Filamentous green algae play an important functional role in element cycling and productivity in the diff erent water bodies. In hypersaline lakes and lagoons of the Crimea, filamentous green algae are present and for...Filamentous green algae play an important functional role in element cycling and productivity in the diff erent water bodies. In hypersaline lakes and lagoons of the Crimea, filamentous green algae are present and form bottom and floating mats that occupy large areas with high biomass, up to 4–5 kg(wet biomass)/m2. Cladophora spp. dominated in those mats. Five species of filamentous green algae(Chlorophyta) in Lake Chersonesskoye: C ladophora vadorum(Aresch.) Kütz., C. siwaschensis C. Meyer, C. echinus(Biasol.) Kütz., Ulothrix implexa(Kütz.) Kütz., Rhizoclonium tortuosum(Dillw.) Kütz., and seagrass(Angiospermae) R uppia cirrhosa(Petagna) Grande were found. Cladophora spp. and R. cirrhosa were found in the lake throughout the year, other types of algae were encountered episodically. In most cases the biomass of bottom mat exceeded that of the floating mat. In general, the total biomass of the bottom and floating mats in the lake areas at depths up to 30 cm was in a stable range of values from 100 to 290 mg(dry weight)/cm2. Animal and infusorian average abundance in mats reach high values: infusorians—up to 15 000 000 ind./m2, Cletocamptus retrogressus(Copepoda, Harpacticoida)—up to 730 000 ind./m2, Eucypris mareotica(Ostracoda)—up to 91 000 ind./m2 and Chironomidae larvae(Insecta, Diptera)—up to 140 ind./m2. Those values were much higher than in the plankton.展开更多
A pool of dormant stages of planktonic organisms in saline lakes is a substantial component in the plankton communities;we need to take it into account to understand plankton dynamics.Hypersaline water bodies in Crime...A pool of dormant stages of planktonic organisms in saline lakes is a substantial component in the plankton communities;we need to take it into account to understand plankton dynamics.Hypersaline water bodies in Crimea,the largest peninsula in the Black Sea,constitute a very characteristic and peculiar habitat type in the region.We examined the presence of crustacean resting stages in sediments of dried up sites of the Crimean hypersaline lakes.Sediment samples were taken in 9 different lakes.Experiments performed on the hatching of these resting stages showed the presence of Moina salina(Cladocera),parthenogenetic Artemia and Artemia urmiana(Anostraca),Eucypris mareotica( inflata)(Ostracoda),and Cletocamptus retrogressus(Harpacticoida).Comparing the experimental results obtained with clean dried brine shrimp cysts and those kept in sediment samples,it was noted that clean cysts hatched much faster than those from sediments did.Some components in bottom sediments slow down and desynchronize hatching from resting eggs in different groups of crustaceans.The sediments of different lakes inhibited the nauplii output from Artemia and ostracod resting eggs to different degrees.More data are needed before we can discuss the reasons of this inhibition.The nonsynchronous output of active stages from the bottom resting ones may be an adaptation that allows crustacean species to exist in extreme and unpredictably changing environments,avoiding the risk that all may emerge at once under unsuitable conditions.展开更多
Dissolved organic matter(DOM)plays a vital role in promoting carbon and nutrient cycling.It is a food source for organisms and controls the migration and transformation of trace metals and other contaminants in aquati...Dissolved organic matter(DOM)plays a vital role in promoting carbon and nutrient cycling.It is a food source for organisms and controls the migration and transformation of trace metals and other contaminants in aquatic systems.The contributions of aquatic DOM to the environment and ecology of a system are closely related to its abundance and chemical structure.In this study,the chemical composition and binding properties of DOM in a hypersaline lake watershed were investigated for the fi rst time using dissolved organic carbon(DOC)analysis,absorption spectroscopy,Fourier transform infrared spectroscopy,pyrolysis-GC-MS(Py-GC-MS),and fl uorescence parallel factor(PARAFAC)analysis combined with Pb(II)titration techniques.The results showed that DOM from the tributaries that fl owed into the lake had a lower DOC content,higher molecular weight,and higher specifi c UV absorbance than the DOM in lake water.Protein-like fl uorophores were mainly found in tributary and lake surface water DOM(LSDOM)and humic-like substances were abundant in lake groundwater DOM(LGDOM).Using this multi-methodological approach,we found that the DOM from the hypersaline lake watershed was mainly from microbial origins,and consisted of aromatics,carbohydrates,and aliphatics.The results from quantitative analysis showed that DOM from the infl owing tributaries contained more aromatics,lower carbohydrates,and lower aliphatics than DOM in the lake.Monocyclic aromatic hydrocarbons and carbohydrates were more abundant in LSDOM than LGDOM.The results from the Pb(II)titration technique coupled with PARAFAC analysis suggested that PARAFAC-derived components had relatively low condition stability constants(log K_(M)<2).Of the two types of lake DOM,the LGDOM had a higher Pb(II)binding potential than the LSDOM.From this study we have improved our understanding of how DOM within a hypersaline lake watershed varies in its composition and potential to bind with metals.展开更多
1 Introduction Copepods are a group of small crustaceans,which play an important ecological role in aquatic ecosystems.They occupy different ecological niches in aquatic food webs,contributes to biogenic element cycle...1 Introduction Copepods are a group of small crustaceans,which play an important ecological role in aquatic ecosystems.They occupy different ecological niches in aquatic food webs,contributes to biogenic element cycles,and transfer of organic matter from primary producers to higher secondary consumers.Copepods also have the potential to展开更多
Brine shrimp(Artemia)has existed on Earth for 400 million years and has major ecological importance in hypersaline ecosystems.As a crucial live food in aquaculture,brine shrimp cysts have become one of the most import...Brine shrimp(Artemia)has existed on Earth for 400 million years and has major ecological importance in hypersaline ecosystems.As a crucial live food in aquaculture,brine shrimp cysts have become one of the most important aquatic products traded worldwide.However,our understanding of the biodiversity,prevalence and global connectedness of viruses in brine shrimp is still very limited.A total of 143 batches of brine shrimp(belonging to seven species)cysts were collected from six continents including 21 countries and more than 100 geographic locations worldwide during 1977–2019.In total,55 novel RNA viruses were identified,which could be assigned to 18 different viral families and related clades.Eleven viruses were dsRNA viruses,16 were+ssRNA viruses,and 28 were−ssRNA viruses.Phylogenetic analyses of the RNA-directed RNA polymerase(RdRp)showed that brine shrimp viruses were often grouped with viruses isolated from other invertebrates and fungi.Remarkably,most brine shrimp viruses were related to those from different hosts that might feed on brine shrimp or share the same ecological niche.A notable case was the novel brine shrimp noda-like virus 3,which shared 79.25%(RdRp)and 63.88%(capsid proteins)amino acid identity with covert mortality nodavirus(CMNV)that may cause losses in aquaculture.In addition,both virome composition and phylogenetic analyses revealed global connectedness in certain brine shrimp viruses,particularly among Asia and Northern America.This highlights the incredible species diversity of viruses in these ancient species and provides essential data for the prevalence of RNA viruses in the global aquaculture industry.More broadly,these findings provide novel insights into the previously unrecognized RNA virosphere in hypersaline ecosystems worldwide and demonstrate that human activity might have driven the global connectedness of brine shrimp viruses.展开更多
