behaviors,were achieved in the device through the application of light and electrical stimuli.Leveraging the optoelectronic co-modulated characteristics,a simulation of neuromorphic computing was conducted,resulting in a handwriting digit recognition accuracy of 88.9%.Furthermore,a 3×7 memristor array was constructed,confirming its application in artificial visual memory.Most importantly,complex biological associative learning behaviors were emulated by mapping the light and electrical stimuli into conditioned and unconditioned stimuli,respectively.After training through associative pairs,reflexes could be triggered solely using light stimuli.Comprehen-sively,under specific optoelectronic signal applications,the four features of classical conditioning,namely acquisition,extinction,recovery,and generalization,were elegantly emulated.This work provides an optoelectronic memristor with associative behavior capabilities,offering a pathway for advancing brain-machine interfaces,autonomous robots,and machine self-learning in the future.展开更多
The Guanpo pegmatite field in the North Qinling orogenic belt(NQB),China,hosts the most abundant LCT pegmatites.However,their emplacement conditions and structural control remain unexplored.In this contribution,we inv...The Guanpo pegmatite field in the North Qinling orogenic belt(NQB),China,hosts the most abundant LCT pegmatites.However,their emplacement conditions and structural control remain unexplored.In this contribution,we investigated it combining pegmatite orientation measurement with oxygen isotope geothermometry and fluid inclusion study.The orientations of type A1 pegmatites(P_(f)<σ_(2))are predominantly influenced by P-and T-fractures due to simple shearing in Shiziping dextral thrust shear zone during D_(2)deformation,whereas type A2 pegmatites(contemporaneous with D_(4))are governed by hydraulic fractures aligned with S_(0)and S_(0+1)stemming from fluid pressure(P_(f)<σ_(2)).Additionally,type B pegmatites(P_(f)≤σ_(2))exhibit orientations shaped by en echelon extensional fractures in local ductile shear zones(contemporaneous with D_(3)).The albite-quartz oxygen isotope geothermometry and microthermometric analysis of fluid inclusions in elbaites from the latest pegmatites(including types B and A2)suggest that the crystallization P-T for late magmatic and hydrothermal stages are 527.5-559.2℃,320℃,3.1-3.6 kbar and 2.0 kbar,respectively.Our observations along with previous studies suggest that the genesis of the LCT pegmatites was a long-term,multi-stage event during early Paleozoic orogeny(including the collision stage)of the NQB,and was facilitated by various local fractures.展开更多
Crystallineγ-Ga_(2)O_(3)@rGO core-shell nanostructures are synthesized in gram scale,which are accomplished by a facile sonochemical strategy under ambient condition.They are composed of uniformγ-Ga_(2)O_(3)nanosphe...Crystallineγ-Ga_(2)O_(3)@rGO core-shell nanostructures are synthesized in gram scale,which are accomplished by a facile sonochemical strategy under ambient condition.They are composed of uniformγ-Ga_(2)O_(3)nanospheres encapsulated by reduced graphene oxide(rGO)nanolayers,and their formation is mainly attributed to the existed opposite zeta potential between the Ga_(2)O_(3)and rGO.The as-constructed lithium-ion batteries(LIBs)based on as-fabricatedγ-Ga_(2)O_(3)@rGO nanostructures deliver an initial discharge capacity of 1000 mAh g^(-1)at 100 mA g^(-1)and reversible capacity of 600 mAh g^(-1)under 500 mA g^(-1)after 1000 cycles,respectively,which are remarkably higher than those of pristineγ-Ga_(2)O_(3)with a much reduced lifetime of 100 cycles and much lower capacity.Ex situ XRD and XPS analyses demonstrate that the reversible LIBs storage is dominant by a conversion reaction and alloying mechanism,where the discharged product of liquid metal Ga exhibits self-healing ability,thus preventing the destroy of electrodes.Additionally,the rGO shell could act robustly as conductive network of the electrode for significantly improved conductivity,endowing the efficient Li storage behaviors.This work might provide some insight on mass production of advanced electrode materials under mild condition for energy storage and conversion applications.展开更多
Conditioning regimens employed in autologous stem cell transplantation have been proven useful in various hematological disorders and underlying malignancies;however,despite being efficacious in various instances,nega...Conditioning regimens employed in autologous stem cell transplantation have been proven useful in various hematological disorders and underlying malignancies;however,despite being efficacious in various instances,negative consequences have also been recorded.Multiple conditioning regimens were extracted from various literature searches from databases like PubMed,Google scholar,EMBASE,and Cochrane.Conditioning regimens for each disease were compared by using various end points such as overall survival(OS),progression free survival(PFS),and leukemia free survival(LFS).Variables were presented on graphs and analyzed to conclude a more efficacious conditioning regimen.In multiple myeloma,the most effective regimen was high dose melphalan(MEL)given at a dose of 200/mg/m2.The comparative results of acute myeloid leukemia were presented and the regimens that proved to be at an admirable position were busulfan(BU)+MEL regarding OS and BU+VP16 regarding LFS.In case of acute lymphoblastic leukemia(ALL),BU,fludarabine,and etoposide(BuFluVP)conferred good disease control not only with a paramount improvement in survival rate but also low risk of recurrence.However,for ALL,chimeric antigen receptor(CAR)T cell therapy was preferred in the context of better OS and LFS.With respect to Hodgkin’s lymphoma,mitoxantrone(MITO)/MEL overtook carmustine,VP16,cytarabine,and MEL in view of PFS and vice versa regarding OS.Non-Hodgkin’s lymphoma patients were administered MITO(60 mg/m2)and MEL(180 mg/m2)which showed promising results.Lastly,amyloidosis was considered,and the regimen that proved to be competent was MEL 200(200 mg/m2).This review article demonstrates a comparison between various conditioning regimens employed in different diseases.展开更多
