The vacuum-assisted prefabricated horizontal drain offers a promising method for strengthening soil slurry,allowing simultaneous filling and vacuum-dewatering via staged construction.However,there is limited research ...The vacuum-assisted prefabricated horizontal drain offers a promising method for strengthening soil slurry,allowing simultaneous filling and vacuum-dewatering via staged construction.However,there is limited research on the unique characteristics of staged filling.This study aims to investigate the vacuum consolidation process of staged-filled soil slurry through laboratory model tests and numerical simulations,also assessing the impact of anionic polyacrylamide.Comparative analyses are conducted between vacuum consolidation with and without anionic polyacrylamide,as well as self-weight consolidation without anionic polyacrylamide.Results reveal contour lines of excess pore pressure,water content,and soil strength forming an ellipse around the prefabricated horizontal drain board.During the consolidation process,a higher degree of consolidation,lower water content,and higher soil strength were observed closer to the prefabricated horizontal drain board.After treatment,the uppermost filling layer exhibits an average water content that was approximately 40%higher than the lower filling layer,and its average strength was about 60%lower.This discrepancy is primarily due to the absence of sealing on the top surface and the relatively short vacuum consolidation time caused by staged filling.The introduction of anionic polyacrylamide-induced flocculation significantly improves the initial consolidation rate but minimally affects the dewatering capacity of vacuum preloading.Using flocculant can enhance both the staged filling rate and soil strength(by 1e2 times).Additionally,employing a staggered arrangement between different prefabricated horizontal drain layers is advisable to prevent top-down penetration in areas with low soil strength.展开更多
This article aims to study the efficiency of coupled vertical drains for the treatment of long-lasting compressible clay soils for the road project platform of the ring road of Porto Novo, capital of Benin. The experi...This article aims to study the efficiency of coupled vertical drains for the treatment of long-lasting compressible clay soils for the road project platform of the ring road of Porto Novo, capital of Benin. The experimental data allowed us to estimate a consolidation of 29% in 9 months, justifying the drainage of the soil. In order to study the efficiency of drainage, a FEM model was proposed simulating different scenarios. These include a drainless road, pavements equipped with vertical drains with meshes of 0.5 m 0.5 m, 1 m 1 m and 1.5 m 1.5 m respectively and horizontal drains. The results expressed in terms of variations in vertical stresses, effective stresses and shear deformations revealed significant variations in pavement performance depending on the mesh size of the vertical drains. The configuration with a mesh of 0.5 m 0.5 m showed the least deformations, thus indicating a reduction in deformations and better stress distribution. However, the other mesh configurations showed variable results, underlining the importance of choosing the right mesh for the specific project conditions.展开更多
To more efficiently treat the dredged contaminated sediment(DCS)with a high water content,this study proposes an integrated method(called PHDVPSS)that uses the solidifying/stabilizing(S/S)agents and prefabricated hori...To more efficiently treat the dredged contaminated sediment(DCS)with a high water content,this study proposes an integrated method(called PHDVPSS)that uses the solidifying/stabilizing(S/S)agents and prefabricated horizontal drain(PHD)assisted by vacuum pressure(VP).Using this method,dewatering and solidification/stabilization can be carried out simultaneously such that the treatment time can be significantly shortened and the treatment efficacy can be significantly improved.A series of model tests was conducted to investigate the effectiveness of the proposed method.Experimental results indicated that the proposed PHDVPSS method showed superior performance compared to the conventional S/S method that uses Portland cement(PC)directly without prior dewatering.The 56-day unconfined compressive strength of DCS treated by the proposed method with GGBS-MgO as the binder is 12–17 times higher than that by the conventional S/S method.DCS treated by the PHDVPSS method exhibited continuous decrease in leaching concentration of Zn with increasing curing age.The reduction of Zn leachability is more obvious when using GGBS-MgO as the binder than when using PC,because GGBS-MgO increased the residual fraction and decreased the acid soluble fraction of Zn.The microstructure analysis reveals the formation of hydrotalcite in GGBS-MgO binder,which resulted in higher mechanical strength and higher Zn stabilization efficiency.展开更多
基金supported by the Research Grants Council of Hong Kong Special Administrative Region Government of China(Grant Nos.15210322 and R5037-18)the financial support(Grant No.86902-00000240)from Shenzhen University.
