Objective: To investigate the specific mechanism of hypoxia-inducible factor 1 alpha (HIF-1α) in the regulation of human sperm apoptosis, and to provide a new theoretical reference and scientific basis for the diagno...Objective: To investigate the specific mechanism of hypoxia-inducible factor 1 alpha (HIF-1α) in the regulation of human sperm apoptosis, and to provide a new theoretical reference and scientific basis for the diagnosis and treatment of asthenospermia and other related conditions. Methods: Semen samples were categorized into the normal group and asthenospermia group based on sperm motility criteria. HIF-1α interfering agent cobalt chloride (CoCl2) and guanylate cyclase activator (Lificiguat, YC-1) were added respectively, with a control group established accordingly. Sperm motility (using anterior viability rate as an index), apoptosis level, ATP level, mitochondrial membrane potential, and reactive oxygen species (ROS) level were measured. The expression levels of HIF-1α, p-PI3K, and Bcl-2 in the samples were analyzed using Western blotting. Results: Following CoCl2 treatment, there was a significant increase in sperm apoptosis compared to the normal control group (12.51% ± 2.50% VS 11.15% ± 2.42%);additionally, sperm motility (45.34% ± 3.37% VS 51.36% ± 11.68%), ATP production (11.51 ± 2.87 nM/µL VS 14.99 ± 2.83 nM/µL), ROS levels, and mitochondrial membrane potential all decreased significantly (all P α and p-PI3K increased significantly while Bcl-2 expression decreased (all P α in the YC-1 treatment group were decreased, and the expression level of Bcl-2 was increased (all P α can influence human sperm apoptosis and motility through the PI3K signaling pathway.展开更多
Salinity stress is a major challenge for global agriculture,particularly in arid and semi-arid regions,limiting plant productivity due to water and soil salinity.These conditions particularly affect countries along th...Salinity stress is a major challenge for global agriculture,particularly in arid and semi-arid regions,limiting plant productivity due to water and soil salinity.These conditions particularly affect countries along the southern Mediterranean rim,including Algeria,which primarily focuses on pastoral and forage practices.This study investigates salinity tolerance and ecotypic variability in Vicia narbonensis L.,a fodder legume species recognized for its potential to reclaim marginal soils.Morphological,physiological,and biochemical responses were assessed in three ecotypes(eco2,eco9,and eco10)exposed to different salinity levels(low,moderate,and severe).The study was conducted using a completely randomized block design with three blocks per ecotype per dose.The results from the two-way analysis of variance demonstrate significant effects across nearly all attributes studied,revealing distinct ecotypic responses.These findings underscore variations in growth parameters,osmotic regulation mechanisms,and biochemical adjustments.The substantial diversity observed among these ecotypes in their response to salinity provides valuable insights for breeders addressing both agronomic and ecological challenges.Multivariate analyses,including Principal Component Analysis(PCA),revealed key variables distinguishing between ecotypes under salinity stress.Moreover,Classification based on Salinity Tolerance Indices(STI)further differentiated ecotypic performance with more precision,and this is because of the combination of the different parameters studied.These results open up new prospects for the development of strategies to improve the salinity tolerance of forage legumes.展开更多
Background Ochratoxin A(OTA)is a toxin widely found in aquafeed ingredients,and hypoxia is a common prob-lem in fish farming.In practice,aquatic animals tend to be more sensitive to hypoxia while feeds are contaminate...Background Ochratoxin A(OTA)is a toxin widely found in aquafeed ingredients,and hypoxia is a common prob-lem in fish farming.In practice,aquatic animals tend to be more sensitive to hypoxia while feeds are contaminated with OTA,but no studies exist in this area.This research investigated the multiple biotoxicities of OTA and hypoxia combined on the liver of grass carp and explored the mitigating effect of curcumin(CUR).Methods A total of 720 healthy juvenile grass carp(11.06±0.05 g)were selected and assigned randomly to 4 experi-mental groups:control group(without OTA and CUR),1.2 mg/kg OTA group,400 mg/kg CUR group,and 1.2 mg/kg OTA+400 mg/kg CUR group with three replicates each for 60 d.Subsequently,32 fish were selected,divided into nor-moxia(18 fish)and hypoxia(18 fish)groups,and subjected to hypoxia stress for 96 h.Results CUR can attenuate histopathological damage caused by coming to OTA and hypoxia by reducing vacu-olation and nuclear excursion.The alleviation of this damage was associated with the attenuation of apoptosis in the mitochondrial pathway by decreasing the expression of the pro-apoptotic proteins Caspase 3,8,9,Bax,and Apaf1 while increasing the expression of the anti-apoptotic protein Bcl-2,and attenuation of endoplasmic reticulum stress(ERS)by reducing Grp78 expression and chop levels.This may be attributed to the fact that the addi-tion of CUR increased the levels of catalase(CAT)and glutathione reductase(GSH),increased antioxidant capacity,and ensured the proper functioning of respiratory chain complexes I and II,which in turn reduced the high produc-tion of reactive oxygen species(ROS),thus alleviating apoptosis and ERS.Conclusions In conclusion,our data demonstrate the effectiveness of CUR in attenuating liver injury caused by the combination of OTA and hypoxia.This study confirms the feasibility and efficacy of adding natural products to mitigate toxic damage to aquatic animals.展开更多
Global warming impacts plant growth and development,which in turn threatens food security.Plants can clearly respond to warm-temperature(such as by thermomorphogenesis)and high-temperature stresses.At the molecular le...Global warming impacts plant growth and development,which in turn threatens food security.Plants can clearly respond to warm-temperature(such as by thermomorphogenesis)and high-temperature stresses.At the molecular level,many small molecules play crucial roles in balancing growth and defense,and stable high yields can be achieved by fine-tuning the responses to external stimuli.Therefore,it is essential to understand the molecular mechanisms underlying plant growth in response to heat stress and how plants can adjust their biological processes to survive heat stress conditions.In this review,we summarize the heat-responsive genetic networks in plants and crop plants based on recent studies.We focus on how plants sense the elevated temperatures and initiate the cellular and metabolic responses that allow them to adapt to the adverse growing conditions.We also describe the trade-off between plant growth and responses to heat stress.Specifically,we address the regulatory network of plant responses to heat stress,which will facilitate the discovery of novel thermotolerance genes and provide new opportunities for agricultural applications.展开更多
FCS-like zinc finger(FLZ)gene family members are C2-C2 zinc finger proteins that take part in seed dormancy,resistance to Myzus persicae 1,sucrose signaling and abiotic stresse tolerance.However,their functions,especi...FCS-like zinc finger(FLZ)gene family members are C2-C2 zinc finger proteins that take part in seed dormancy,resistance to Myzus persicae 1,sucrose signaling and abiotic stresse tolerance.However,their functions,especially the molecular mechanism through which FLZs function,are not well understood.In this study,we characterized 120FLZs in wheat and revealed the function and mechanism of TaFLZ54D increasing salt stress tolerance in transgenic wheat.Expression analysis demonstrated that TaFLZ54D can be induced by NaCl treatment and it had the highest expression level under NaCl treatment among the 120 FLZs.Over-expression of TaFLZ54D increased wheat salt stress tolerance and the transgenic plants had higher levels of superoxide dismutase(SOD)and peroxidase(POD)activities and soluble sugar content,but a lower Na^(+)/K^(+)ratio and malondialdehyde(MDA)content than the wild type(WT)plants.Potassium ion transmembrane transporters and serine/threonine kinase inhibitor proteins showed differential expression between Ta FLZ54D transgenic wheat and the WT.Yeast two hybrid and luciferase complementation assays revealed that TaSGT1 and TaPP2C are the proteins that interact directly with TaFLZ54D.In summary,TaFLZ54D enhances salt stress tolerance through interaction with TaSGT1 and TaPP2C to reduce Na^(+)absorption and mitigate oxidative stress.The interaction between TaFLZ54D and TaSGT1,as well as TaPP2C indicated a link between salt stress tolerance of TaFLZ54D and the ubiquitin-mediated degradation of negative regulatory proteins.展开更多
Heat stress causes overgrowth,leaf dryness and fruit malformation,which negatively impacts cucumber quality and yield.Yet,in spite of the devastating consequences of this abiotic stress,few genes for heat tolerance in...Heat stress causes overgrowth,leaf dryness and fruit malformation,which negatively impacts cucumber quality and yield.Yet,in spite of the devastating consequences of this abiotic stress,few genes for heat tolerance in cucumber have been identified.Here,the heat injury indices of 88 cucumber accessions representing diverse ecotypes were collected in two open-field environments,with naturally occurring high temperatures over two years.Seventeen of the 88 accessions were identified as highly heat-tolerant.Using a genome-wide association study,five loci(gHII3.1,gHII3.2,gHII3.3,gHII4.1 and gHII6.1)on three chromosomes associated with heat tolerance were detected.Pairwise linkage disequilibrium correlation,sequence polymorphisms,and qRT-PCR analyses at these loci,identified five candidate genes predicted to be casual for heat stress response in cucumber.CsaV3_3G04883,CsaV3_4G029050 and CsaV3_6G005370 each had nonsynonymous SNPs,and were significantly up-regulated by heat stress in the heat-tolerant genotypes.CsaV3_3G031890 was also induced by heat stress,but in the heatsensitive genotypes,and sequence polymorphism was only found in the promoter region.Identifying these candidate genes lays a foundation for understanding cucumber thermotolerance mechanisms.Our study is one of the few to examine heat stress in adult cucumber plants and it therefore fills a critical gap in knowledge.It is also an important first-step towards accelerating the breeding of robust heat-tolerant varieties.展开更多