The presence of numerous uncertainties in hybrid decision information systems(HDISs)renders attribute reduction a formidable task.Currently available attribute reduction algorithms,including those based on Pawlak attr...The presence of numerous uncertainties in hybrid decision information systems(HDISs)renders attribute reduction a formidable task.Currently available attribute reduction algorithms,including those based on Pawlak attribute importance,Skowron discernibility matrix,and information entropy,struggle to effectively manages multiple uncertainties simultaneously in HDISs like the precise measurement of disparities between nominal attribute values,and attributes with fuzzy boundaries and abnormal values.In order to address the aforementioned issues,this paper delves into the study of attribute reduction withinHDISs.First of all,a novel metric based on the decision attribute is introduced to solve the problem of accurately measuring the differences between nominal attribute values.The newly introduced distance metric has been christened the supervised distance that can effectively quantify the differences between the nominal attribute values.Then,based on the newly developed metric,a novel fuzzy relationship is defined from the perspective of“feedback on parity of attribute values to attribute sets”.This new fuzzy relationship serves as a valuable tool in addressing the challenges posed by abnormal attribute values.Furthermore,leveraging the newly introduced fuzzy relationship,the fuzzy conditional information entropy is defined as a solution to the challenges posed by fuzzy attributes.It effectively quantifies the uncertainty associated with fuzzy attribute values,thereby providing a robust framework for handling fuzzy information in hybrid information systems.Finally,an algorithm for attribute reduction utilizing the fuzzy conditional information entropy is presented.The experimental results on 12 datasets show that the average reduction rate of our algorithm reaches 84.04%,and the classification accuracy is improved by 3.91%compared to the original dataset,and by an average of 11.25%compared to the other 9 state-of-the-art reduction algorithms.The comprehensive analysis of these research results clearly indicates that our algorithm is highly effective in managing the intricate uncertainties inherent in hybrid data.展开更多
To realize carbon neutrality,there is an urgent need to develop sustainable,green energy systems(especially solar energy systems)owing to the environmental friendliness of solar energy,given the substantial greenhouse...To realize carbon neutrality,there is an urgent need to develop sustainable,green energy systems(especially solar energy systems)owing to the environmental friendliness of solar energy,given the substantial greenhouse gas emissions from fossil fuel-based power sources.When it comes to the evolution of intelligent green energy systems,Internet of Things(IoT)-based green-smart photovoltaic(PV)systems have been brought into the spotlight owing to their cutting-edge sensing and data-processing technologies.This review is focused on three critical segments of IoT-based green-smart PV systems.First,the climatic parameters and sensing technologies for IoT-based PV systems under extreme weather conditions are presented.Second,the methods for processing data from smart sensors are discussed,in order to realize health monitoring of PV systems under extreme environmental conditions.Third,the smart materials applied to sensors and the insulation materials used in PV backsheets are susceptible to aging,and these materials and their aging phenomena are highlighted in this review.This review also offers new perspectives for optimizing the current international standards for green energy systems using big data from IoT-based smart sensors.展开更多
Battery systems are increasingly being used for powering ocean going ships,and the number of fully electric or hybrid ships relying on battery power for propulsion is growing.To ensure the safety of such ships,it is i...Battery systems are increasingly being used for powering ocean going ships,and the number of fully electric or hybrid ships relying on battery power for propulsion is growing.To ensure the safety of such ships,it is important to monitor the available energy that can be stored in the batteries,and classification societies typically require the state of health(SOH)to be verified by independent tests.This paper addresses statistical modeling of SOH for maritime lithium-ion batteries based on operational sensor data.Various methods for sensor-based,data-driven degradation monitoring will be presented,and advantages and challenges with the different approaches will be discussed.The different approaches include cumulative degradation models and snapshot models,models that need to be trained and models that need no prior training,and pure data-driven models and physics-informed models.Some of the methods only rely on measured data,such as current,voltage,and temperature,whereas others rely on derived quantities such as state of charge.Models include simple statistical models and more complicated machine learning techniques.Insight from this exploration will be important in establishing a framework for data-driven diagnostics and prognostics of maritime battery systems within the scope of classification societies.展开更多
Autophagy and mitophagy pose unresolved challenges in understanding the pathology of diabetic heart condition(DHC),which encompasses a complex range of cardiovascular issues linked to diabetes and associated cardiomyo...Autophagy and mitophagy pose unresolved challenges in understanding the pathology of diabetic heart condition(DHC),which encompasses a complex range of cardiovascular issues linked to diabetes and associated cardiomyopathies.Despite significant progress in reducing mortality rates from cardiovascular diseases(CVDs),heart failure remains a major cause of increased morbidity among diabetic patients.These cellular processes are essential for maintaining cellular balance and removing damaged or dysfunctional components,and their involvement in the development of diabetic heart disease makes them attractive targets for diagnosis and treatment.While a variety of conventional diagnostic and therapeutic strategies are available,DHC continues to present a significant challenge.Point-of-care diagnostics,supported by nanobiosensing techniques,offer a promising alternative for these complex scenarios.Although conventional medications have been widely used in DHC patients,they raise several concerns regarding various physiological aspects.Modern medicine places great emphasis on the application of nanotechnology to target autophagy and mitophagy in DHC,offering a promising approach to deliver drugs beyond the limitations of traditional therapies.This article aims to explore the potential connections between autophagy,mitophagy and DHC,while also discussing the promise of nanotechnology-based theranostic interventions that specifically target these molecular pathways.展开更多