Saline and hypersaline wetlands account for almost half of the volume of inland water globally.They provide pivotal habitat for a vast range of species,including crucial ecosystem services for humans such as carbon si...Saline and hypersaline wetlands account for almost half of the volume of inland water globally.They provide pivotal habitat for a vast range of species,including crucial ecosystem services for humans such as carbon sink storage and extractive resource reservoirs.Despite their importance,effective ecological assessment is in its infancy compared to current conventional surveys carried out in freshwater ecosystems.The integration of environmental DNA(eDNA)analysis and traditional techniques has the potential to transform biomonitoring processes,particularly in remote and understudied saline environments.In this context,this preliminary study aims to explore the potential of eDNA coupled with conventional approaches by targeting five hypersaline lakes at Rottnest Island(Wadjemup)in Western Australia.We focused on the invertebrate community,a widely accepted key ecological indicator to assess the conservational status in rivers and lakes.The combination of metabarcoding with morphology-based taxonomic analysis described 16 taxa belonging to the orders Anostraca,Diptera,Isopoda,and Coleoptera.DNA-based diversity assessment revealed more taxa at higher taxonomic resolution than the morphology-based taxonomic analysis.However,certain taxa(i.e.,Ephydridae,Stratyiomidae,Ceratopogonidae)were only identified via net surveying.Overall,our results indicate that great potential resides in combining conventional net-based surveys with novel eDNA approaches in saline and hypersaline lakes.Indeed,urgent and effective conservational frameworks are required to contrast the enormous pressure that these ecosystems are increasingly facing.Further investigations at larger spatial temporal scales will allow consolidation of robust,reliable,and affordable biomonitoring frameworks in the underexplored world of saline wetlands.展开更多
Brine resource is rich in China,but its exploitation has been a problem.Hypersaline brine will corrode equipment and materials seriously during the brine exploitation and transportation.The corrosion problem can cause...Brine resource is rich in China,but its exploitation has been a problem.Hypersaline brine will corrode equipment and materials seriously during the brine exploitation and transportation.The corrosion problem can cause great展开更多
In order to investigate the feasibility of biological treatment of bypersaline wastewater produced from toilet flushing with seawater at low temperature, pilot-scale studies were established with plug-flow activated s...In order to investigate the feasibility of biological treatment of bypersaline wastewater produced from toilet flushing with seawater at low temperature, pilot-scale studies were established with plug-flow activated sludge process at low temperature (5-9℃) based on bench-scale experiments. The critical salinity concentration of 30 g/L, which resulted from the cooperation results of the non-halophilic bacteria and the halophilic bacteria, was drawn in bench-scale experiment. Pilot-scale studies showed that high COD removal efficiency, higher than 85 %, was obtained at low temperature when 30 percent seawater [ seawater/(seawater + sewage) ] was introduced. The salinity improved the settleability of activated sludge, and average SV dropped down from 38% to 22. 5% after adding seawater. Sludge bulking could be forborne effectively because filamentous bacteria couldn't subsist under high salinity concentration.展开更多
Pilot-scale studies on biological treatment of hypersaline wastewater at low temperature were conducted and results showed that seawater salinity had a strong negative effect on notrouomonas and nitrobaeter growth, bu...Pilot-scale studies on biological treatment of hypersaline wastewater at low temperature were conducted and results showed that seawater salinity had a strong negative effect on notrouomonas and nitrobaeter growth, but much more on the nitrobaeter. The nitrification action was mainly accomplished by nitrosomonas. Bench-scale experiments using two SBRs were carried out for further investigation under different conditions of salinities, ammonia loadings and temperatures. Biological nitrogen removal via nitrite pathway from wastewater containing 30 percent seawater was achieved, but the ammonia removal efficiency was strongly related not only to the influent ammonia loading at different salinities but also to temperatures. When the ratio of seawater to wastewater was 30 percent, and the ammonia loading was below the critical value of 0. 15 kgNH4 ^+ -N/( kgMLSS · d) , the ammonia removal efficiency via nitrite pathway was above 90 %. The critical level of ammonia loading was 0. 15, 0. 08 and 0. 03 kgNH4 ^+ -N/( kgMLSS · d) respectively at different temperatures of 30℃, 25℃ and 20℃ when the influent ammonia concentration was 60 - 80 mg/L and pH was 7.5 - 8.0.展开更多
1 Introduction The Great Salt Lake(GSL)is the defining hydrological feature of the Great Basin,North America’s largest desert--and it is the largest waterbody in the western USA.Despite the early(Eardley,1938)recogni...1 Introduction The Great Salt Lake(GSL)is the defining hydrological feature of the Great Basin,North America’s largest desert--and it is the largest waterbody in the western USA.Despite the early(Eardley,1938)recognition of"bioherms,"algal layers,and mats covering hundreds of square km of lake area,these features have not been the展开更多
Cellulases are a group of enzymes that are used in many biotechnological processes. Since most of the enzymes synthesised by mesophilic microorganisms are unstable in industrial environments, it is necessary to direct...Cellulases are a group of enzymes that are used in many biotechnological processes. Since most of the enzymes synthesised by mesophilic microorganisms are unstable in industrial environments, it is necessary to direct research towards extremophile cellulolytic microorganisms because the enzymes synthesised by them are stable and active even in harsh physicochemical conditions. In the present investigation, our aim was to isolate and identify some microbial cellulolytic strains from a hypersaline lake located in Romania and to determine their optimal growth conditions. Of a total of 25 microbial strains isolated, only one extreme halotolerant bacterial strain was able to produce an endoglucanase. Based on molecular identification, we identified this cellulolytic strain as a species of Bacillus genus, most closely related to Bacillus zhangzhouensis. Optimal growth conditions were found to be at 15°C, pH 7.5 and 2 M NaCl. Endoglucanase activity of this bacterial strain is influenced by both salinity and temperature. The most significant endoglucanase activity was detected in the presence of 3 M NaCl, after 72 h of incubation at 15°C. In this situation, the amount of glucose released from a volume of 0.5 mL of 2% (w/v) carboxymethyl cellulose substrate is equivalent to 2.05 mg. In conclusion, this study represents the first preliminary characterization of a B. zhangzhouensis strain that has the ability to degrade cellulose and that demonstrates tolerance to high salt concentrations.展开更多