Background:Adenoid hypertrophy(AH)is a common pediatric disease that signifi-cantly impacts the growth and quality of life of children.However,there is no replica-ble and valid model for AH.Methods:An AH rat model was...Background:Adenoid hypertrophy(AH)is a common pediatric disease that signifi-cantly impacts the growth and quality of life of children.However,there is no replica-ble and valid model for AH.Methods:An AH rat model was developed via comprehensive allergic sensitization,chronic inflammation induction,and chronic intermittent hypoxia(CIH).The modeling process involved three steps:female Sprague-Dawley rats(aged 4-5 weeks)were used for modeling.Allergen sensitization was induced via intraperitoneal administra-tion and intranasal provocation using ovalbumin(OVA);chronic nasal inflammation was induced through intranasal lipopolysaccharide(LPS)administration for sustained nasal irritation;CIH akin to obstructive sleep apnea/hypopnea syndrome was induced using an animal hypoxia chamber.Postmodel establishment,behaviors,and histologi-cal changes in nasopharynx-associated lymphoid tissue(NALT)and nasal mucosa were assessed.Arterial blood gas analysis and quantification of serum and tissue levels of(interleukin)IL-4 and IL-13,OVA-specific immunoglobulin E(sIgE),eosinophil cationic protein(ECP),tumor necrosis factor(TNF-α),IL-17,and transforming growth factor(TGF)-βwere conducted for assessment.The treatment group received a combination of mometasone furoate and montelukast sodium for a week and then was evaluated.Results:Rats exhibited notable nasal symptoms and hypoxia after modeling.Histopathological analysis revealed NALT follicle hypertrophy and nasal mucosa in-flammatory cell infiltration.Elevated IL-4,IL-13,IL-17,OVA-sIgE,ECP,and TNF-αlev-els and reduced TGF-βlevels were observed in the serum and tissue of model-group rats.After a week of treatment,the treatment group exhibited symptom and inflam-matory factor improvement.Conclusion:The model effectively simulates AH symptoms and pathological changes.But it should be further validated for genetic,immunological,and hormonal back-grounds in the currently used and other strains and species.展开更多
Platinum-based(Pt)catalysts are notoriously susceptible to deactivation in industrial chemical processes due to carbon monoxide(CO)poisoning.Overcoming this poisoning deactivation of Pt-based catalysts while enhancing...Platinum-based(Pt)catalysts are notoriously susceptible to deactivation in industrial chemical processes due to carbon monoxide(CO)poisoning.Overcoming this poisoning deactivation of Pt-based catalysts while enhancing their catalytic activity,selectivity,and durability remains a major challenge.Herein,we propose a strategy to enhance the CO tolerance of Pt clusters(Pt_n)by introducing neighboring functionalized vip single atoms(such as Fe,Co,Ni,Cu,Sb,and Bi).Among them,antimony(Sb)single atoms(SAs)exhibit significant performance enhancement,achieving 99%CO selectivity and 33.6%CO_(2)conversion at 450℃,Experimental results and density functional theory(DFT)calculations indicate the optimization arises from the electronic interaction between neighboring functionalized Sb SAs and Pt clusters,leading to optimal 5d electron redistribution in Pt clusters compared to other functionalized vip single atoms.The redistribution of 5d electrons weaken both theσdonation andπbackdonation interactions,resulting in a weakened bond strength with CO and enhancing catalyst activity and selectivity.In situ environmental transmission electron microscopy(ETEM)further demonstrates the exception thermal stability of the catalyst,even under H_(2)at 700℃.Notably,the functionalized Sb SAs also improve CO tolerance in various heterogenous catalysts,including Co/CeO_(2),Ni/CeO_(2),Pt/Al_(2)O_(3),and Pt/CeO_(2)-C.This finding provides an effective approach to overcome the primary challenge of CO poisoning in Pt-based catalysts,making their broader applications in various industrial catalysts.展开更多
Rice varieties tolerant to submergence regulate shoot elongation during short-term submergence by expressing the SUB1A gene.In contrast,the deep-rooted DRO1 is effectively expressed under drought conditions to enhance...Rice varieties tolerant to submergence regulate shoot elongation during short-term submergence by expressing the SUB1A gene.In contrast,the deep-rooted DRO1 is effectively expressed under drought conditions to enhance water and nutrient uptake.This study investigates the growth and yield of rice with both SUB1A and DRO1 in the background of IR64,under early-season flooding,and mid-season drought.The study used a randomized complete design with two factors:soil moisture treatments(submergence,drought,and their combination)and genotypes.The genotypes included IR64,and three near-isogenic lines(NILs):NIL-SUB1DRO1,NIL-SUB1,and NIL-DRO1.Complete submergence was imposed for 7 days on 14-day-old seedlings,while drought was imposed on control and submerged plants following a 21-day recovery period from submergence,using 42-day-old plants.Variables were measured before and after treatments(submergence and drought),and at harvest or grain maturity.The stresses negatively affected the genotypes.At harvest,IR64 and NIL-SUB1DRO1 under both stresses showed a significant reduction in tiller numbers,shoot dry weights,and yields compared to their control plants.IR64 exhibited a significant delay in reaching flowering under all stresses.The rice introgression lines showed significant improvements in tolerance to the stresses.The study showed no negative consequences of combining drought and submergence tolerance in rice.展开更多
The rates of oxygen consumption, tolerance of hypoxia and desiccation of the Chinese black sleeper ( Bostrichthys sinensis) and mudskipper (Boleophthalmus pectinirostris) embryos were investigated. The pattern of ...The rates of oxygen consumption, tolerance of hypoxia and desiccation of the Chinese black sleeper ( Bostrichthys sinensis) and mudskipper (Boleophthalmus pectinirostris) embryos were investigated. The pattern of oxygen consumption of the Chinese black sleeper embryos was similar to that of the mudskipper ones. The lowest rates of oxygen consumption [ ( 1.65 ±0. 66) nmol/ (ind. ·h) ] of the Chinese black sleeper embryos 16 h after fertilization and the lowest rates of oxygen consumption [ (0.79± 0.08 )nmolf( ind. · h) ] of the mudskipper embryos 6 h after fertilization were recorded, respectively. Then the rates of oxygen consumption of these two species embryos increased gradually until hatching [ (8.26 ± 1.70 ) nmolf( ind.· h) in the Chinese black sleeper, (2.69 ± 0.23 )nmolf( ind. · h) in mudskipper]. After exposure to hypoxia water (0.16 mg/dm^3), bradycardia of the embryos occurred in both the Chinese black sleeper and the mudskipper. However, the Chinese black sleeper embryos survived approximately 45 min longer than the mudskipper ones. After exposure to desiccation at a relative humidity of 58%, bradycardia of the embryos was observed in both the Chinese black sleeper and the mudskipper, and the Chinese black sleeper embryos lived approximately 9 min longer than the mudskipper ones.展开更多
BACKGROUND: Hypoxia inducible factor-1 alpha (HIF-1 (x) and erythropoietin(EPO), possessing neuroprotective effect in the cerebral ischemia, might play an important role in the formation of cerebral ischemic tol...BACKGROUND: Hypoxia inducible factor-1 alpha (HIF-1 (x) and erythropoietin(EPO), possessing neuroprotective effect in the cerebral ischemia, might play an important role in the formation of cerebral ischemic tolerance (IT). OBJECTIVE:To observe the neuroprotective effect of cerebral ischemic preconditioning(IPC) of rats, and the expression and mechanism of HIF-1α and target gene erythropoietin in the brain tissue following the formation of cerebral IT. DESIGN : A randomized and controlled observation SETTING: Department of Neurology, the Affiliated Hospital of Medical College, Qingdao University MATERIALS: Totally 84 enrolled adult healthy male Wistar rats of clean grade, weighing 250 to 300 g, were provided by the Animal Experimental Department, Tongji Medical College of Huazhong University of Science and Technology. Ready-to-use SABC reagent kit and rabbit anti-rat HIF-1α monoclonal antibody were purchased from Boshide Bioengineering Co.Ltd (Wuhan); Rabbit anti-rat EPO monoclonal antibody was purchased from Santa Cruz Company (USA). METHODS: This experiment was carried out in the Department of Anatomy, Medical College, Qingdao University during March 2005 to March 2006. ① The 84 rats were divided into 3 groups by a lot: IPC group (n=40), sham-operation group (n=40) and control group (n=4). In the IPC group, middle cerebral artery was occluded for 2 hours respectively on the 1^st, 3^rd, 7^th, 14^th and 21^st days of the reperfusion following 10-minute preischemia was made using a modified middle cerebral artery second suture method from Zea-Longa. The rats were sacrificed 22 hours after reperfusion in the end of middle cerebral artery occlusion (MCAO). That was to say, after 10-minute preischemia, suture was exited to the extemal carotid artery and embedded subcutaneously. Middle cerebral artery was occluded again to form the second reperfusion at the set time point after reperfusion. Twenty-two hours later, rats were sacrificed; In the sham-operation group,the preischemia was substituted by sham-operation(only common carotid artery and crotch were exposed, and MCAO by suture was omitted), and the other procedures were the same as those in the IPC group. In the control group, rats were given sham-operation twice at an interval of one day, and they were sacrificed 24 hours after the second sham-operation. ② Brain tissue was taken from the rats in each group. Cerebral infarction area of each layer was measured with TTC staining, and total cerebral infarction volume (The total cerebral infarction area of each layerxinterspace ) was calculated. After brain tissue was stained by haematoxylin-esoin (HE), the form of nerve cells was observed under an optical microscope, and the expressions of HIF-1α(and EPO protein in the brain tissue were detected with immunohistochemical