A class of Sturm-Liouville problems with discontinuity is studied in this paper.The oscillation properties of eigenfunctions for Sturm-Liouville problems with interface conditions are obtained.The main method used in ...A class of Sturm-Liouville problems with discontinuity is studied in this paper.The oscillation properties of eigenfunctions for Sturm-Liouville problems with interface conditions are obtained.The main method used in this paper is based on Prufer transformation,which is different from the classical ones.Moreover,we give two examples to verify our main results.展开更多
Context: Working conditions in the car repair sector are difficult in general. This leads to health risk factors for inexperienced staff. In the bodywork painting workshop, the staff seemed less interested in the risk...Context: Working conditions in the car repair sector are difficult in general. This leads to health risk factors for inexperienced staff. In the bodywork painting workshop, the staff seemed less interested in the risks probably due to negligence or by lack of knowledge. This work aimed to describe the working conditions and their impact on the workers’ health in a workshop of bodywork painting in Conakry. Material and Methods: This was a cross-sectional study over 06 months (from July 01, 2021, to December 31, 2021). Were included the bodybuilders-painters, the painters and the bodybuilders. The data was collected during an interview. We analysed the personal data of the workers, the physical environment factors (lighting, noise, etc.) and, the clinical manifestations felt by the workers. Results: The average age was 37 years extenting from 18 to 54 years and, they were all men. Over 80% of workers were exposed to more than 1000 lux and, 78.2% of workers were exposed to the vibratory intensity level of the cordless drill > 2.5 m/s2. The most frequent symptoms were back pain, headache, itchy eyes, and numbness of fingers and hands. The analysis of working conditions and clinical manifestations showed a significant relationship between the level of illumination and the tingling eyes (p = 0.0007), the vibratory intensity of the drill and the numbness of fingers and hands (p = 0.01). This study revealed that some of the complaints cited are related to the working conditions. Conclusion: Working conditions in a bodywork paint workshop are occupational risk factors that become dangerous if they are unknown. A longitudinal study on the assessment of working conditions could better enlighten us on this phenomenon.展开更多
Finding sustainable energy resources is essential to face the increasing energy demand.Trees are an important part of ancient architecture but are becoming rare in urban areas.Trees can control and tune the pedestrian...Finding sustainable energy resources is essential to face the increasing energy demand.Trees are an important part of ancient architecture but are becoming rare in urban areas.Trees can control and tune the pedestrian-level wind velocity and thermal condition.In this study,a numerical investigation is employed to assess the role of trees planted in the windward direction of the building complex on the thermal and pedestrian wind velocity conditions around/inside a pre-education building located in the center of the complex.Compared to the previous studies(which considered only outside buildings),this work considers the effects of trees on microclimate change both inside/outside buildings.Effects of different parameters including the leaf area density and number of trees,number of rows,far-field velocity magnitude,and thermal condition around the main building are assessed.The results show that the flow velocity in the spacing between the first-row buildings is reduced by 30%-40% when the one-row trees with 2 m height are planted 15 m farther than the buildings.Furthermore,two rows of trees are more effective in higher velocities and reduce the maximum velocity by about 50%.The investigation shows that trees also could reduce the temperature by about 1℃around the building.展开更多
基金supported partly by the National Natural Science Foundation of China,No.82071332the Chongqing Natural Science Foundation Joint Fund for Innovation and Development,No.CSTB2023NSCQ-LZX0041 (both to ZG)。
文摘Some studies have confirmed the neuroprotective effect of remote ischemic conditioning against stroke. Although numerous animal researches have shown that the neuroprotective effect of remote ischemic conditioning may be related to neuroinflammation, cellular immunity, apoptosis, and autophagy, the exact underlying molecular mechanisms are unclear. This review summarizes the current status of different types of remote ischemic conditioning methods in animal and clinical studies and analyzes their commonalities and differences in neuroprotective mechanisms and signaling pathways. Remote ischemic conditioning has emerged as a potential therapeutic approach for improving stroke-induced brain injury owing to its simplicity, non-invasiveness, safety, and patient tolerability. Different forms of remote ischemic conditioning exhibit distinct intervention patterns, timing, and application range. Mechanistically, remote ischemic conditioning can exert neuroprotective effects by activating the Notch1/phosphatidylinositol 3-kinase/Akt signaling pathway, improving cerebral perfusion, suppressing neuroinflammation, inhibiting cell apoptosis, activating autophagy, and promoting neural regeneration. While remote ischemic conditioning has shown potential in improving stroke outcomes, its full clinical translation has not yet been achieved.