Antarctic ice microalga can survive and thrive in channels or pores containing high salinity in Antarctic ice layer. In this study, it was found that cell membrane permeability of green microalga Chlaraydomonas sp. L4...Antarctic ice microalga can survive and thrive in channels or pores containing high salinity in Antarctic ice layer. In this study, it was found that cell membrane permeability of green microalga Chlaraydomonas sp. L4 from Antarctic sea ice was high in cells treated with hypersalinity due to the induction of active oxygen and radicals. However, increased super oxide dismutase (SOD) scavenged harmful free radicals effectively to keep cell membrane integrity. Also, the analysis of membrane fatty acids demonstrated the content of saturated fatty acids and monounsaturated fatty acids in- creased and polyunsaturated fatty acids decreased under the high-salt treatment for 14 d, which effectively reduced the membrane fluidity and minimized the injury to cell membrane. The morpho- logical changes showed that hypersalinity induced the increase of cell volume and the consumption of starch granules. However, because of the increase in detoxification of vacuoles, electron-dense deposits and SOD activity under high-salt stress, the complete noninterference thylakoids, mito- chondria and cell nucleus maintained cellular fundamental metabolism. Global-expression profiling of proteins showed eight protein spots disappeared, 18 protein spots decreased and 18 protein spots were enhanced after the high-salt shock obviously (P 〈0.05). One new peptide (pI 6.90; MW 51 kDa) was primarily confirmed as the processor of light reaction center protein CP43 in photosystem II, which increased photosynthesis ability of Chlamydomonas sp. L4 treated with high salinity.展开更多
A combined inorganic and organic geochemical study was carried out on marls and mudstones collected from the Lower Miocene Lopare Basin,Bosnia and Herzegovina.A total of 46 samples collected from two boreholes,Pot 1(d...A combined inorganic and organic geochemical study was carried out on marls and mudstones collected from the Lower Miocene Lopare Basin,Bosnia and Herzegovina.A total of 46 samples collected from two boreholes,Pot 1(depth of 193 m)and Pot 3(depth of 344 m),showed that element abundances like boron(B),lithium(Li),strontium(Sr),uranium(U),chromium(Cr),nickel(Ni),magnesium(Mg),sodium(Na)and calcium(Ca)are much higher than average than in the upper continental crust(UCC).Chemical composition indicates at least two sources:(i)Mesozoic ophiolites occurring in the north of the investigated area,and(ii)dacito-andesitic pyroclastics(Mesozoic to Cenozoic).Lopare Basin sedimentation was influenced by strong evaporation resulting in a partly hypersaline lake,which formed during a warm climatic period,probably during the Miocene Climatic Optimum.A brief episode of humid climate conditions resulted in the basin fillingup and deposition of felsic sediments enriched in thorium(Th).Organic geochemistry shows that the majority of studied sediments contains predominantly immature to marginally mature algal organic matter(OM).The biomarker patterns are generally in agreement with the geological history of the Lopare Basin and inorganic and mineralogical data.Conversely,the molecular distribution of n-alkanes as reliable climatic andδ-MTTC as paleosalinity indicators do not support this conclusion.展开更多
Consuming a high-fructose diet induces metabolic syndrome (MS)-Iike features, including endothelial dysfunction. Erectile dysfunction is an early manifestation of endothelial dysfunction and systemic vascular diseas...Consuming a high-fructose diet induces metabolic syndrome (MS)-Iike features, including endothelial dysfunction. Erectile dysfunction is an early manifestation of endothelial dysfunction and systemic vascular disease. Because mineral deficiency intensifies the deleterious effects of fructose consumption and mineral ingestion is protective against MS, we aimed to characterize the effects of 8weeks of natural mineral-rich water consumption on the structural organization and expression of vascular growth factors and receptors on the corpus cavernosum (CC) in 10% fructose-fed Sprague-Dawley rats (FRUCT). Differences were not observed in the organization of the CC either on the expression of vascular endothelial growth factor (VEGF) or the components of the angiopoietins/Tie2 system. However, opposing expression patterns were observed for VEGF receptors (an increase and a decrease for VEGFR1 and VEGFR2, respectively) in FRUCT animals, with these patterns being strengthened by mineral-rich water ingestion. Mineral-rich water ingestion (FRUCTMIN) increased the proportion of smooth muscle cells compared with FRUCT rats and induced an upregulatory tendency of sirtuin I expression compared with the control and FRUCT groups. Western blot results were consistent with the dual immunofluorescence evaluation. Plasma oxidized low-density lipoprotein and plasma testosterone levels were similar among the experimental groups, although a tendency for an increase in the former was observed in the FRUCTMIN group. The mineral-rich water-treated rats presented changes similar to those observed in rats treated with MS-protective polyphenol-rich beverages or subjected to energy restriction, which led us to hypothesize that the effects of mineral-rich water consumption may be more vast than those directly observed in this study.展开更多
The Coorong estuary lies at the terminus of Australia's largest river system, the Murray-Darling; both are strongly influenced by human activities; including farming and extensive flow modification. Metagenomic ap...The Coorong estuary lies at the terminus of Australia's largest river system, the Murray-Darling; both are strongly influenced by human activities; including farming and extensive flow modification. Metagenomic approaches were used to determine the planktonic bacterial community composition and potential metabolic function at two extremes in the Coorong, the river mouth which exhibits marine-like salinity, and the hypersaline upper-reaches of the estuary. Significant shifts in taxa and metabolic function were seen between the two sites. The river mouth exhibited an increase in abundance of R hodobacteriaceae and Alteromonadaceae; families readily able to adapt to change in nutrient conditions; and the potentially pathogenic families B rucellaceae, Enterobacteriaceae and Vibrionaceae. Metabolisms over-represented include motility and chemotaxis, RNA metabolism and membrane transport, all of which are involved in actively searching for and obtaining nutrients. Also over-represented were metabolisms involved in population succession and stress response. An over-representation of taxa and metabolisms indicative of environmental change is reflective of anthropogenically af fected riverine input. In the hypersaline upper reaches of the estuary, the halophilic family Ectothiorhodospiraceae was over-represented, as were the families Flavobacteriaceae, Cytophagaceae and Nocardioidaceae, members of which are able to survive over a wide salinity range. Metabolisms over-represented here were reflective of increased bacterial growth, characteristic of hypersaline environments, and included DNA metabolism, nucleotide and nucleoside synthesis and cell cycle. Coorong metagenomes clustered taxonomically and metabolically with other planktonic metagenomes, but remained an outlier of this group with only 71% and 84% similarity, respectively. This indicates that the Coorong exhibits a unique planktonic bacterial community that is influenced by riverine input at the river mouth and salinity in the upper-reaches.展开更多