method. MAIN OUTCOME MEASURES: ①Cerebral infarction volume;②form of nerve cell; ③ the expression of HIF-1α and EPO protein in the brain tissue. RESULTS:Totally 84 rats were enrolled in the experiment. The dead rats were randomly supplied during the experiment, and finally 84 rats entered the stage of result analysis. ① Detection of cerebral infarction volume of rats in each group: Cerebral infarction volume in the IPC group was significantly smaller than that in the sham-operation group on the 1^st, 3^rd and 7^th days after reperfusion respectively [(161.2±6.9) mm^3 vs (219.9±11.2) mm^3, (134.9±9.0) mm^3 vs (218.6±13.0) mm^3, (142.9±13.7) mm^3 vs (221.3±14.2) mm^3, t=-8.924, 10.587,7.947, P〈 0.01]. ② Observation of nerve cell form of brain tissue: HE staining showed that the ischemic degree, range and cerebral edema degree of IPC group were significantly milder than those of sham-operation group. ③ The expressions of HIF-1α and EPO protein in cerebral cortex and hippocampus : The expression of HIF-1αof IPC group was significantly higher than that of sham-operation group on the 1^st, 3^rd and 7^th days after reperfusion respectively (125.93±3.79 vs 117.65±5.60, 140.63±4.64 vs 119.33±4.26, 131.15±2.74 vs 107.60±3.89, t=2.449, 6.763,9.899,P 〈 0.05-0.01). The expression of EPO of IPC group was significantly higher than that of sham-operation group on the 3^rd and 7^th days after perfusion respectively (141.68±3.29 vs 126.33±4.51, 138.88±2.59 vs 125.58±6.18,t=5.499,3.970, P〈 0.05). CONCLUSION : ①IPC can protect the never cells in rat brain and the best time to onset of cerebral IT induced by IPC is 1 to 7 days after reperfusion. ② Neuroprotective effect of cerebral IT might be related to the expression of HIF-1α and its target gene EPO.展开更多
The acute myocardial infarction(AMI)and sudden cardiac death(SCD),both associated with acute cardiac ischemia,are one of the leading causes of adult death in economically developed countries.The development of new app...The acute myocardial infarction(AMI)and sudden cardiac death(SCD),both associated with acute cardiac ischemia,are one of the leading causes of adult death in economically developed countries.The development of new approaches for the treatment and prevention of AMI and SCD remains the highest priority for medicine.A study on the cardiovascular effects of chronic hypoxia(CH)may contribute to the development of these methods.Chronic hypoxia exerts both positive and adverse effects.The positive effects are the infarct-reducing,vasoprotective,and antiarrhythmic effects,which can lead to the improvement of cardiac contractility in reperfusion.The adverse effects are pulmonary hypertension and right ventricular hypertrophy.This review presents a comprehensive overview of how CH enhances cardiac tolerance to ischemia/reperfusion.It is an in-depth analysis of the published data on the underlying mechanisms,which can lead to future development of the cardioprotective effect of CH.A better understanding of the CH-activated protective signaling pathways may contribute to new therapeutic approaches in an increase of cardiac tolerance to ischemia/reperfusion.展开更多
Hypoxia is a common environmental stress factor in aquatic organisms,which varies among fish species.However,the mechanisms underlying the ability of fish species to tolerate hypoxia are not well known.Here,we showed ...Hypoxia is a common environmental stress factor in aquatic organisms,which varies among fish species.However,the mechanisms underlying the ability of fish species to tolerate hypoxia are not well known.Here,we showed that hypoxia response in different fish species was affected by lipid catabolism and preference for lipid or carbohydrate energy sources.Activation of biochemical lipid catabolism through peroxisome proliferator-activated receptor alpha(Pparα)or increasing mitochondrial fat oxidation in tilapia decreased tolerance to acute hypoxia by increasing oxygen consumption and oxidative damage and reducing carbohydrate catabolism as an energy source.Conversely,lipid catabolism inhibition by suppressing entry of lipids into mitochondria in tilapia or individually knocking out three key genes of lipid catabolism in zebrafish increased tolerance to acute hypoxia by decreasing oxygen consumption and oxidative damage and promoting carbohydrate catabolism.However,anaerobic glycolysis suppression eliminated lipid catabolism inhibition-promoted hypoxia tolerance in adipose triglyceride lipase(atgl)mutant zebrafish.Using 14 fish species with different trophic levels and taxonomic status,the fish preferentially using lipids for energy were more intolerant to acute hypoxia than those preferentially using carbohydrates.Our study shows that hypoxia tolerance in fish depends on catabolic preference for lipids or carbohydrates,which can be modified by regulating lipid catabolism.展开更多
Background: Hypoxia is a primary cause of mountain sickness and a common pathological condition in patients with heart failure, shock, stroke, and chronic obstructive pulmonary disease(COPD). Thus far, little advancem...Background: Hypoxia is a primary cause of mountain sickness and a common pathological condition in patients with heart failure, shock, stroke, and chronic obstructive pulmonary disease(COPD). Thus far, little advancement in countering hypoxic damage has been achieved, and one of the main reasons is the absence of an ideal algorithm or calculation method to normalize hypoxia tolerance scores when evaluating an animal model. In this study, we improved a traditional calculation formula for assessment of hypoxia tolerance.Methods: We used a sealed bottle model in which the oxygen is gradually consumed by a mouse inside. To evaluate the hypoxia tolerance of mice, the survival time(ST) of the mouse is recorded and was used to calculate standard hypoxia tolerance time(STT) and adjusted standard hypoxia tolerance time(ASTT). Mice administered with methazolamide and saline were used as positive and negative controls, respectively.Results: Since mice were grouped according to either body weight(BW) or bottle volume, we found a strongly negative correlation between STT and BW instead of between STT and bottle volume, suggesting that different BWs could cause false positive or negative errors in the STT results. Furthermore, both false positive and negative errors could be rectified when ASTT was used as the evaluation index. Screening for anti-hypoxic medicines by using mice as the experimental subjects would provide more credible results with the improved ASTT method than with the STT method.Conclusions: ASTT could be a better index than STT for the evaluation of hypoxia tolerance abilities as it could eliminate the impact of animal BW.展开更多
Excess soil moisture induces hypoxic conditions and causes waterlogging injury in soybean [Glycine max (L.) Merr.]. This study investigated the mechanism underlying the development of waterlogging injury. Nine Japanes...Excess soil moisture induces hypoxic conditions and causes waterlogging injury in soybean [Glycine max (L.) Merr.]. This study investigated the mechanism underlying the development of waterlogging injury. Nine Japanese soybean cultivars with varying degrees of waterlogging tolerance were grown in a hydroponic system for 14 days under hypoxic conditions. Shoot and root biomasses and root hydraulic conductivity were measured at an early vegetative stage for plants under control and hypoxic conditions. Root morphological traits and intramembrane aquaporin proteins were also analyzed. The tolerance of each cultivar to field waterlogging was based on biomass changes induced by the hypoxia treatment. Root hydraulic conductivity responses to hypoxia were associated with changes in total dry weight, leaf dry weight, and leaf area. The effects of hypoxic conditions on root hydraulic conductivity were also represented by the changes in root morphology, such as total root length, thick-root length, and number of root tips. Additionally, a 32.3 kDa aquaporin-like protein seemed to regulate root hydraulic conductivity. Our results from a hydroponic culture suggest that the soybean cultivar-specific responses to hypoxic conditions in the rhizosphere reflect fluctuations in hydraulic conductivity related to root morphological or qualitative changes.展开更多
BACKGROUND: Numerous studies have shown that transient ischemic preconditioning induces cerebral ischemic tolerance. However, the underlying mechanisms of endogenous protection following ischemic preconditioning rema...BACKGROUND: Numerous studies have shown that transient ischemic preconditioning induces cerebral ischemic tolerance. However, the underlying mechanisms of endogenous protection following ischemic preconditioning remain unclear. OBJECTIVE: To dynamically measure erythropoietin and hypoxia-inducible factor-1α (HIF-1α) mRNA and protein expression at various times following preconditioning, and to investigate effects of erythropoietin and HIF-1α on cerebral ischemic tolerance in a model of focal ischemia/reperfusion established using the twice suture method. DESIGN, TIME AND SETTING: The randomized, controlled study was performed at the Institute of Anatomy, Medical College, Qingdao University, China from March 2006 to March 2007. MATERIALS: Rabbit anti-rat HIF-1α monoclonal antibody and biotinylated goat anti-rabbit IgG (Boster, China), rabbit anti-rat erythropoietin monoclonal antibody (Santa Cruz Biotechnology, USA), and one-step RT-PCR kit (Qiagen, Germany) were used in this study. METHODS: A total of 99 healthy, male, Wistar rats were randomly assigned to three groups: sham surgery (n = 9), non-ischemic preconditioning (n = 45), and ischemic preconditioning (n = 45). In the ischemic preconditioning group, rat models of pre-ischemia-reperfusion-ischemia-reperfusion were established by occluding the left middle cerebral artery using the twice suture method. In the non-ischemic preconditioning group, pre-ischemia was replaced by sham surgery. Subsequently, the ischemic preconditioning and non-ischemic preconditioning groups were equally divided into five subgroups according to time of first reperfusion, including 1-, 3-, 7-, 14-, and 21-day subgroups. The sham surgery group received the sham surgery twice. MAIN OUTCOME MEASURES: HIF-la and erythropoietin protein expression was measured in the cerebral cortex, corpus striatum, and hippocampus of