文摘Gassy soils are distributed in relatively shallow layers the Quaternary deposit in Hangzhou Bay area. The shallow gassy soils significantly affect the construction of underground projects. Proper characterization of spatial distribution of shallow gassy soils is indispensable prior to construction of underground projects in the area. Due to the costly conditions required in the site investigation for gassy soils, only a limited number of gas pressure data can be obtained in engineering practice, which leads to the uncertainty in characterizing spatial distribution of gassy soils. Determining the number of boreholes for investigating gassy soils and their corresponding locations is pivotal to reducing construction risk induced by gassy soils. However, this primarily relies on the engineering experience in the current site investigation practice. This study develops a probabilistic site investigation optimization method for planning investigation schemes (including the number and locations of boreholes) of gassy soils based on the conditional random field and Monte Carlo simulation. The proposed method aims to provide an optimal investigation scheme before the site investigation based on prior knowledge. Finally, the proposed approach is illustrated using a case study.
文摘The study of the morphometric parameters of the three most abundant species in the lower course of the Kouilou River (Chrysichthys auratus, Liza falcipinnis and Pellonula vorax) was carried out. The standard length of Chrysichthys auratus varies between 43.57 and 210 mm, for an average of 96.70 ± 28.63 mm;the weight varies between 2.92 and 140.83 mg, an average of 73.03 ± 21.62 mg. The condition coefficient is equal to 4.42 ± 1.52. Liza falcipinnis has a standard length which varies between 59.9 mm and 158.08 mm for an average of 88.15 ± 29.74 mm;its weight varies between 4.77 and 76.21 mg, an average of 18.61 ± 11.82 mg. The condition coefficient is equal to 2.47 ± 1.57. Pellonula vorax has a standard length which varies between 60.33 mm and 117.72 mm;for an average of 80.48 ± 17.75 mm;the weight varies between 3.61 and 25.17 mg, an average of 9.03 ± 3.61 mg. The condition coefficient is equal to 2.17 ± 0.57. These three species have a minor allometric growth.
基金funding support from the National Natural Science Foundation of China(Grant No.12172019).
文摘In cold regions,rock structures will be weakened by freeze-thaw cycles under various water immersion conditions.Determining how water immersion conditions impact rock deterioration under freeze-thaw cycles is critical to assess accurately the frost resistance of engineered rock.In this paper,freeze-thaw cycles(temperature range of-20℃-20℃)were performed on the sandstones in different water immersion conditions(fully,partially and non-immersed in water).Then,computed tomography(CT)tests were conducted on the sandstones when the freeze-thaw number reached 0,5,10,15,20 and 30.Next,the effects of water immersion conditions on the microstructure deterioration of sandstone under freezethaw cycles were evaluated using CT spatial imaging,porosity and damage factor.Finally,focusing on the partially immersed condition,the immersion volume rate was defined to understand the effects of immersion degree on the freeze-thaw damage of sandstone and to propose a damage model considering the freeze-thaw number and immersion degree.The results show that with increasing freeze-thaw number,the porosities and damage factors under fully and partially immersed conditions increase continuously,while those under non-immersed condition first increase and then remain approximately constant.The most severe freeze-thaw damage occurs in fully immersed condition,followed by partially immersed condition and finally non-immersed condition.Interestingly,the freeze-thaw number and the immersion volume rate both impact the microstructure deterioration of the partially immersed sandstone.For the same freeze-thaw number,the damage factor increases approximately linearly with increasing immersion volume rate,and the increasing immersion degree exacerbates the microstructure deterioration of sandstone.Moreover,the proposed model can effectively estimate the freeze-thaw damage of partially immersed sandstone with different immersion volume rates.
基金Project supported by the National Natural Science Foundation of China(Nos.12241205 and 12032019)the National Key Research and Development Program of China(No.2022YFA1203200)the Strategic Priority Research Program of Chinese Academy of Sciences(Nos.XDB0620101 and XDB0620103)。
文摘The initial stresses widely exist in elastic materials.While achieving a continuum stress-free configuration through compatible unloading is desirable,mechanical unloading alone frequently proves insufficient,posing challenges in avoiding virtual stress-free configurations.In this paper,we introduce a novel concept of equivalent temperature variation to counteract the incompatible initial strain.Our focus is on initially stressed cylindrical and spherical elastomers,where we first derive the Saint-Venant,Beltrami-Michell,and Volterra integral conditions in orthogonal curvilinear coordinates using the exterior differential form theory.It is shown that for any given axially or spherically distributed initial stress,an equivalent temperature variation always exists.Furthermore,we propose two innovative initial stress forms based on the steady-state heat conduction.By introducing an equivalent temperature variation,the initial stress can be released through a compatible thermo-mechanical unloading process,offering valuable insights into the constitutive theory of initially stressed elastic materials.