During surveys of extremophilic fungi in hypersaline,alkaline lakes of Wadi-El-Natron,Egypt,an interesting fungus was recovered from a mud sample collected from Lake Hamra in Wadi-El-Natron,Egypt.Maximum likelihood an...During surveys of extremophilic fungi in hypersaline,alkaline lakes of Wadi-El-Natron,Egypt,an interesting fungus was recovered from a mud sample collected from Lake Hamra in Wadi-El-Natron,Egypt.Maximum likelihood analysis of Internal Transcribed Spacer(ITS)gene along with morphological comparisons of related taxa revealed a novel taxon,Paracremonium moubasheri which is described and illustrated in the current study.Paracremonium moubasheri can be distinguished from the known species of the genus by its large conidia,in addition to the presence of chlamydospores.展开更多
This study presents an analysis of the hydrochemical characteristics of Lake Enriquillo in the southwestern region of the Dominican Republic. This lake is hypersaline and endorheic. The climatology of the region is in...This study presents an analysis of the hydrochemical characteristics of Lake Enriquillo in the southwestern region of the Dominican Republic. This lake is hypersaline and endorheic. The climatology of the region is influenced by the Caribbean Regulator Climate Centers (CRCCs). Due to the endorheic nature of the basin, evaporation plays an extremely important role in its dynamics [1]. During the study period, in November 2002, the water level of Lake Enriquillo was 42 m below sea level (BLS), and the salinity level was 104.2‰. By 2014, the water level of the lake rose to 29 m below sea level, and the salinity decreased to 23.4‰, as a result of the high cyclonic activity in the Caribbean region.展开更多
Hypersaline environments are colonized by communities of microorganisms, which developed adaptations from halotolerant to extreme halophilic lifestyles. Twenty-four halophilic archaeal strains were isolated from three...Hypersaline environments are colonized by communities of microorganisms, which developed adaptations from halotolerant to extreme halophilic lifestyles. Twenty-four halophilic archaeal strains were isolated from three Algerian hypersaline sites, including the solar salterns in Ichekaben and two natural salt lakes at Ouargla and Oran. Almost full-length 16S rRNA genes were amplified using archaeal-specific primers, sequenced and phylogenetically analyzed. Three isolates from the salt lake of Ouargla were affiliated to Halorubrum sp., while six isolates from Ichekaben were Natrinema sp.. The remaining strains belonged to the genus Haloarcula, which was identified in the three Algerian sites. A phylogenetic tree of Haloarcula sp. including the two copies of the 16S rRNA gene, showed that two strains group with Haloarcula hispanica, while the other 13 cluster with OHF-1/OHF-2 isolated from French commercial salt. Both Natrinema sp. and Haloarcula sp. were persistent at Ichekaben. For the six Natrinema sp. isolates, this observation correlates with their capacity to produce antimicrobial compounds, and a DNA fragment closely related to the halocin C8 gene was amplified for five strains.展开更多
Membrane distillation(MD)is a promising alternative desalination technology,but the hydrophobic membrane cannot intercept volatile organic compounds(VOCs),resulting in aggravation in the quality of permeate.In term of...Membrane distillation(MD)is a promising alternative desalination technology,but the hydrophobic membrane cannot intercept volatile organic compounds(VOCs),resulting in aggravation in the quality of permeate.In term of this,electro-Fenton(EF)was coupled with sweeping gas membrane distillation(SGMD)in a more efficient way to construct an advanced oxidation barrier at the gas-liquid interface,so that the VOCs could be trapped in this layer to guarantee the water quality of the distillate.During the so-called EF-MD process,an interfacial interception barrier containing hydroxyl radical formed on the hydrophobic membrane surface.It contributed to the high phenol rejection of 90.2% with the permeate phenol concentration lower than 1.50 mg/L.Effective interceptions can be achieved in a wide temperature range,even though the permeate flux of phenol was also intensified.The EF-MD system was robust to high salinity and could electrochemically regenerate ferrous ions,which endowed the long-term stability of the system.This novel EF-MD configuration proposed a valuable strategy to intercept VOCs in MD and will broaden the application of MD in hypersaline wastewater treatment.展开更多
Biosynthesis and biodegradation of microorganisms critically underpin the development of biotechnology,new drugs and therapies,and environmental remediation.However,most uncultured microbial species along with their m...Biosynthesis and biodegradation of microorganisms critically underpin the development of biotechnology,new drugs and therapies,and environmental remediation.However,most uncultured microbial species along with their metabolic capacities in extreme environments,remain obscured.Here we unravel the metabolic potential of microbial dark matters(MDMs)in four deep-inland hypersaline lakes in Xinjiang,China.Utilizing metagenomic binning,we uncovered a rich diversity of 3030 metagenomeassembled genomes(MAGs)across 82 phyla,revealing a substantial portion,2363 MAGs,as previously unclassified at the genus level.These unknown MAGs displayed unique distribution patterns across different lakes,indicating a strong correlation with varied physicochemical conditions.Our analysis revealed an extensive array of 9635 biosynthesis gene clusters(BGCs),with a remarkable 9403 being novel,suggesting untapped biotechnological potential.Notably,some MAGs from potentially new phyla exhibited a high density of these BGCs.Beyond biosynthesis,our study also identified novel biodegradation pathways,including dehalogenation,anaerobic ammonium oxidation(Anammox),and degradation of polycyclic aromatic hydrocarbons(PAHs)and plastics,in previously unknown microbial clades.These findings significantly enrich our understanding of biosynthesis and biodegradation processes and open new avenues for biotechnological innovation,emphasizing the untapped potential of microbial diversity in hypersaline environments.展开更多
基金support of the Russian Academy of Sciences for the A.O.Kovalevsky Institute of Marine Biological Research of RAS
文摘Filamentous green algae play an important functional role in element cycling and productivity in the diff erent water bodies. In hypersaline lakes and lagoons of the Crimea, filamentous green algae are present and form bottom and floating mats that occupy large areas with high biomass, up to 4–5 kg(wet biomass)/m2. Cladophora spp. dominated in those mats. Five species of filamentous green algae(Chlorophyta) in Lake Chersonesskoye: C ladophora vadorum(Aresch.) Kütz., C. siwaschensis C. Meyer, C. echinus(Biasol.) Kütz., Ulothrix implexa(Kütz.) Kütz., Rhizoclonium tortuosum(Dillw.) Kütz., and seagrass(Angiospermae) R uppia cirrhosa(Petagna) Grande were found. Cladophora spp. and R. cirrhosa were found in the lake throughout the year, other types of algae were encountered episodically. In most cases the biomass of bottom mat exceeded that of the floating mat. In general, the total biomass of the bottom and floating mats in the lake areas at depths up to 30 cm was in a stable range of values from 100 to 290 mg(dry weight)/cm2. Animal and infusorian average abundance in mats reach high values: infusorians—up to 15 000 000 ind./m2, Cletocamptus retrogressus(Copepoda, Harpacticoida)—up to 730 000 ind./m2, Eucypris mareotica(Ostracoda)—up to 91 000 ind./m2 and Chironomidae larvae(Insecta, Diptera)—up to 140 ind./m2. Those values were much higher than in the plankton.