the ischemic hemisphere. HIF-1α and erythropoietin mRNA expression were determined in the frontal and parietal cortex of the ischemic hemisphere. RESULTS: (1) Intergroup comparison: compared with the non-ischemic preconditioning group, HIF-1α protein expression significantly increased in the rat cerebral cortex, corpus striatum, and hippocampus in the ischemic hemisphere at 1,3, and 7 days following reperfusion in the ischemic preconditioning group (P 〈 0.05 or P 〈 0.01). Erythropoietin protein expression significantly increased in the cerebral cortex, corpus striatum, and hippocampus, as well as HIF-1α and erythropoietin mRNA expression in the frontal and parietal cortex in the ischemic hemisphere, at 3 and 7 days following reperfusion in the ischemic preconditioning group (P 〈 0.05). (2) Temporal expression: HIF-1α protein expression in the rat cerebral cortex, corpus striatum, and hippocampus, as well as HIF-la mRNA expression in the frontal and parietal cortex, in the ischemic hemisphere increased at 3 days, and gradually decreased from 7 days following reperfusion in the ischemic preconditioning group. Temporal erythropoietin protein and mRNA expression was consistent with HIF-1α protein expression. (3) Correlation: erythropoietin mRNA expression positively correlated with HIF-1α mRNA expression (r= 0.737, P 〈 0.01). CONCLUSION: Ischemic preconditioning induced cerebral ischemic tolerance. Pre-ischemiainduced increase in endogenous HIF-1αexpression, as well as its target gene erythropoietin, participated in the formation of cerebral ischemic tolerance.展开更多
Summary: To investigate the effects of time interval and cumulative dosage of repetitive mild cellular hypoxia on shape of neurodegeneration and neuroprotection in mice, population spike amplitude (PSA) was measured d...Summary: To investigate the effects of time interval and cumulative dosage of repetitive mild cellular hypoxia on shape of neurodegeneration and neuroprotection in mice, population spike amplitude (PSA) was measured during hypoxia and posthypoxic recovery in hippocampal slices from untreated control and mice pretreated in vivo with a single or repeatedly intraperitoneal injection of 3-nitropropionate (3-NP). Posthypoxic recovery of PSA was dose-dependent in single pretreated slices, with maximal recovery on pretreatment attained with 20 mg/kg 3-NP (82±32%, P< 0.01). Upon 5 and 9 treatments with 20 mg/kg 3-NP (dosage interval 3 days), PSA recovered to (38±9) % with the difference being not significant vs control group and (72±45) % with the difference being significant (P< 0.05 to control, P<0.05 to 5 treatments), respectively. In contrast, with 2 days time interval, recovery after 5 and 9 treatments was (30±25) % and (16±14) %, respectively (without significant difference from control). Continued neuroprotection was also observed upon increase of dosage interval to 4 and 5 days. It was suggested that repetitive chemical hypoxia is a model for neurodegenerative disease and continued neuroprotection depending on time interval between repetitive hypoxic episodes rather than cumulative dosage. At appropriate time intervals increased neuronal hypoxic tolerance could be induced with number of hypoxic episodes.展开更多
Microwave absorbing materials(MAMs)characterized by high absorption efficiency and good environmental tolerance are highly desirable in practical applications.Both silicon carbide and carbon are considered as stable M...Microwave absorbing materials(MAMs)characterized by high absorption efficiency and good environmental tolerance are highly desirable in practical applications.Both silicon carbide and carbon are considered as stable MAMs under some rigorous conditions,while their composites still fail to produce satisfactory microwave absorption performance regardless of the improvements as compared with the individuals.Herein,we have successfully implemented compositional and structural engineering to fabricate hollow Si C/C microspheres with controllable composition.The simultaneous modulation on dielectric properties and impedance matching can be easily achieved as the change in the composition of these composites.The formation of hollow structure not only favors lightweight feature,but also generates considerable contribution to microwave attenuation capacity.With the synergistic effect of composition and structure,the optimized SiC/C composite exhibits excellent performance,whose the strongest reflection loss intensity and broadest effective absorption reach-60.8 dB and 5.1 GHz,respectively,and its microwave absorption properties are actually superior to those of most SiC/C composites in previous studies.In addition,the stability tests of microwave absorption capacity after exposure to harsh conditions and Radar Cross Section simulation data demonstrate that hollow SiC/C microspheres from compositional and structural optimization have a bright prospect in practical applications.展开更多
Background: Hypoxia tolerance studies in cotton are very rare in Pakistan. Unpredicted and excessive rainfalls result in severe losses to cotton crop in many regions of the country due to lack of hypoxia tolerance in...Background: Hypoxia tolerance studies in cotton are very rare in Pakistan. Unpredicted and excessive rainfalls result in severe losses to cotton crop in many regions of the country due to lack of hypoxia tolerance in current cotton varieties. The genotypes that can tolerate flooding are not reported earlier. The studies were conducted to explore hypoxia tolerance in local germplasm which will help to develop hypoxia tolerant cotton varieties. Method: An experiment with randomized complete different cotton varieties. The genotypes were given conditions. blocks was designed to study the hypoxia tolerance in two treatments i.e., water logged and non-water logged Results: The genotypes showed significant variability for yield, fiber and physiological traits. The hypoxia studies revealed that there is significant reduction for plant height in water sensitive genotype LRA-5166. The genotype MNH-786 showed better yield and MNH-556 showed superior ginning outturn percentage under water logged conditions. Staple length, strength and micronaire values also decreased under hypoxia. Similar pattern of negative effects were observed for Chlorophyll a, b contents and chl a/b ratio. Two hypoxia tolerant cultivars CIM-573 and MNH-564 had significantly higher chlorophyll a (1.664, 1.551) than other cultivars under both normal and waterlogged conditions. There was a significant decrease in total free amino acids in all genotypes/cultivars due to waterlogging. Free amino acid contents were significantly higher in two waterlogging sensitive cultivars, CEDIX and N-KRISHMA, than other cultivars under both non-waterlogged and waterlogged conditions. Waterlogging caused a significant reduction in shoot soluble proteins and increase in shoot proline. The genotype LRA-5166 was the highest in shoot soluble proteins content and showed significant decrease in shoot proline. Conclusions: With respect to yield MNH-786 showed better results and regarding ginning outturn percentage MNH-556 exhibited superior performance. The genotypes CIM-573 and MNH-564 showed higher chlorophyll a values. The above said genotypes may be exploited for further studies related to hypoxia tolerance.展开更多
Flax(Linum usitatissimum L.)is a versatile crop and its seeds are a major source of unsaturated fatty acids.Stearoyl-acyl carrier protein desaturase(SAD)is a dehydrogenase enzyme that plays a key role in oleic acid bi...Flax(Linum usitatissimum L.)is a versatile crop and its seeds are a major source of unsaturated fatty acids.Stearoyl-acyl carrier protein desaturase(SAD)is a dehydrogenase enzyme that plays a key role in oleic acid biosynthesis as well as responses to biotic and abiotic stresses.However,the function of SAD orthologs from L.usitatissimum has not been assessed.Here,we found that two LuSAD genes,LuSAD1 and LuSAD2,are present in the genome of L.usitatissimum cultivar‘Longya 10’.Heterogeneous expression of either LuSAD1 or LuSAD2 in Arabidopsis thaliana resulted in higher contents of total fatty acids and oleic acid in the seeds.Interestingly,ectopic expression of LuSAD2 in A.thaliana caused altered plant architecture.Similarly,the overexpression of either LuSAD1 or LuSAD2 in Brassica napus also resulted in increased contents of total fatty acids and oleic acid in the seeds.Furthermore,we demonstrated that either LuSAD1 or LuSAD2 enhances seedling resistance to cold and drought stresses by improving antioxidant enzyme activity and nonenzymatic antioxidant levels,as well as reducing membrane damage.These findings not only broaden our knowledge of the LuSAD functions in plants,but also offer promising targets for improving the quantity and quality of oil,and the abiotic stress tolerance of oil-producing crops,through molecular manipulation.展开更多
文摘Objective: To investigate the specific mechanism of hypoxia-inducible factor 1 alpha (HIF-1α) in the regulation of human sperm apoptosis, and to provide a new theoretical reference and scientific basis for the diagnosis and treatment of asthenospermia and other related conditions. Methods: Semen samples were categorized into the normal group and asthenospermia group based on sperm motility criteria. HIF-1α interfering agent cobalt chloride (CoCl2) and guanylate cyclase activator (Lificiguat, YC-1) were added respectively, with a control group established accordingly. Sperm motility (using anterior viability rate as an index), apoptosis level, ATP level, mitochondrial membrane potential, and reactive oxygen species (ROS) level were measured. The expression levels of HIF-1α, p-PI3K, and Bcl-2 in the samples were analyzed using Western blotting. Results: Following CoCl2 treatment, there was a significant increase in sperm apoptosis compared to the normal control group (12.51% ± 2.50% VS 11.15% ± 2.42%);additionally, sperm motility (45.34% ± 3.37% VS 51.36% ± 11.68%), ATP production (11.51 ± 2.87 nM/µL VS 14.99 ± 2.83 nM/µL), ROS levels, and mitochondrial membrane potential all decreased significantly (all P α and p-PI3K increased significantly while Bcl-2 expression decreased (all P α in the YC-1 treatment group were decreased, and the expression level of Bcl-2 was increased (all P α can influence human sperm apoptosis and motility through the PI3K signaling pathway.