基金Supported by the National Natural Science Foundation of China(No.42007159)the Network Security and Informatization Project of Chinese Academy of Sciences(No.CAS-WX2021SF-050402)+2 种基金the Water Science and Technology Project of Jiangsu Province(No.2020004)the Key Project of Nanjing Institute of Geography and LimnologyChinese Academy of Sciences(No.NIGLAS2022GS03)。
文摘Dolichospermum spp.and Microcystis spp.are two common cyanobacteria that form blooms in the Changjiang(Yangtze)River basin,but the environmental conditions for their succession in large lakes are still unclear.Based on daily monitoring data from Meiliang Bay in Taihu Lake from March to June,2016-2018,we studied the environmental conditions necessary for the succession of these two cyanobacteria.Results show that from March to June,the dominant genera of cyanobacteria experienced succession and co-dominated with Microcystis.The succession process included three stages.In StageⅠ,the biomass of Dolichospermum and Microcystis was similar(March),but Dolichospermum was dominant for most of the period.In StageⅡ,dominance alternated between Dolichospermum and Microcystis(April to mid-May).In StageⅢ,the biomass of Microcystis dominated(mid-May to June).In addition,temperature and nutrients across the three stages varied significantly.The average temperature increased continuously from 10.9 to 18.4,and to 24.2℃.The total nitrogen content decreased from 2.87 to 2.40,and to 1.86 mg/L.The total phosphorus content increased from 0.08 to 0.09,and to 0.12 mg/L.Correlation analysis revealed that Microcystis biomass was positively correlated with temperature and total phosphorus.Dolichospermum biomass was positively correlated with total nitrogen.Classification and regression tree displays that when the temperature was below 18.1℃,Dolichospermum dominated;above 18.1℃,Microcystis took over.Further analysis revealed that when temperature reached 18℃,the biomass of Microcystis increased exponentially,and the biomass of Dolichospermum exhibited a Gaussian distribution trend.This finding indicated that temperature was the key factor in the succession of Dolichospermum and Microcystis in nutrient-rich shallow lakes.As nitrogen and phosphorus concentrations decrease,the dominant species of cyanobacteria will diversify its development.The results of this study provide a foundation for risk prediction and control strategies for cyanobacterial blooms in lakes and reservoirs.
基金supported by the Research Foundation of Technology Committee of Tongzhou District,No.KJ2019CX001(to SX).
文摘Human dental pulp stem cell transplantation has been shown to be an effective therapeutic strategy for spinal cord injury.However,whether the human dental pulp stem cell secretome can contribute to functional recovery after spinal cord injury remains unclear.In the present study,we established a rat model of spinal cord injury based on impact injury from a dropped weight and then intraperitoneally injected the rats with conditioned medium from human dental pulp stem cells.We found that the conditioned medium effectively promoted the recovery of sensory and motor functions in rats with spinal cord injury,decreased expression of the microglial pyroptosis markers NLRP3,GSDMD,caspase-1,and interleukin-1β,promoted axonal and myelin regeneration,and inhibited the formation of glial scars.In addition,in a lipopolysaccharide-induced BV2 microglia model,conditioned medium from human dental pulp stem cells protected cells from pyroptosis by inhibiting the NLRP3/caspase-1/interleukin-1βpathway.These results indicate that conditioned medium from human dental pulp stem cells can reduce microglial pyroptosis by inhibiting the NLRP3/caspase-1/interleukin-1βpathway,thereby promoting the recovery of neurological function after spinal cord injury.Therefore,conditioned medium from human dental pulp stem cells may become an alternative therapy for spinal cord injury.
基金This work is funded by the National Natural Science Foundation of China(Grant Nos.42377164 and 52079062)the National Science Fund for Distinguished Young Scholars of China(Grant No.52222905).
文摘In the existing landslide susceptibility prediction(LSP)models,the influences of random errors in landslide conditioning factors on LSP are not considered,instead the original conditioning factors are directly taken as the model inputs,which brings uncertainties to LSP results.This study aims to reveal the influence rules of the different proportional random errors in conditioning factors on the LSP un-certainties,and further explore a method which can effectively reduce the random errors in conditioning factors.The original conditioning factors are firstly used to construct original factors-based LSP models,and then different random errors of 5%,10%,15% and 20%are added to these original factors for con-structing relevant errors-based LSP models.Secondly,low-pass filter-based LSP models are constructed by eliminating the random errors using low-pass filter method.Thirdly,the Ruijin County of China with 370 landslides and 16 conditioning factors are used as study case.Three typical machine learning models,i.e.multilayer perceptron(MLP),support vector machine(SVM)and random forest(RF),are selected as LSP models.Finally,the LSP uncertainties are discussed and results show that:(1)The low-pass filter can effectively reduce the random errors in conditioning factors to decrease the LSP uncertainties.(2)With the proportions of random errors increasing from 5%to 20%,the LSP uncertainty increases continuously.(3)The original factors-based models are feasible for LSP in the absence of more accurate conditioning factors.(4)The influence degrees of two uncertainty issues,machine learning models and different proportions of random errors,on the LSP modeling are large and basically the same.(5)The Shapley values effectively explain the internal mechanism of machine learning model predicting landslide sus-ceptibility.In conclusion,greater proportion of random errors in conditioning factors results in higher LSP uncertainty,and low-pass filter can effectively reduce these random errors.
基金supported by the National Natural Science Foundation of China(Grant No.52109010)the Postdoctoral Science Foundation of China(Grant No.2021M701047)the China National Postdoctoral Program for Innovative Talents(Grant No.BX20200113).