文摘A pool of dormant stages of planktonic organisms in saline lakes is a substantial component in the plankton communities;we need to take it into account to understand plankton dynamics.Hypersaline water bodies in Crimea,the largest peninsula in the Black Sea,constitute a very characteristic and peculiar habitat type in the region.We examined the presence of crustacean resting stages in sediments of dried up sites of the Crimean hypersaline lakes.Sediment samples were taken in 9 different lakes.Experiments performed on the hatching of these resting stages showed the presence of Moina salina(Cladocera),parthenogenetic Artemia and Artemia urmiana(Anostraca),Eucypris mareotica( inflata)(Ostracoda),and Cletocamptus retrogressus(Harpacticoida).Comparing the experimental results obtained with clean dried brine shrimp cysts and those kept in sediment samples,it was noted that clean cysts hatched much faster than those from sediments did.Some components in bottom sediments slow down and desynchronize hatching from resting eggs in different groups of crustaceans.The sediments of different lakes inhibited the nauplii output from Artemia and ostracod resting eggs to different degrees.More data are needed before we can discuss the reasons of this inhibition.The nonsynchronous output of active stages from the bottom resting ones may be an adaptation that allows crustacean species to exist in extreme and unpredictably changing environments,avoiding the risk that all may emerge at once under unsuitable conditions.
基金Supported by the Natural Science Foundation of Qinghai Province(Nos.2020-ZJ-940Q,2014-ZJ-937Q)the West Light Foundation of the Chinese Academy of Sciences(No.E010GC09)the Youth Innovation Promotion Association CAS(No.E010GC15)。
文摘Dissolved organic matter(DOM)plays a vital role in promoting carbon and nutrient cycling.It is a food source for organisms and controls the migration and transformation of trace metals and other contaminants in aquatic systems.The contributions of aquatic DOM to the environment and ecology of a system are closely related to its abundance and chemical structure.In this study,the chemical composition and binding properties of DOM in a hypersaline lake watershed were investigated for the fi rst time using dissolved organic carbon(DOC)analysis,absorption spectroscopy,Fourier transform infrared spectroscopy,pyrolysis-GC-MS(Py-GC-MS),and fl uorescence parallel factor(PARAFAC)analysis combined with Pb(II)titration techniques.The results showed that DOM from the tributaries that fl owed into the lake had a lower DOC content,higher molecular weight,and higher specifi c UV absorbance than the DOM in lake water.Protein-like fl uorophores were mainly found in tributary and lake surface water DOM(LSDOM)and humic-like substances were abundant in lake groundwater DOM(LGDOM).Using this multi-methodological approach,we found that the DOM from the hypersaline lake watershed was mainly from microbial origins,and consisted of aromatics,carbohydrates,and aliphatics.The results from quantitative analysis showed that DOM from the infl owing tributaries contained more aromatics,lower carbohydrates,and lower aliphatics than DOM in the lake.Monocyclic aromatic hydrocarbons and carbohydrates were more abundant in LSDOM than LGDOM.The results from the Pb(II)titration technique coupled with PARAFAC analysis suggested that PARAFAC-derived components had relatively low condition stability constants(log K_(M)<2).Of the two types of lake DOM,the LGDOM had a higher Pb(II)binding potential than the LSDOM.From this study we have improved our understanding of how DOM within a hypersaline lake watershed varies in its composition and potential to bind with metals.
文摘1 Introduction Copepods are a group of small crustaceans,which play an important ecological role in aquatic ecosystems.They occupy different ecological niches in aquatic food webs,contributes to biogenic element cycles,and transfer of organic matter from primary producers to higher secondary consumers.Copepods also have the potential to
基金This work was supported by the National Key Research and Development Program of China(2018YFD0900501)Central Public-interest Scientific Institution Basal Research Fund,YSFRI,CAFS(20603022022005)+6 种基金Shinan District Science and Technology Foundation(Qingdao)(2022-2-027-ZH)Central Public-interest Scientific Institution Basal Research Fund,CAFS(2020TD39)China Agriculture Research System(CARS-48)C.L.was supported by the Youth Innovation Team of Shandong Higher Education Institution(2021KJ064)the National Natural Science Foundation of China(32200004)W.S.was supported by the Academic Promotion Programme of Shandong First Medical University(2019QL006)E.C.H.was funded by a National Medical Health and Research Council(Australia)Investigator Grant(GNT2017197).