基金Direction Generale de la Recherche Scientifique et du Developpement Technologique(DGRSDT)Algeria,and the Researchers Supporting Project No.(RSP2025R390),King Saud University,Riyadh,Saudi Arabia.
文摘Salinity stress is a major challenge for global agriculture,particularly in arid and semi-arid regions,limiting plant productivity due to water and soil salinity.These conditions particularly affect countries along the southern Mediterranean rim,including Algeria,which primarily focuses on pastoral and forage practices.This study investigates salinity tolerance and ecotypic variability in Vicia narbonensis L.,a fodder legume species recognized for its potential to reclaim marginal soils.Morphological,physiological,and biochemical responses were assessed in three ecotypes(eco2,eco9,and eco10)exposed to different salinity levels(low,moderate,and severe).The study was conducted using a completely randomized block design with three blocks per ecotype per dose.The results from the two-way analysis of variance demonstrate significant effects across nearly all attributes studied,revealing distinct ecotypic responses.These findings underscore variations in growth parameters,osmotic regulation mechanisms,and biochemical adjustments.The substantial diversity observed among these ecotypes in their response to salinity provides valuable insights for breeders addressing both agronomic and ecological challenges.Multivariate analyses,including Principal Component Analysis(PCA),revealed key variables distinguishing between ecotypes under salinity stress.Moreover,Classification based on Salinity Tolerance Indices(STI)further differentiated ecotypic performance with more precision,and this is because of the combination of the different parameters studied.These results open up new prospects for the development of strategies to improve the salinity tolerance of forage legumes.
基金This research was financially supported by the earmarked fund for CARS(CARS-45)National Natural Science Foundation of China(32273144,32072985)National Key R&D Program of China(2019YFD0900200).
文摘Background Ochratoxin A(OTA)is a toxin widely found in aquafeed ingredients,and hypoxia is a common prob-lem in fish farming.In practice,aquatic animals tend to be more sensitive to hypoxia while feeds are contaminated with OTA,but no studies exist in this area.This research investigated the multiple biotoxicities of OTA and hypoxia combined on the liver of grass carp and explored the mitigating effect of curcumin(CUR).Methods A total of 720 healthy juvenile grass carp(11.06±0.05 g)were selected and assigned randomly to 4 experi-mental groups:control group(without OTA and CUR),1.2 mg/kg OTA group,400 mg/kg CUR group,and 1.2 mg/kg OTA+400 mg/kg CUR group with three replicates each for 60 d.Subsequently,32 fish were selected,divided into nor-moxia(18 fish)and hypoxia(18 fish)groups,and subjected to hypoxia stress for 96 h.Results CUR can attenuate histopathological damage caused by coming to OTA and hypoxia by reducing vacu-olation and nuclear excursion.The alleviation of this damage was associated with the attenuation of apoptosis in the mitochondrial pathway by decreasing the expression of the pro-apoptotic proteins Caspase 3,8,9,Bax,and Apaf1 while increasing the expression of the anti-apoptotic protein Bcl-2,and attenuation of endoplasmic reticulum stress(ERS)by reducing Grp78 expression and chop levels.This may be attributed to the fact that the addi-tion of CUR increased the levels of catalase(CAT)and glutathione reductase(GSH),increased antioxidant capacity,and ensured the proper functioning of respiratory chain complexes I and II,which in turn reduced the high produc-tion of reactive oxygen species(ROS),thus alleviating apoptosis and ERS.Conclusions In conclusion,our data demonstrate the effectiveness of CUR in attenuating liver injury caused by the combination of OTA and hypoxia.This study confirms the feasibility and efficacy of adding natural products to mitigate toxic damage to aquatic animals.
基金supported by the National Natural Science Foundation of China(32171945,32301760)the Program for Innovative Research Team(in Science and Technology)in University of Henan Province,China(22IRTSTHN023)+2 种基金the Scientific and Technological Research Project of Henan Province,China(242102111116)the National Science Foundation for Postdoctoral Scientists of China(2023M731003)the Postdoctoral Research Subsidize Fund of Henan Province,China(HN2022139)。
文摘Global warming impacts plant growth and development,which in turn threatens food security.Plants can clearly respond to warm-temperature(such as by thermomorphogenesis)and high-temperature stresses.At the molecular level,many small molecules play crucial roles in balancing growth and defense,and stable high yields can be achieved by fine-tuning the responses to external stimuli.Therefore,it is essential to understand the molecular mechanisms underlying plant growth in response to heat stress and how plants can adjust their biological processes to survive heat stress conditions.In this review,we summarize the heat-responsive genetic networks in plants and crop plants based on recent studies.We focus on how plants sense the elevated temperatures and initiate the cellular and metabolic responses that allow them to adapt to the adverse growing conditions.We also describe the trade-off between plant growth and responses to heat stress.Specifically,we address the regulatory network of plant responses to heat stress,which will facilitate the discovery of novel thermotolerance genes and provide new opportunities for agricultural applications.
基金supported by the National Natural Science Foundation of China(31871622)the Key R&D Program of Shandong Province,China(2022LZG001)。
文摘FCS-like zinc finger(FLZ)gene family members are C2-C2 zinc finger proteins that take part in seed dormancy,resistance to Myzus persicae 1,sucrose signaling and abiotic stresse tolerance.However,their functions,especially the molecular mechanism through which FLZs function,are not well understood.In this study,we characterized 120FLZs in wheat and revealed the function and mechanism of TaFLZ54D increasing salt stress tolerance in transgenic wheat.Expression analysis demonstrated that TaFLZ54D can be induced by NaCl treatment and it had the highest expression level under NaCl treatment among the 120 FLZs.Over-expression of TaFLZ54D increased wheat salt stress tolerance and the transgenic plants had higher levels of superoxide dismutase(SOD)and peroxidase(POD)activities and soluble sugar content,but a lower Na^(+)/K^(+)ratio and malondialdehyde(MDA)content than the wild type(WT)plants.Potassium ion transmembrane transporters and serine/threonine kinase inhibitor proteins showed differential expression between Ta FLZ54D transgenic wheat and the WT.Yeast two hybrid and luciferase complementation assays revealed that TaSGT1 and TaPP2C are the proteins that interact directly with TaFLZ54D.In summary,TaFLZ54D enhances salt stress tolerance through interaction with TaSGT1 and TaPP2C to reduce Na^(+)absorption and mitigate oxidative stress.The interaction between TaFLZ54D and TaSGT1,as well as TaPP2C indicated a link between salt stress tolerance of TaFLZ54D and the ubiquitin-mediated degradation of negative regulatory proteins.
基金supported by Beijing Joint Research Program for Germplasm Innovation and New Variety Breeding(Grant No.G20220628003-03)Chongqing Municipal People's Government and Chinese Academy of Agricultural Sciences strategic cooperation project,Key-Area Research and Development Program of Guangdong Province(Grant No.2020B020220001)+3 种基金the Earmarked Fund for Modern Agro-industry Technology Research System(Grant No.CARS-23)Science and Technology Innovation Program of the Chinese Academy of Agricultural Science(Grant No.CAAS-ASTIP-IVFCAAS)Central public-interest Scientific Institution Basal Research Fund(Grant No.Y2017PT52)the Key Laboratory of Biology and Genetic Improvement of Horticultural Crops,Ministry of Agriculture,P.R.China。
文摘Heat stress causes overgrowth,leaf dryness and fruit malformation,which negatively impacts cucumber quality and yield.Yet,in spite of the devastating consequences of this abiotic stress,few genes for heat tolerance in cucumber have been identified.Here,the heat injury indices of 88 cucumber accessions representing diverse ecotypes were collected in two open-field environments,with naturally occurring high temperatures over two years.Seventeen of the 88 accessions were identified as highly heat-tolerant.Using a genome-wide association study,five loci(gHII3.1,gHII3.2,gHII3.3,gHII4.1 and gHII6.1)on three chromosomes associated with heat tolerance were detected.Pairwise linkage disequilibrium correlation,sequence polymorphisms,and qRT-PCR analyses at these loci,identified five candidate genes predicted to be casual for heat stress response in cucumber.CsaV3_3G04883,CsaV3_4G029050 and CsaV3_6G005370 each had nonsynonymous SNPs,and were significantly up-regulated by heat stress in the heat-tolerant genotypes.CsaV3_3G031890 was also induced by heat stress,but in the heatsensitive genotypes,and sequence polymorphism was only found in the promoter region.Identifying these candidate genes lays a foundation for understanding cucumber thermotolerance mechanisms.Our study is one of the few to examine heat stress in adult cucumber plants and it therefore fills a critical gap in knowledge.It is also an important first-step towards accelerating the breeding of robust heat-tolerant varieties.