文摘Copula functions have been widely used in stochastic simulation and prediction of streamflow.However,existing models are usually limited to single two-dimensional or three-dimensional copulas with the same bivariate block for all months.To address this limitation,this study developed a mixed D-vine copula-based conditional quantile model that can capture temporal correlations.This model can generate streamflow by selecting different historical streamflow variables as the conditions for different months and by exploiting the conditional quantile functions of streamflows in different months with mixed D-vine copulas.The up-to-down sequential method,which couples the maximum weight approach with the Akaike information criteria and the maximum likelihood approach,was used to determine the structures of multivariate Dvine copulas.The developed model was used in a case study to synthesize the monthly streamflow at the Tangnaihai hydrological station,the inflow control station of the Longyangxia Reservoir in the Yellow River Basin.The results showed that the developed model outperformed the commonly used bivariate copula model in terms of the performance in simulating the seasonality and interannual variability of streamflow.This model provides useful information for water-related natural hazard risk assessment and integrated water resources management and utilization.
基金This work was supported by the Jinan City-University Integrated Development Strategy Project under Grant(JNSX2023017)National Research Foundation of Korea(NRF)grant funded by the Korea government(MIST)(RS-2023-00302751)+1 种基金by the National Research Foundation of Korea(NRF)funded by the Ministry of Education under Grants 2018R1A6A1A03025242 and 2018R1D1A1A09083353by Qilu Young Scholar Program of Shandong University.
文摘Neuromorphic hardware equipped with associative learn-ing capabilities presents fascinating applications in the next generation of artificial intelligence.However,research into synaptic devices exhibiting complex associative learning behaviors is still nascent.Here,an optoelec-tronic memristor based on Ag/TiO_(2) Nanowires:ZnO Quantum dots/FTO was proposed and constructed to emulate the biological associative learning behaviors.Effective implementation of synaptic behaviors,including long and short-term plasticity,and learning-forgetting-relearning behaviors,were achieved in the device through the application of light and electrical stimuli.Leveraging the optoelectronic co-modulated characteristics,a simulation of neuromorphic computing was conducted,resulting in a handwriting digit recognition accuracy of 88.9%.Furthermore,a 3×7 memristor array was constructed,confirming its application in artificial visual memory.Most importantly,complex biological associative learning behaviors were emulated by mapping the light and electrical stimuli into conditioned and unconditioned stimuli,respectively.After training through associative pairs,reflexes could be triggered solely using light stimuli.Comprehen-sively,under specific optoelectronic signal applications,the four features of classical conditioning,namely acquisition,extinction,recovery,and generalization,were elegantly emulated.This work provides an optoelectronic memristor with associative behavior capabilities,offering a pathway for advancing brain-machine interfaces,autonomous robots,and machine self-learning in the future.
基金supported by the National Key R&D Program of China(Grant Nos.2021YFC2901902 and 2019YFC0605202)。
文摘The Guanpo pegmatite field in the North Qinling orogenic belt(NQB),China,hosts the most abundant LCT pegmatites.However,their emplacement conditions and structural control remain unexplored.In this contribution,we investigated it combining pegmatite orientation measurement with oxygen isotope geothermometry and fluid inclusion study.The orientations of type A1 pegmatites(P_(f)<σ_(2))are predominantly influenced by P-and T-fractures due to simple shearing in Shiziping dextral thrust shear zone during D_(2)deformation,whereas type A2 pegmatites(contemporaneous with D_(4))are governed by hydraulic fractures aligned with S_(0)and S_(0+1)stemming from fluid pressure(P_(f)<σ_(2)).Additionally,type B pegmatites(P_(f)≤σ_(2))exhibit orientations shaped by en echelon extensional fractures in local ductile shear zones(contemporaneous with D_(3)).The albite-quartz oxygen isotope geothermometry and microthermometric analysis of fluid inclusions in elbaites from the latest pegmatites(including types B and A2)suggest that the crystallization P-T for late magmatic and hydrothermal stages are 527.5-559.2℃,320℃,3.1-3.6 kbar and 2.0 kbar,respectively.Our observations along with previous studies suggest that the genesis of the LCT pegmatites was a long-term,multi-stage event during early Paleozoic orogeny(including the collision stage)of the NQB,and was facilitated by various local fractures.
基金supported by National Natural Science Foundation of China(NSFC,Grant No.51972178)Natural Science Foundation of Ningbo(2022J139)Ningbo Yongjiang Talent Introduction Programme(2022A-227-G)
文摘Crystallineγ-Ga_(2)O_(3)@rGO core-shell nanostructures are synthesized in gram scale,which are accomplished by a facile sonochemical strategy under ambient condition.They are composed of uniformγ-Ga_(2)O_(3)nanospheres encapsulated by reduced graphene oxide(rGO)nanolayers,and their formation is mainly attributed to the existed opposite zeta potential between the Ga_(2)O_(3)and rGO.The as-constructed lithium-ion batteries(LIBs)based on as-fabricatedγ-Ga_(2)O_(3)@rGO nanostructures deliver an initial discharge capacity of 1000 mAh g^(-1)at 100 mA g^(-1)and reversible capacity of 600 mAh g^(-1)under 500 mA g^(-1)after 1000 cycles,respectively,which are remarkably higher than those of pristineγ-Ga_(2)O_(3)with a much reduced lifetime of 100 cycles and much lower capacity.Ex situ XRD and XPS analyses demonstrate that the reversible LIBs storage is dominant by a conversion reaction and alloying mechanism,where the discharged product of liquid metal Ga exhibits self-healing ability,thus preventing the destroy of electrodes.Additionally,the rGO shell could act robustly as conductive network of the electrode for significantly improved conductivity,endowing the efficient Li storage behaviors.This work might provide some insight on mass production of advanced electrode materials under mild condition for energy storage and conversion applications.