文摘Brine shrimp(Artemia)has existed on Earth for 400 million years and has major ecological importance in hypersaline ecosystems.As a crucial live food in aquaculture,brine shrimp cysts have become one of the most important aquatic products traded worldwide.However,our understanding of the biodiversity,prevalence and global connectedness of viruses in brine shrimp is still very limited.A total of 143 batches of brine shrimp(belonging to seven species)cysts were collected from six continents including 21 countries and more than 100 geographic locations worldwide during 1977–2019.In total,55 novel RNA viruses were identified,which could be assigned to 18 different viral families and related clades.Eleven viruses were dsRNA viruses,16 were+ssRNA viruses,and 28 were−ssRNA viruses.Phylogenetic analyses of the RNA-directed RNA polymerase(RdRp)showed that brine shrimp viruses were often grouped with viruses isolated from other invertebrates and fungi.Remarkably,most brine shrimp viruses were related to those from different hosts that might feed on brine shrimp or share the same ecological niche.A notable case was the novel brine shrimp noda-like virus 3,which shared 79.25%(RdRp)and 63.88%(capsid proteins)amino acid identity with covert mortality nodavirus(CMNV)that may cause losses in aquaculture.In addition,both virome composition and phylogenetic analyses revealed global connectedness in certain brine shrimp viruses,particularly among Asia and Northern America.This highlights the incredible species diversity of viruses in these ancient species and provides essential data for the prevalence of RNA viruses in the global aquaculture industry.More broadly,these findings provide novel insights into the previously unrecognized RNA virosphere in hypersaline ecosystems worldwide and demonstrate that human activity might have driven the global connectedness of brine shrimp viruses.
基金Supported by the Curtin-BHP alliance within the framework of the“eDNA for Global Environment Studies(eDGES)”program。
文摘Saline and hypersaline wetlands account for almost half of the volume of inland water globally.They provide pivotal habitat for a vast range of species,including crucial ecosystem services for humans such as carbon sink storage and extractive resource reservoirs.Despite their importance,effective ecological assessment is in its infancy compared to current conventional surveys carried out in freshwater ecosystems.The integration of environmental DNA(eDNA)analysis and traditional techniques has the potential to transform biomonitoring processes,particularly in remote and understudied saline environments.In this context,this preliminary study aims to explore the potential of eDNA coupled with conventional approaches by targeting five hypersaline lakes at Rottnest Island(Wadjemup)in Western Australia.We focused on the invertebrate community,a widely accepted key ecological indicator to assess the conservational status in rivers and lakes.The combination of metabarcoding with morphology-based taxonomic analysis described 16 taxa belonging to the orders Anostraca,Diptera,Isopoda,and Coleoptera.DNA-based diversity assessment revealed more taxa at higher taxonomic resolution than the morphology-based taxonomic analysis.However,certain taxa(i.e.,Ephydridae,Stratyiomidae,Ceratopogonidae)were only identified via net surveying.Overall,our results indicate that great potential resides in combining conventional net-based surveys with novel eDNA approaches in saline and hypersaline lakes.Indeed,urgent and effective conservational frameworks are required to contrast the enormous pressure that these ecosystems are increasingly facing.Further investigations at larger spatial temporal scales will allow consolidation of robust,reliable,and affordable biomonitoring frameworks in the underexplored world of saline wetlands.
基金Fiancial support for this work by National High-tech Research and Development Projects (863)the key technology of efficient exploiting deep brine in the YellowRiver delta (Contracts 2012AA061705)
文摘Brine resource is rich in China,but its exploitation has been a problem.Hypersaline brine will corrode equipment and materials seriously during the brine exploitation and transportation.The corrosion problem can cause great
基金Sponsored by the Key Items of National Natural Science Foundation of China (Grant No. 50138010) and National 10th5 -year Scientific Research Project of Ministry of Science and Technology of China (Grant No.2001BA610A-09).
文摘In order to investigate the feasibility of biological treatment of bypersaline wastewater produced from toilet flushing with seawater at low temperature, pilot-scale studies were established with plug-flow activated sludge process at low temperature (5-9℃) based on bench-scale experiments. The critical salinity concentration of 30 g/L, which resulted from the cooperation results of the non-halophilic bacteria and the halophilic bacteria, was drawn in bench-scale experiment. Pilot-scale studies showed that high COD removal efficiency, higher than 85 %, was obtained at low temperature when 30 percent seawater [ seawater/(seawater + sewage) ] was introduced. The salinity improved the settleability of activated sludge, and average SV dropped down from 38% to 22. 5% after adding seawater. Sludge bulking could be forborne effectively because filamentous bacteria couldn't subsist under high salinity concentration.
基金Sponsored by the National Natural Science Foundation of China (No. 50138010, 20877086)National 10th 5 Scientific Research Project of Ministry of Science and Technology of China (Grant No.2001BA610A-09)+1 种基金Knowledge Innovation Program of the Chinese Academy of Sciences (RCEES-QN-200706)the Special Funds for Young Scholars of RCEES
文摘Pilot-scale studies on biological treatment of hypersaline wastewater at low temperature were conducted and results showed that seawater salinity had a strong negative effect on notrouomonas and nitrobaeter growth, but much more on the nitrobaeter. The nitrification action was mainly accomplished by nitrosomonas. Bench-scale experiments using two SBRs were carried out for further investigation under different conditions of salinities, ammonia loadings and temperatures. Biological nitrogen removal via nitrite pathway from wastewater containing 30 percent seawater was achieved, but the ammonia removal efficiency was strongly related not only to the influent ammonia loading at different salinities but also to temperatures. When the ratio of seawater to wastewater was 30 percent, and the ammonia loading was below the critical value of 0. 15 kgNH4 ^+ -N/( kgMLSS · d) , the ammonia removal efficiency via nitrite pathway was above 90 %. The critical level of ammonia loading was 0. 15, 0. 08 and 0. 03 kgNH4 ^+ -N/( kgMLSS · d) respectively at different temperatures of 30℃, 25℃ and 20℃ when the influent ammonia concentration was 60 - 80 mg/L and pH was 7.5 - 8.0.