基金This work was financially supported by the National Natural Science Foundation of China(grant number:8217150152)the Clinical Science and Technology Innovation Project of Shanghai Shenkang Hospital Development Center(grant number:SHDC12021102)the Shanghai Three-Year Action Plan to Further Accelerate the Development of Traditional Chinese Medicine Inheritance and Innovation(grant number:ZY(2021-2023)-0209-05).
文摘Background:Adenoid hypertrophy(AH)is a common pediatric disease that signifi-cantly impacts the growth and quality of life of children.However,there is no replica-ble and valid model for AH.Methods:An AH rat model was developed via comprehensive allergic sensitization,chronic inflammation induction,and chronic intermittent hypoxia(CIH).The modeling process involved three steps:female Sprague-Dawley rats(aged 4-5 weeks)were used for modeling.Allergen sensitization was induced via intraperitoneal administra-tion and intranasal provocation using ovalbumin(OVA);chronic nasal inflammation was induced through intranasal lipopolysaccharide(LPS)administration for sustained nasal irritation;CIH akin to obstructive sleep apnea/hypopnea syndrome was induced using an animal hypoxia chamber.Postmodel establishment,behaviors,and histologi-cal changes in nasopharynx-associated lymphoid tissue(NALT)and nasal mucosa were assessed.Arterial blood gas analysis and quantification of serum and tissue levels of(interleukin)IL-4 and IL-13,OVA-specific immunoglobulin E(sIgE),eosinophil cationic protein(ECP),tumor necrosis factor(TNF-α),IL-17,and transforming growth factor(TGF)-βwere conducted for assessment.The treatment group received a combination of mometasone furoate and montelukast sodium for a week and then was evaluated.Results:Rats exhibited notable nasal symptoms and hypoxia after modeling.Histopathological analysis revealed NALT follicle hypertrophy and nasal mucosa in-flammatory cell infiltration.Elevated IL-4,IL-13,IL-17,OVA-sIgE,ECP,and TNF-αlev-els and reduced TGF-βlevels were observed in the serum and tissue of model-group rats.After a week of treatment,the treatment group exhibited symptom and inflam-matory factor improvement.Conclusion:The model effectively simulates AH symptoms and pathological changes.But it should be further validated for genetic,immunological,and hormonal back-grounds in the currently used and other strains and species.
基金financially supported by the Shanghai RisingStar Program(No.23QA1403700)the National Natural Science Foundation of China(NSFC,Grant No.U2230102)+1 种基金the sponsored by National Key Research and Development Program of China(No.2021YFB3502200)the Shanghai Technical Service Center of Science and Engineering Computing,Shanghai University.
文摘Platinum-based(Pt)catalysts are notoriously susceptible to deactivation in industrial chemical processes due to carbon monoxide(CO)poisoning.Overcoming this poisoning deactivation of Pt-based catalysts while enhancing their catalytic activity,selectivity,and durability remains a major challenge.Herein,we propose a strategy to enhance the CO tolerance of Pt clusters(Pt_n)by introducing neighboring functionalized vip single atoms(such as Fe,Co,Ni,Cu,Sb,and Bi).Among them,antimony(Sb)single atoms(SAs)exhibit significant performance enhancement,achieving 99%CO selectivity and 33.6%CO_(2)conversion at 450℃,Experimental results and density functional theory(DFT)calculations indicate the optimization arises from the electronic interaction between neighboring functionalized Sb SAs and Pt clusters,leading to optimal 5d electron redistribution in Pt clusters compared to other functionalized vip single atoms.The redistribution of 5d electrons weaken both theσdonation andπbackdonation interactions,resulting in a weakened bond strength with CO and enhancing catalyst activity and selectivity.In situ environmental transmission electron microscopy(ETEM)further demonstrates the exception thermal stability of the catalyst,even under H_(2)at 700℃.Notably,the functionalized Sb SAs also improve CO tolerance in various heterogenous catalysts,including Co/CeO_(2),Ni/CeO_(2),Pt/Al_(2)O_(3),and Pt/CeO_(2)-C.This finding provides an effective approach to overcome the primary challenge of CO poisoning in Pt-based catalysts,making their broader applications in various industrial catalysts.
文摘Rice varieties tolerant to submergence regulate shoot elongation during short-term submergence by expressing the SUB1A gene.In contrast,the deep-rooted DRO1 is effectively expressed under drought conditions to enhance water and nutrient uptake.This study investigates the growth and yield of rice with both SUB1A and DRO1 in the background of IR64,under early-season flooding,and mid-season drought.The study used a randomized complete design with two factors:soil moisture treatments(submergence,drought,and their combination)and genotypes.The genotypes included IR64,and three near-isogenic lines(NILs):NIL-SUB1DRO1,NIL-SUB1,and NIL-DRO1.Complete submergence was imposed for 7 days on 14-day-old seedlings,while drought was imposed on control and submerged plants following a 21-day recovery period from submergence,using 42-day-old plants.Variables were measured before and after treatments(submergence and drought),and at harvest or grain maturity.The stresses negatively affected the genotypes.At harvest,IR64 and NIL-SUB1DRO1 under both stresses showed a significant reduction in tiller numbers,shoot dry weights,and yields compared to their control plants.IR64 exhibited a significant delay in reaching flowering under all stresses.The rice introgression lines showed significant improvements in tolerance to the stresses.The study showed no negative consequences of combining drought and submergence tolerance in rice.
基金supported by the National Natural Science Foundation of China under contract No.40476056the Science and Technology Key Project of Fujian Province of China under contract Nos 2003N026 and 2004SZ01-02.
文摘The rates of oxygen consumption, tolerance of hypoxia and desiccation of the Chinese black sleeper ( Bostrichthys sinensis) and mudskipper (Boleophthalmus pectinirostris) embryos were investigated. The pattern of oxygen consumption of the Chinese black sleeper embryos was similar to that of the mudskipper ones. The lowest rates of oxygen consumption [ ( 1.65 ±0. 66) nmol/ (ind. ·h) ] of the Chinese black sleeper embryos 16 h after fertilization and the lowest rates of oxygen consumption [ (0.79± 0.08 )nmolf( ind. · h) ] of the mudskipper embryos 6 h after fertilization were recorded, respectively. Then the rates of oxygen consumption of these two species embryos increased gradually until hatching [ (8.26 ± 1.70 ) nmolf( ind.· h) in the Chinese black sleeper, (2.69 ± 0.23 )nmolf( ind. · h) in mudskipper]. After exposure to hypoxia water (0.16 mg/dm^3), bradycardia of the embryos occurred in both the Chinese black sleeper and the mudskipper. However, the Chinese black sleeper embryos survived approximately 45 min longer than the mudskipper ones. After exposure to desiccation at a relative humidity of 58%, bradycardia of the embryos was observed in both the Chinese black sleeper and the mudskipper, and the Chinese black sleeper embryos lived approximately 9 min longer than the mudskipper ones.