文摘Conditioning regimens employed in autologous stem cell transplantation have been proven useful in various hematological disorders and underlying malignancies;however,despite being efficacious in various instances,negative consequences have also been recorded.Multiple conditioning regimens were extracted from various literature searches from databases like PubMed,Google scholar,EMBASE,and Cochrane.Conditioning regimens for each disease were compared by using various end points such as overall survival(OS),progression free survival(PFS),and leukemia free survival(LFS).Variables were presented on graphs and analyzed to conclude a more efficacious conditioning regimen.In multiple myeloma,the most effective regimen was high dose melphalan(MEL)given at a dose of 200/mg/m2.The comparative results of acute myeloid leukemia were presented and the regimens that proved to be at an admirable position were busulfan(BU)+MEL regarding OS and BU+VP16 regarding LFS.In case of acute lymphoblastic leukemia(ALL),BU,fludarabine,and etoposide(BuFluVP)conferred good disease control not only with a paramount improvement in survival rate but also low risk of recurrence.However,for ALL,chimeric antigen receptor(CAR)T cell therapy was preferred in the context of better OS and LFS.With respect to Hodgkin’s lymphoma,mitoxantrone(MITO)/MEL overtook carmustine,VP16,cytarabine,and MEL in view of PFS and vice versa regarding OS.Non-Hodgkin’s lymphoma patients were administered MITO(60 mg/m2)and MEL(180 mg/m2)which showed promising results.Lastly,amyloidosis was considered,and the regimen that proved to be competent was MEL 200(200 mg/m2).This review article demonstrates a comparison between various conditioning regimens employed in different diseases.
基金Anhui Province Natural Science Research Project of Colleges and Universities(2023AH040321)Excellent Scientific Research and Innovation Team of Anhui Colleges(2022AH010098).
文摘The presence of numerous uncertainties in hybrid decision information systems(HDISs)renders attribute reduction a formidable task.Currently available attribute reduction algorithms,including those based on Pawlak attribute importance,Skowron discernibility matrix,and information entropy,struggle to effectively manages multiple uncertainties simultaneously in HDISs like the precise measurement of disparities between nominal attribute values,and attributes with fuzzy boundaries and abnormal values.In order to address the aforementioned issues,this paper delves into the study of attribute reduction withinHDISs.First of all,a novel metric based on the decision attribute is introduced to solve the problem of accurately measuring the differences between nominal attribute values.The newly introduced distance metric has been christened the supervised distance that can effectively quantify the differences between the nominal attribute values.Then,based on the newly developed metric,a novel fuzzy relationship is defined from the perspective of“feedback on parity of attribute values to attribute sets”.This new fuzzy relationship serves as a valuable tool in addressing the challenges posed by abnormal attribute values.Furthermore,leveraging the newly introduced fuzzy relationship,the fuzzy conditional information entropy is defined as a solution to the challenges posed by fuzzy attributes.It effectively quantifies the uncertainty associated with fuzzy attribute values,thereby providing a robust framework for handling fuzzy information in hybrid information systems.Finally,an algorithm for attribute reduction utilizing the fuzzy conditional information entropy is presented.The experimental results on 12 datasets show that the average reduction rate of our algorithm reaches 84.04%,and the classification accuracy is improved by 3.91%compared to the original dataset,and by an average of 11.25%compared to the other 9 state-of-the-art reduction algorithms.The comprehensive analysis of these research results clearly indicates that our algorithm is highly effective in managing the intricate uncertainties inherent in hybrid data.
基金National Key R&D Program of China(Grant No.2023YFE0114600)The National Natural Science Foundation of China(NSFC)-(Grant No.52477029)+1 种基金Joint Laboratory of China-Morocco Green Energy and Advanced Materials,The Youth Innovation Team of Shaanxi Universities,The Xi’an City Science and Technology Project(No.23GXFW0070)Xi’an International Science and Technology Cooperation Base.
文摘To realize carbon neutrality,there is an urgent need to develop sustainable,green energy systems(especially solar energy systems)owing to the environmental friendliness of solar energy,given the substantial greenhouse gas emissions from fossil fuel-based power sources.When it comes to the evolution of intelligent green energy systems,Internet of Things(IoT)-based green-smart photovoltaic(PV)systems have been brought into the spotlight owing to their cutting-edge sensing and data-processing technologies.This review is focused on three critical segments of IoT-based green-smart PV systems.First,the climatic parameters and sensing technologies for IoT-based PV systems under extreme weather conditions are presented.Second,the methods for processing data from smart sensors are discussed,in order to realize health monitoring of PV systems under extreme environmental conditions.Third,the smart materials applied to sensors and the insulation materials used in PV backsheets are susceptible to aging,and these materials and their aging phenomena are highlighted in this review.This review also offers new perspectives for optimizing the current international standards for green energy systems using big data from IoT-based smart sensors.