文摘1 Introduction The Great Salt Lake(GSL)is the defining hydrological feature of the Great Basin,North America’s largest desert--and it is the largest waterbody in the western USA.Despite the early(Eardley,1938)recognition of"bioherms,"algal layers,and mats covering hundreds of square km of lake area,these features have not been the
文摘Cellulases are a group of enzymes that are used in many biotechnological processes. Since most of the enzymes synthesised by mesophilic microorganisms are unstable in industrial environments, it is necessary to direct research towards extremophile cellulolytic microorganisms because the enzymes synthesised by them are stable and active even in harsh physicochemical conditions. In the present investigation, our aim was to isolate and identify some microbial cellulolytic strains from a hypersaline lake located in Romania and to determine their optimal growth conditions. Of a total of 25 microbial strains isolated, only one extreme halotolerant bacterial strain was able to produce an endoglucanase. Based on molecular identification, we identified this cellulolytic strain as a species of Bacillus genus, most closely related to Bacillus zhangzhouensis. Optimal growth conditions were found to be at 15°C, pH 7.5 and 2 M NaCl. Endoglucanase activity of this bacterial strain is influenced by both salinity and temperature. The most significant endoglucanase activity was detected in the presence of 3 M NaCl, after 72 h of incubation at 15°C. In this situation, the amount of glucose released from a volume of 0.5 mL of 2% (w/v) carboxymethyl cellulose substrate is equivalent to 2.05 mg. In conclusion, this study represents the first preliminary characterization of a B. zhangzhouensis strain that has the ability to degrade cellulose and that demonstrates tolerance to high salt concentrations.
基金The National Natural Science Foundation of China under contract No.31100090Shandong Provincial Natural Science Foundation of China under contract No.ZR2010DQ010the Fundamental Research Funds for the Central Universities under contract No.HIT.IBRSEM.2009148
文摘Antarctic ice microalga can survive and thrive in channels or pores containing high salinity in Antarctic ice layer. In this study, it was found that cell membrane permeability of green microalga Chlaraydomonas sp. L4 from Antarctic sea ice was high in cells treated with hypersalinity due to the induction of active oxygen and radicals. However, increased super oxide dismutase (SOD) scavenged harmful free radicals effectively to keep cell membrane integrity. Also, the analysis of membrane fatty acids demonstrated the content of saturated fatty acids and monounsaturated fatty acids in- creased and polyunsaturated fatty acids decreased under the high-salt treatment for 14 d, which effectively reduced the membrane fluidity and minimized the injury to cell membrane. The morpho- logical changes showed that hypersalinity induced the increase of cell volume and the consumption of starch granules. However, because of the increase in detoxification of vacuoles, electron-dense deposits and SOD activity under high-salt stress, the complete noninterference thylakoids, mito- chondria and cell nucleus maintained cellular fundamental metabolism. Global-expression profiling of proteins showed eight protein spots disappeared, 18 protein spots decreased and 18 protein spots were enhanced after the high-salt shock obviously (P 〈0.05). One new peptide (pI 6.90; MW 51 kDa) was primarily confirmed as the processor of light reaction center protein CP43 in photosystem II, which increased photosynthesis ability of Chlamydomonas sp. L4 treated with high salinity.
基金partly financed by the Ministry of Education,Science and Technological Development,Republic of Serbia(Grant No.451-03-68/2020-14/200026 and Project 176006)。
文摘A combined inorganic and organic geochemical study was carried out on marls and mudstones collected from the Lower Miocene Lopare Basin,Bosnia and Herzegovina.A total of 46 samples collected from two boreholes,Pot 1(depth of 193 m)and Pot 3(depth of 344 m),showed that element abundances like boron(B),lithium(Li),strontium(Sr),uranium(U),chromium(Cr),nickel(Ni),magnesium(Mg),sodium(Na)and calcium(Ca)are much higher than average than in the upper continental crust(UCC).Chemical composition indicates at least two sources:(i)Mesozoic ophiolites occurring in the north of the investigated area,and(ii)dacito-andesitic pyroclastics(Mesozoic to Cenozoic).Lopare Basin sedimentation was influenced by strong evaporation resulting in a partly hypersaline lake,which formed during a warm climatic period,probably during the Miocene Climatic Optimum.A brief episode of humid climate conditions resulted in the basin fillingup and deposition of felsic sediments enriched in thorium(Th).Organic geochemistry shows that the majority of studied sediments contains predominantly immature to marginally mature algal organic matter(OM).The biomarker patterns are generally in agreement with the geological history of the Lopare Basin and inorganic and mineralogical data.Conversely,the molecular distribution of n-alkanes as reliable climatic andδ-MTTC as paleosalinity indicators do not support this conclusion.
文摘Consuming a high-fructose diet induces metabolic syndrome (MS)-Iike features, including endothelial dysfunction. Erectile dysfunction is an early manifestation of endothelial dysfunction and systemic vascular disease. Because mineral deficiency intensifies the deleterious effects of fructose consumption and mineral ingestion is protective against MS, we aimed to characterize the effects of 8weeks of natural mineral-rich water consumption on the structural organization and expression of vascular growth factors and receptors on the corpus cavernosum (CC) in 10% fructose-fed Sprague-Dawley rats (FRUCT). Differences were not observed in the organization of the CC either on the expression of vascular endothelial growth factor (VEGF) or the components of the angiopoietins/Tie2 system. However, opposing expression patterns were observed for VEGF receptors (an increase and a decrease for VEGFR1 and VEGFR2, respectively) in FRUCT animals, with these patterns being strengthened by mineral-rich water ingestion. Mineral-rich water ingestion (FRUCTMIN) increased the proportion of smooth muscle cells compared with FRUCT rats and induced an upregulatory tendency of sirtuin I expression compared with the control and FRUCT groups. Western blot results were consistent with the dual immunofluorescence evaluation. Plasma oxidized low-density lipoprotein and plasma testosterone levels were similar among the experimental groups, although a tendency for an increase in the former was observed in the FRUCTMIN group. The mineral-rich water-treated rats presented changes similar to those observed in rats treated with MS-protective polyphenol-rich beverages or subjected to energy restriction, which led us to hypothesize that the effects of mineral-rich water consumption may be more vast than those directly observed in this study.