基金the Scientific andTechnological DevelopmentProgram of Qingdao City, No.No.05-1-NS-73
文摘BACKGROUND: Hypoxia inducible factor-1 alpha (HIF-1 (x) and erythropoietin(EPO), possessing neuroprotective effect in the cerebral ischemia, might play an important role in the formation of cerebral ischemic tolerance (IT). OBJECTIVE:To observe the neuroprotective effect of cerebral ischemic preconditioning(IPC) of rats, and the expression and mechanism of HIF-1α and target gene erythropoietin in the brain tissue following the formation of cerebral IT. DESIGN : A randomized and controlled observation SETTING: Department of Neurology, the Affiliated Hospital of Medical College, Qingdao University MATERIALS: Totally 84 enrolled adult healthy male Wistar rats of clean grade, weighing 250 to 300 g, were provided by the Animal Experimental Department, Tongji Medical College of Huazhong University of Science and Technology. Ready-to-use SABC reagent kit and rabbit anti-rat HIF-1α monoclonal antibody were purchased from Boshide Bioengineering Co.Ltd (Wuhan); Rabbit anti-rat EPO monoclonal antibody was purchased from Santa Cruz Company (USA). METHODS: This experiment was carried out in the Department of Anatomy, Medical College, Qingdao University during March 2005 to March 2006. ① The 84 rats were divided into 3 groups by a lot: IPC group (n=40), sham-operation group (n=40) and control group (n=4). In the IPC group, middle cerebral artery was occluded for 2 hours respectively on the 1^st, 3^rd, 7^th, 14^th and 21^st days of the reperfusion following 10-minute preischemia was made using a modified middle cerebral artery second suture method from Zea-Longa. The rats were sacrificed 22 hours after reperfusion in the end of middle cerebral artery occlusion (MCAO). That was to say, after 10-minute preischemia, suture was exited to the extemal carotid artery and embedded subcutaneously. Middle cerebral artery was occluded again to form the second reperfusion at the set time point after reperfusion. Twenty-two hours later, rats were sacrificed; In the sham-operation group,the preischemia was substituted by sham-operation(only common carotid artery and crotch were exposed, and MCAO by suture was omitted), and the other procedures were the same as those in the IPC group. In the control group, rats were given sham-operation twice at an interval of one day, and they were sacrificed 24 hours after the second sham-operation. ② Brain tissue was taken from the rats in each group. Cerebral infarction area of each layer was measured with TTC staining, and total cerebral infarction volume (The total cerebral infarction area of each layerxinterspace ) was calculated. After brain tissue was stained by haematoxylin-esoin (HE), the form of nerve cells was observed under an optical microscope, and the expressions of HIF-1α(and EPO protein in the brain tissue were detected with immunohistochemical method. MAIN OUTCOME MEASURES: ①Cerebral infarction volume;②form of nerve cell; ③ the expression of HIF-1α and EPO protein in the brain tissue. RESULTS:Totally 84 rats were enrolled in the experiment. The dead rats were randomly supplied during the experiment, and finally 84 rats entered the stage of result analysis. ① Detection of cerebral infarction volume of rats in each group: Cerebral infarction volume in the IPC group was significantly smaller than that in the sham-operation group on the 1^st, 3^rd and 7^th days after reperfusion respectively [(161.2±6.9) mm^3 vs (219.9±11.2) mm^3, (134.9±9.0) mm^3 vs (218.6±13.0) mm^3, (142.9±13.7) mm^3 vs (221.3±14.2) mm^3, t=-8.924, 10.587,7.947, P〈 0.01]. ② Observation of nerve cell form of brain tissue: HE staining showed that the ischemic degree, range and cerebral edema degree of IPC group were significantly milder than those of sham-operation group. ③ The expressions of HIF-1α and EPO protein in cerebral cortex and hippocampus : The expression of HIF-1αof IPC group was significantly higher than that of sham-operation group on the 1^st, 3^rd and 7^th days after reperfusion respectively (125.93±3.79 vs 117.65±5.60, 140.63±4.64 vs 119.33±4.26, 131.15±2.74 vs 107.60±3.89, t=2.449, 6.763,9.899,P 〈 0.05-0.01). The expression of EPO of IPC group was significantly higher than that of sham-operation group on the 3^rd and 7^th days after perfusion respectively (141.68±3.29 vs 126.33±4.51, 138.88±2.59 vs 125.58±6.18,t=5.499,3.970, P〈 0.05). CONCLUSION : ①IPC can protect the never cells in rat brain and the best time to onset of cerebral IT induced by IPC is 1 to 7 days after reperfusion. ② Neuroprotective effect of cerebral IT might be related to the expression of HIF-1α and its target gene EPO.
基金supported by the Russian Science Foundation grant 22-15-00048The section dedicated to the role of kinases in the cardioprotective effect of CH is framed within the framework of state assignments 122020300042-4.
文摘The acute myocardial infarction(AMI)and sudden cardiac death(SCD),both associated with acute cardiac ischemia,are one of the leading causes of adult death in economically developed countries.The development of new approaches for the treatment and prevention of AMI and SCD remains the highest priority for medicine.A study on the cardiovascular effects of chronic hypoxia(CH)may contribute to the development of these methods.Chronic hypoxia exerts both positive and adverse effects.The positive effects are the infarct-reducing,vasoprotective,and antiarrhythmic effects,which can lead to the improvement of cardiac contractility in reperfusion.The adverse effects are pulmonary hypertension and right ventricular hypertrophy.This review presents a comprehensive overview of how CH enhances cardiac tolerance to ischemia/reperfusion.It is an in-depth analysis of the published data on the underlying mechanisms,which can lead to future development of the cardioprotective effect of CH.A better understanding of the CH-activated protective signaling pathways may contribute to new therapeutic approaches in an increase of cardiac tolerance to ischemia/reperfusion.
基金supported by the National Natural Science Foundation of China (31830102,32202950)。
文摘Hypoxia is a common environmental stress factor in aquatic organisms,which varies among fish species.However,the mechanisms underlying the ability of fish species to tolerate hypoxia are not well known.Here,we showed that hypoxia response in different fish species was affected by lipid catabolism and preference for lipid or carbohydrate energy sources.Activation of biochemical lipid catabolism through peroxisome proliferator-activated receptor alpha(Pparα)or increasing mitochondrial fat oxidation in tilapia decreased tolerance to acute hypoxia by increasing oxygen consumption and oxidative damage and reducing carbohydrate catabolism as an energy source.Conversely,lipid catabolism inhibition by suppressing entry of lipids into mitochondria in tilapia or individually knocking out three key genes of lipid catabolism in zebrafish increased tolerance to acute hypoxia by decreasing oxygen consumption and oxidative damage and promoting carbohydrate catabolism.However,anaerobic glycolysis suppression eliminated lipid catabolism inhibition-promoted hypoxia tolerance in adipose triglyceride lipase(atgl)mutant zebrafish.Using 14 fish species with different trophic levels and taxonomic status,the fish preferentially using lipids for energy were more intolerant to acute hypoxia than those preferentially using carbohydrates.Our study shows that hypoxia tolerance in fish depends on catabolic preference for lipids or carbohydrates,which can be modified by regulating lipid catabolism.
基金supported by the grants from the Natural Science Foundation of China(No.81071610 and No.81471814)Consultative Project of Transformation Medicine in Southwest Hospital of the Third Military Medical University(SWH2014ZH05)
文摘Background: Hypoxia is a primary cause of mountain sickness and a common pathological condition in patients with heart failure, shock, stroke, and chronic obstructive pulmonary disease(COPD). Thus far, little advancement in countering hypoxic damage has been achieved, and one of the main reasons is the absence of an ideal algorithm or calculation method to normalize hypoxia tolerance scores when evaluating an animal model. In this study, we improved a traditional calculation formula for assessment of hypoxia tolerance.Methods: We used a sealed bottle model in which the oxygen is gradually consumed by a mouse inside. To evaluate the hypoxia tolerance of mice, the survival time(ST) of the mouse is recorded and was used to calculate standard hypoxia tolerance time(STT) and adjusted standard hypoxia tolerance time(ASTT). Mice administered with methazolamide and saline were used as positive and negative controls, respectively.Results: Since mice were grouped according to either body weight(BW) or bottle volume, we found a strongly negative correlation between STT and BW instead of between STT and bottle volume, suggesting that different BWs could cause false positive or negative errors in the STT results. Furthermore, both false positive and negative errors could be rectified when ASTT was used as the evaluation index. Screening for anti-hypoxic medicines by using mice as the experimental subjects would provide more credible results with the improved ASTT method than with the STT method.Conclusions: ASTT could be a better index than STT for the evaluation of hypoxia tolerance abilities as it could eliminate the impact of animal BW.
文摘Excess soil moisture induces hypoxic conditions and causes waterlogging injury in soybean [Glycine max (L.) Merr.]. This study investigated the mechanism underlying the development of waterlogging injury. Nine Japanese soybean cultivars with varying degrees of waterlogging tolerance were grown in a hydroponic system for 14 days under hypoxic conditions. Shoot and root biomasses and root hydraulic conductivity were measured at an early vegetative stage for plants under control and hypoxic conditions. Root morphological traits and intramembrane aquaporin proteins were also analyzed. The tolerance of each cultivar to field waterlogging was based on biomass changes induced by the hypoxia treatment. Root hydraulic conductivity responses to hypoxia were associated with changes in total dry weight, leaf dry weight, and leaf area. The effects of hypoxic conditions on root hydraulic conductivity were also represented by the changes in root morphology, such as total root length, thick-root length, and number of root tips. Additionally, a 32.3 kDa aquaporin-like protein seemed to regulate root hydraulic conductivity. Our results from a hydroponic culture suggest that the soybean cultivar-specific responses to hypoxic conditions in the rhizosphere reflect fluctuations in hydraulic conductivity related to root morphological or qualitative changes.