基金This work has been carried out with in the DDD BATMAN project,supported by MarTERA and the Research Council of Norway(project no 311445).
文摘Battery systems are increasingly being used for powering ocean going ships,and the number of fully electric or hybrid ships relying on battery power for propulsion is growing.To ensure the safety of such ships,it is important to monitor the available energy that can be stored in the batteries,and classification societies typically require the state of health(SOH)to be verified by independent tests.This paper addresses statistical modeling of SOH for maritime lithium-ion batteries based on operational sensor data.Various methods for sensor-based,data-driven degradation monitoring will be presented,and advantages and challenges with the different approaches will be discussed.The different approaches include cumulative degradation models and snapshot models,models that need to be trained and models that need no prior training,and pure data-driven models and physics-informed models.Some of the methods only rely on measured data,such as current,voltage,and temperature,whereas others rely on derived quantities such as state of charge.Models include simple statistical models and more complicated machine learning techniques.Insight from this exploration will be important in establishing a framework for data-driven diagnostics and prognostics of maritime battery systems within the scope of classification societies.
文摘Autophagy and mitophagy pose unresolved challenges in understanding the pathology of diabetic heart condition(DHC),which encompasses a complex range of cardiovascular issues linked to diabetes and associated cardiomyopathies.Despite significant progress in reducing mortality rates from cardiovascular diseases(CVDs),heart failure remains a major cause of increased morbidity among diabetic patients.These cellular processes are essential for maintaining cellular balance and removing damaged or dysfunctional components,and their involvement in the development of diabetic heart disease makes them attractive targets for diagnosis and treatment.While a variety of conventional diagnostic and therapeutic strategies are available,DHC continues to present a significant challenge.Point-of-care diagnostics,supported by nanobiosensing techniques,offer a promising alternative for these complex scenarios.Although conventional medications have been widely used in DHC patients,they raise several concerns regarding various physiological aspects.Modern medicine places great emphasis on the application of nanotechnology to target autophagy and mitophagy in DHC,offering a promising approach to deliver drugs beyond the limitations of traditional therapies.This article aims to explore the potential connections between autophagy,mitophagy and DHC,while also discussing the promise of nanotechnology-based theranostic interventions that specifically target these molecular pathways.
基金Supported by the Natural Science Foundation of Shandong Province(ZR2023MA023,ZR2021MA047)Guangdong Provincial Featured Innovation Projects of High School(2023KTSCX067).
文摘A class of Sturm-Liouville problems with discontinuity is studied in this paper.The oscillation properties of eigenfunctions for Sturm-Liouville problems with interface conditions are obtained.The main method used in this paper is based on Prufer transformation,which is different from the classical ones.Moreover,we give two examples to verify our main results.
文摘Context: Working conditions in the car repair sector are difficult in general. This leads to health risk factors for inexperienced staff. In the bodywork painting workshop, the staff seemed less interested in the risks probably due to negligence or by lack of knowledge. This work aimed to describe the working conditions and their impact on the workers’ health in a workshop of bodywork painting in Conakry. Material and Methods: This was a cross-sectional study over 06 months (from July 01, 2021, to December 31, 2021). Were included the bodybuilders-painters, the painters and the bodybuilders. The data was collected during an interview. We analysed the personal data of the workers, the physical environment factors (lighting, noise, etc.) and, the clinical manifestations felt by the workers. Results: The average age was 37 years extenting from 18 to 54 years and, they were all men. Over 80% of workers were exposed to more than 1000 lux and, 78.2% of workers were exposed to the vibratory intensity level of the cordless drill > 2.5 m/s2. The most frequent symptoms were back pain, headache, itchy eyes, and numbness of fingers and hands. The analysis of working conditions and clinical manifestations showed a significant relationship between the level of illumination and the tingling eyes (p = 0.0007), the vibratory intensity of the drill and the numbness of fingers and hands (p = 0.01). This study revealed that some of the complaints cited are related to the working conditions. Conclusion: Working conditions in a bodywork paint workshop are occupational risk factors that become dangerous if they are unknown. A longitudinal study on the assessment of working conditions could better enlighten us on this phenomenon.
文摘Finding sustainable energy resources is essential to face the increasing energy demand.Trees are an important part of ancient architecture but are becoming rare in urban areas.Trees can control and tune the pedestrian-level wind velocity and thermal condition.In this study,a numerical investigation is employed to assess the role of trees planted in the windward direction of the building complex on the thermal and pedestrian wind velocity conditions around/inside a pre-education building located in the center of the complex.Compared to the previous studies(which considered only outside buildings),this work considers the effects of trees on microclimate change both inside/outside buildings.Effects of different parameters including the leaf area density and number of trees,number of rows,far-field velocity magnitude,and thermal condition around the main building are assessed.The results show that the flow velocity in the spacing between the first-row buildings is reduced by 30%-40% when the one-row trees with 2 m height are planted 15 m farther than the buildings.Furthermore,two rows of trees are more effective in higher velocities and reduce the maximum velocity by about 50%.The investigation shows that trees also could reduce the temperature by about 1℃around the building.