基金Department of Environment and Natural Resources (DENR) for allowing us access to the Coorong National Park (permit number G25583-2)supported by the Australian Research Councilby Flinders University
文摘The Coorong estuary lies at the terminus of Australia's largest river system, the Murray-Darling; both are strongly influenced by human activities; including farming and extensive flow modification. Metagenomic approaches were used to determine the planktonic bacterial community composition and potential metabolic function at two extremes in the Coorong, the river mouth which exhibits marine-like salinity, and the hypersaline upper-reaches of the estuary. Significant shifts in taxa and metabolic function were seen between the two sites. The river mouth exhibited an increase in abundance of R hodobacteriaceae and Alteromonadaceae; families readily able to adapt to change in nutrient conditions; and the potentially pathogenic families B rucellaceae, Enterobacteriaceae and Vibrionaceae. Metabolisms over-represented include motility and chemotaxis, RNA metabolism and membrane transport, all of which are involved in actively searching for and obtaining nutrients. Also over-represented were metabolisms involved in population succession and stress response. An over-representation of taxa and metabolisms indicative of environmental change is reflective of anthropogenically af fected riverine input. In the hypersaline upper reaches of the estuary, the halophilic family Ectothiorhodospiraceae was over-represented, as were the families Flavobacteriaceae, Cytophagaceae and Nocardioidaceae, members of which are able to survive over a wide salinity range. Metabolisms over-represented here were reflective of increased bacterial growth, characteristic of hypersaline environments, and included DNA metabolism, nucleotide and nucleoside synthesis and cell cycle. Coorong metagenomes clustered taxonomically and metabolically with other planktonic metagenomes, but remained an outlier of this group with only 71% and 84% similarity, respectively. This indicates that the Coorong exhibits a unique planktonic bacterial community that is influenced by riverine input at the river mouth and salinity in the upper-reaches.
文摘During surveys of extremophilic fungi in hypersaline,alkaline lakes of Wadi-El-Natron,Egypt,an interesting fungus was recovered from a mud sample collected from Lake Hamra in Wadi-El-Natron,Egypt.Maximum likelihood analysis of Internal Transcribed Spacer(ITS)gene along with morphological comparisons of related taxa revealed a novel taxon,Paracremonium moubasheri which is described and illustrated in the current study.Paracremonium moubasheri can be distinguished from the known species of the genus by its large conidia,in addition to the presence of chlamydospores.
文摘This study presents an analysis of the hydrochemical characteristics of Lake Enriquillo in the southwestern region of the Dominican Republic. This lake is hypersaline and endorheic. The climatology of the region is influenced by the Caribbean Regulator Climate Centers (CRCCs). Due to the endorheic nature of the basin, evaporation plays an extremely important role in its dynamics [1]. During the study period, in November 2002, the water level of Lake Enriquillo was 42 m below sea level (BLS), and the salinity level was 104.2‰. By 2014, the water level of the lake rose to 29 m below sea level, and the salinity decreased to 23.4‰, as a result of the high cyclonic activity in the Caribbean region.
文摘Hypersaline environments are colonized by communities of microorganisms, which developed adaptations from halotolerant to extreme halophilic lifestyles. Twenty-four halophilic archaeal strains were isolated from three Algerian hypersaline sites, including the solar salterns in Ichekaben and two natural salt lakes at Ouargla and Oran. Almost full-length 16S rRNA genes were amplified using archaeal-specific primers, sequenced and phylogenetically analyzed. Three isolates from the salt lake of Ouargla were affiliated to Halorubrum sp., while six isolates from Ichekaben were Natrinema sp.. The remaining strains belonged to the genus Haloarcula, which was identified in the three Algerian sites. A phylogenetic tree of Haloarcula sp. including the two copies of the 16S rRNA gene, showed that two strains group with Haloarcula hispanica, while the other 13 cluster with OHF-1/OHF-2 isolated from French commercial salt. Both Natrinema sp. and Haloarcula sp. were persistent at Ichekaben. For the six Natrinema sp. isolates, this observation correlates with their capacity to produce antimicrobial compounds, and a DNA fragment closely related to the halocin C8 gene was amplified for five strains.
基金supported by the National Natural Science Foundation of China(Nos.52200111,51978651,and 51878049)the China Postdoctoral Science Foundation(No.2021M703407)the special fund from the State Key Joint Laboratory of Environment Simulation and Pollution Control(Research Center for Eco-Environmental Sciences,Chinese Academy of Sciences(No.21Z01ESPCR)。
文摘Membrane distillation(MD)is a promising alternative desalination technology,but the hydrophobic membrane cannot intercept volatile organic compounds(VOCs),resulting in aggravation in the quality of permeate.In term of this,electro-Fenton(EF)was coupled with sweeping gas membrane distillation(SGMD)in a more efficient way to construct an advanced oxidation barrier at the gas-liquid interface,so that the VOCs could be trapped in this layer to guarantee the water quality of the distillate.During the so-called EF-MD process,an interfacial interception barrier containing hydroxyl radical formed on the hydrophobic membrane surface.It contributed to the high phenol rejection of 90.2% with the permeate phenol concentration lower than 1.50 mg/L.Effective interceptions can be achieved in a wide temperature range,even though the permeate flux of phenol was also intensified.The EF-MD system was robust to high salinity and could electrochemically regenerate ferrous ions,which endowed the long-term stability of the system.This novel EF-MD configuration proposed a valuable strategy to intercept VOCs in MD and will broaden the application of MD in hypersaline wastewater treatment.
基金supported by the National Key Research and Development Program of China(2021YFA1301300)Nature Science Foundation of China(62202014 and 61972217)+1 种基金Shenzhen Basic Research Programs(JCYJ20190808183205731,JCYJ20220812103301001,and JCYJ20220813151736001)Science and Technology Planning Project of Shenzhen Municipality(JCYJ20200109120416654)。
文摘Biosynthesis and biodegradation of microorganisms critically underpin the development of biotechnology,new drugs and therapies,and environmental remediation.However,most uncultured microbial species along with their metabolic capacities in extreme environments,remain obscured.Here we unravel the metabolic potential of microbial dark matters(MDMs)in four deep-inland hypersaline lakes in Xinjiang,China.Utilizing metagenomic binning,we uncovered a rich diversity of 3030 metagenomeassembled genomes(MAGs)across 82 phyla,revealing a substantial portion,2363 MAGs,as previously unclassified at the genus level.These unknown MAGs displayed unique distribution patterns across different lakes,indicating a strong correlation with varied physicochemical conditions.Our analysis revealed an extensive array of 9635 biosynthesis gene clusters(BGCs),with a remarkable 9403 being novel,suggesting untapped biotechnological potential.Notably,some MAGs from potentially new phyla exhibited a high density of these BGCs.Beyond biosynthesis,our study also identified novel biodegradation pathways,including dehalogenation,anaerobic ammonium oxidation(Anammox),and degradation of polycyclic aromatic hydrocarbons(PAHs)and plastics,in previously unknown microbial clades.These findings significantly enrich our understanding of biosynthesis and biodegradation processes and open new avenues for biotechnological innovation,emphasizing the untapped potential of microbial diversity in hypersaline environments.