基金the Scientific and Technological Development Program of Qingdao City, No.05-1-NS-73
文摘BACKGROUND: Numerous studies have shown that transient ischemic preconditioning induces cerebral ischemic tolerance. However, the underlying mechanisms of endogenous protection following ischemic preconditioning remain unclear. OBJECTIVE: To dynamically measure erythropoietin and hypoxia-inducible factor-1α (HIF-1α) mRNA and protein expression at various times following preconditioning, and to investigate effects of erythropoietin and HIF-1α on cerebral ischemic tolerance in a model of focal ischemia/reperfusion established using the twice suture method. DESIGN, TIME AND SETTING: The randomized, controlled study was performed at the Institute of Anatomy, Medical College, Qingdao University, China from March 2006 to March 2007. MATERIALS: Rabbit anti-rat HIF-1α monoclonal antibody and biotinylated goat anti-rabbit IgG (Boster, China), rabbit anti-rat erythropoietin monoclonal antibody (Santa Cruz Biotechnology, USA), and one-step RT-PCR kit (Qiagen, Germany) were used in this study. METHODS: A total of 99 healthy, male, Wistar rats were randomly assigned to three groups: sham surgery (n = 9), non-ischemic preconditioning (n = 45), and ischemic preconditioning (n = 45). In the ischemic preconditioning group, rat models of pre-ischemia-reperfusion-ischemia-reperfusion were established by occluding the left middle cerebral artery using the twice suture method. In the non-ischemic preconditioning group, pre-ischemia was replaced by sham surgery. Subsequently, the ischemic preconditioning and non-ischemic preconditioning groups were equally divided into five subgroups according to time of first reperfusion, including 1-, 3-, 7-, 14-, and 21-day subgroups. The sham surgery group received the sham surgery twice. MAIN OUTCOME MEASURES: HIF-la and erythropoietin protein expression was measured in the cerebral cortex, corpus striatum, and hippocampus of the ischemic hemisphere. HIF-1α and erythropoietin mRNA expression were determined in the frontal and parietal cortex of the ischemic hemisphere. RESULTS: (1) Intergroup comparison: compared with the non-ischemic preconditioning group, HIF-1α protein expression significantly increased in the rat cerebral cortex, corpus striatum, and hippocampus in the ischemic hemisphere at 1,3, and 7 days following reperfusion in the ischemic preconditioning group (P 〈 0.05 or P 〈 0.01). Erythropoietin protein expression significantly increased in the cerebral cortex, corpus striatum, and hippocampus, as well as HIF-1α and erythropoietin mRNA expression in the frontal and parietal cortex in the ischemic hemisphere, at 3 and 7 days following reperfusion in the ischemic preconditioning group (P 〈 0.05). (2) Temporal expression: HIF-1α protein expression in the rat cerebral cortex, corpus striatum, and hippocampus, as well as HIF-la mRNA expression in the frontal and parietal cortex, in the ischemic hemisphere increased at 3 days, and gradually decreased from 7 days following reperfusion in the ischemic preconditioning group. Temporal erythropoietin protein and mRNA expression was consistent with HIF-1α protein expression. (3) Correlation: erythropoietin mRNA expression positively correlated with HIF-1α mRNA expression (r= 0.737, P 〈 0.01). CONCLUSION: Ischemic preconditioning induced cerebral ischemic tolerance. Pre-ischemiainduced increase in endogenous HIF-1αexpression, as well as its target gene erythropoietin, participated in the formation of cerebral ischemic tolerance.
基金This work was supported by a grant from National NaturalScience Foundation of China (No.30 170 334 ) and initiativeFoundation of National Education Ministry for scholars com -ing back from other countries(No.2 0 0 1- 34 5 )
文摘Summary: To investigate the effects of time interval and cumulative dosage of repetitive mild cellular hypoxia on shape of neurodegeneration and neuroprotection in mice, population spike amplitude (PSA) was measured during hypoxia and posthypoxic recovery in hippocampal slices from untreated control and mice pretreated in vivo with a single or repeatedly intraperitoneal injection of 3-nitropropionate (3-NP). Posthypoxic recovery of PSA was dose-dependent in single pretreated slices, with maximal recovery on pretreatment attained with 20 mg/kg 3-NP (82±32%, P< 0.01). Upon 5 and 9 treatments with 20 mg/kg 3-NP (dosage interval 3 days), PSA recovered to (38±9) % with the difference being not significant vs control group and (72±45) % with the difference being significant (P< 0.05 to control, P<0.05 to 5 treatments), respectively. In contrast, with 2 days time interval, recovery after 5 and 9 treatments was (30±25) % and (16±14) %, respectively (without significant difference from control). Continued neuroprotection was also observed upon increase of dosage interval to 4 and 5 days. It was suggested that repetitive chemical hypoxia is a model for neurodegenerative disease and continued neuroprotection depending on time interval between repetitive hypoxic episodes rather than cumulative dosage. At appropriate time intervals increased neuronal hypoxic tolerance could be induced with number of hypoxic episodes.
基金supported by the National Natural Science Foundation of China(No.21676065 and No.52373262)China Postdoctoral Science Foundation(2021MD703944,2022T150782).
文摘Microwave absorbing materials(MAMs)characterized by high absorption efficiency and good environmental tolerance are highly desirable in practical applications.Both silicon carbide and carbon are considered as stable MAMs under some rigorous conditions,while their composites still fail to produce satisfactory microwave absorption performance regardless of the improvements as compared with the individuals.Herein,we have successfully implemented compositional and structural engineering to fabricate hollow Si C/C microspheres with controllable composition.The simultaneous modulation on dielectric properties and impedance matching can be easily achieved as the change in the composition of these composites.The formation of hollow structure not only favors lightweight feature,but also generates considerable contribution to microwave attenuation capacity.With the synergistic effect of composition and structure,the optimized SiC/C composite exhibits excellent performance,whose the strongest reflection loss intensity and broadest effective absorption reach-60.8 dB and 5.1 GHz,respectively,and its microwave absorption properties are actually superior to those of most SiC/C composites in previous studies.In addition,the stability tests of microwave absorption capacity after exposure to harsh conditions and Radar Cross Section simulation data demonstrate that hollow SiC/C microspheres from compositional and structural optimization have a bright prospect in practical applications.
文摘Background: Hypoxia tolerance studies in cotton are very rare in Pakistan. Unpredicted and excessive rainfalls result in severe losses to cotton crop in many regions of the country due to lack of hypoxia tolerance in current cotton varieties. The genotypes that can tolerate flooding are not reported earlier. The studies were conducted to explore hypoxia tolerance in local germplasm which will help to develop hypoxia tolerant cotton varieties. Method: An experiment with randomized complete different cotton varieties. The genotypes were given conditions. blocks was designed to study the hypoxia tolerance in two treatments i.e., water logged and non-water logged Results: The genotypes showed significant variability for yield, fiber and physiological traits. The hypoxia studies revealed that there is significant reduction for plant height in water sensitive genotype LRA-5166. The genotype MNH-786 showed better yield and MNH-556 showed superior ginning outturn percentage under water logged conditions. Staple length, strength and micronaire values also decreased under hypoxia. Similar pattern of negative effects were observed for Chlorophyll a, b contents and chl a/b ratio. Two hypoxia tolerant cultivars CIM-573 and MNH-564 had significantly higher chlorophyll a (1.664, 1.551) than other cultivars under both normal and waterlogged conditions. There was a significant decrease in total free amino acids in all genotypes/cultivars due to waterlogging. Free amino acid contents were significantly higher in two waterlogging sensitive cultivars, CEDIX and N-KRISHMA, than other cultivars under both non-waterlogged and waterlogged conditions. Waterlogging caused a significant reduction in shoot soluble proteins and increase in shoot proline. The genotype LRA-5166 was the highest in shoot soluble proteins content and showed significant decrease in shoot proline. Conclusions: With respect to yield MNH-786 showed better results and regarding ginning outturn percentage MNH-556 exhibited superior performance. The genotypes CIM-573 and MNH-564 showed higher chlorophyll a values. The above said genotypes may be exploited for further studies related to hypoxia tolerance.
基金supported by the National Science and Technology Innovation 2030 of China(2022ZD04010)the National Key Research and Development Program of China(2022YFD1200400)+2 种基金the Key Research and Development Program of Shaanxi Province,China(2022NY-158)the Ph D Start-up Fund of Northwest A&F University,China(Z1090121052)a grant from the Yang Ling Seed Industry Innovation Center,China(K3031122024).
文摘Flax(Linum usitatissimum L.)is a versatile crop and its seeds are a major source of unsaturated fatty acids.Stearoyl-acyl carrier protein desaturase(SAD)is a dehydrogenase enzyme that plays a key role in oleic acid biosynthesis as well as responses to biotic and abiotic stresses.However,the function of SAD orthologs from L.usitatissimum has not been assessed.Here,we found that two LuSAD genes,LuSAD1 and LuSAD2,are present in the genome of L.usitatissimum cultivar‘Longya 10’.Heterogeneous expression of either LuSAD1 or LuSAD2 in Arabidopsis thaliana resulted in higher contents of total fatty acids and oleic acid in the seeds.Interestingly,ectopic expression of LuSAD2 in A.thaliana caused altered plant architecture.Similarly,the overexpression of either LuSAD1 or LuSAD2 in Brassica napus also resulted in increased contents of total fatty acids and oleic acid in the seeds.Furthermore,we demonstrated that either LuSAD1 or LuSAD2 enhances seedling resistance to cold and drought stresses by improving antioxidant enzyme activity and nonenzymatic antioxidant levels,as well as reducing membrane damage.These findings not only broaden our knowledge of the LuSAD functions in plants,but also offer promising targets for improving the quantity and quality of oil,and the abiotic stress tolerance of oil-producing crops,through molecular manipulation.