文摘The vacuum-assisted prefabricated horizontal drain offers a promising method for strengthening soil slurry,allowing simultaneous filling and vacuum-dewatering via staged construction.However,there is limited research on the unique characteristics of staged filling.This study aims to investigate the vacuum consolidation process of staged-filled soil slurry through laboratory model tests and numerical simulations,also assessing the impact of anionic polyacrylamide.Comparative analyses are conducted between vacuum consolidation with and without anionic polyacrylamide,as well as self-weight consolidation without anionic polyacrylamide.Results reveal contour lines of excess pore pressure,water content,and soil strength forming an ellipse around the prefabricated horizontal drain board.During the consolidation process,a higher degree of consolidation,lower water content,and higher soil strength were observed closer to the prefabricated horizontal drain board.After treatment,the uppermost filling layer exhibits an average water content that was approximately 40%higher than the lower filling layer,and its average strength was about 60%lower.This discrepancy is primarily due to the absence of sealing on the top surface and the relatively short vacuum consolidation time caused by staged filling.The introduction of anionic polyacrylamide-induced flocculation significantly improves the initial consolidation rate but minimally affects the dewatering capacity of vacuum preloading.Using flocculant can enhance both the staged filling rate and soil strength(by 1e2 times).Additionally,employing a staggered arrangement between different prefabricated horizontal drain layers is advisable to prevent top-down penetration in areas with low soil strength.
文摘This article aims to study the efficiency of coupled vertical drains for the treatment of long-lasting compressible clay soils for the road project platform of the ring road of Porto Novo, capital of Benin. The experimental data allowed us to estimate a consolidation of 29% in 9 months, justifying the drainage of the soil. In order to study the efficiency of drainage, a FEM model was proposed simulating different scenarios. These include a drainless road, pavements equipped with vertical drains with meshes of 0.5 m 0.5 m, 1 m 1 m and 1.5 m 1.5 m respectively and horizontal drains. The results expressed in terms of variations in vertical stresses, effective stresses and shear deformations revealed significant variations in pavement performance depending on the mesh size of the vertical drains. The configuration with a mesh of 0.5 m 0.5 m showed the least deformations, thus indicating a reduction in deformations and better stress distribution. However, the other mesh configurations showed variable results, underlining the importance of choosing the right mesh for the specific project conditions.
基金Financial support for this investigation was provided by the National Key Research and Development Program of China(Grant No.2019YFC1806000)Changjiang River Scientific Research Institute Open Research Program(Grant No.CKWV2019730/KY)+1 种基金the National Natural Science Foundation of China(Grant Nos.51678268 and 51878312)and the Hubei Province Postdoctoral Advanced Programs(Grant No.0106240048).This support is gratefully acknowledged.
文摘To more efficiently treat the dredged contaminated sediment(DCS)with a high water content,this study proposes an integrated method(called PHDVPSS)that uses the solidifying/stabilizing(S/S)agents and prefabricated horizontal drain(PHD)assisted by vacuum pressure(VP).Using this method,dewatering and solidification/stabilization can be carried out simultaneously such that the treatment time can be significantly shortened and the treatment efficacy can be significantly improved.A series of model tests was conducted to investigate the effectiveness of the proposed method.Experimental results indicated that the proposed PHDVPSS method showed superior performance compared to the conventional S/S method that uses Portland cement(PC)directly without prior dewatering.The 56-day unconfined compressive strength of DCS treated by the proposed method with GGBS-MgO as the binder is 12–17 times higher than that by the conventional S/S method.DCS treated by the PHDVPSS method exhibited continuous decrease in leaching concentration of Zn with increasing curing age.The reduction of Zn leachability is more obvious when using GGBS-MgO as the binder than when using PC,because GGBS-MgO increased the residual fraction and decreased the acid soluble fraction of Zn.The microstructure analysis reveals the formation of hydrotalcite in GGBS-MgO binder,which resulted in higher mechanical strength and higher Zn stabilization efficiency.