To enhance the serviceability of steel bridge deck pavement(SBDP)in high-temperature and rainy regions,a concept of rigid bottom and flexible top was summarized using engineering practices,which led to the proposal of...To enhance the serviceability of steel bridge deck pavement(SBDP)in high-temperature and rainy regions,a concept of rigid bottom and flexible top was summarized using engineering practices,which led to the proposal of a three-layer ultra-high-performance pavement(UHPP).The high-temperature rutting resistance and wet-weather skid resistance of UHPP were evaluated through composite structure tests.The internal temperature distribution within the pavement under typical high-temperature conditions was analyzed using a temperature field model.Additionally,a temperature-stress coupling model was employed to investigate the key load positions and stress response characteristics of the UHPP.The results indicate that compared with the traditional guss asphalt+stone mastic asphalt structure,the dynamic stability of the UHPP composite structure can be improved by up to 20.4%.Even under cyclic loading,UHPP still exhibits superior surface skid resistance compared to two traditional SBDPs.The thickness composition of UHPP significantly impacts its rutting resistance and skid resistance.UHPP exhibits relatively low tensile stress but higher shear stress levels,with the highest shear stress occurring between the UHPP and the steel plate.This suggests that the potential risk of damage for UHPP primarily lies within the interlayer of the pavement.Based on engineering examples,introducing interlayer gravel and optimizing the amount of bonding layer are advised to ensure that UHPP possesses sufficient interlayer shear resistance.展开更多
High-temperature oxidation is an important property to evaluate thermal protection materials. However, since oxidation is a complex process involving microstructure evolution, its quantitative analysis has always been...High-temperature oxidation is an important property to evaluate thermal protection materials. However, since oxidation is a complex process involving microstructure evolution, its quantitative analysis has always been a challenge. In this work, a phase field method (PFM) based on the thermodynamics theory is developed to simulate the oxidation behavior and oxidation induced growth stress. It involves microstructure evolution and solves the problem of quantitatively computational analysis for the oxidation behavior and growth stress. Employing this method, the diffusion process, oxidation performance, and stress evolution axe predicted for Fe-Cr-A1-Y alloys. The numerical results agree well with the experimental data. The linear relationship between the maximum growth stress and the environment oxygen concentration is found. PFM provides a powerful tool to investigate high-temperature oxidation in complex environments.展开更多
The electromagnetic characteristics and iron loss of a high-temperature superconductor wind generator(HWG)equipped with an overlapped field coil arrangement(OFCA)are studied by comparing with the one equipped with the...The electromagnetic characteristics and iron loss of a high-temperature superconductor wind generator(HWG)equipped with an overlapped field coil arrangement(OFCA)are studied by comparing with the one equipped with the conventional field coil arrangement(CFCA).Through a quantitative analysis,it was found that HWG with OFCA exhibits better electromagnetic characteristics than HWG with CFCA and can reduce the iron loss by eliminating the magnetic flux sag caused by the adjacent field coil sides with the same current flow direction.In addition,the OFCA topology can further reduce the volume of the wind generator.展开更多
The paper deals with calculation of the centrally symmetric and vortex forces for the momentum of a particle in the distortion tensor field from the action minimum, by analogy with the calculation of forces for a char...The paper deals with calculation of the centrally symmetric and vortex forces for the momentum of a particle in the distortion tensor field from the action minimum, by analogy with the calculation of forces for a charge in an electromagnetic field. It is demonstrated that: 1) The compensating interaction tensor corresponds to the distortion tensor in a solid. 2) The centrally symmetric force of the distortion tensor acts on the momentum as a charge, and is analogous to the Coulomb force. In a gas, it results in change in the momentum value of the molecules exponentially to some extent. The action of this force explains the high-temperature plasma in the gas. 3) The vortex force of the distortion tensor is equivalent to the Peach-Koehler force in a solid. It acts on the momentum flow, similar to the Lorentz magnetic force, and explains the vortex motions in space, in the form of “black holes”, and in the atmosphere, in the form of cyclones and anticyclones.展开更多
We report on the temperature-dependent dc performance of A1GaN/GaN polarization doped field effect transistors (PolFETs). The rough decrements of drain current and transeonductance with the operation temperature are...We report on the temperature-dependent dc performance of A1GaN/GaN polarization doped field effect transistors (PolFETs). The rough decrements of drain current and transeonductance with the operation temperature are observed. Compared with the conventional HFETs, the drain current drop of the PolFET is smaller. The transeonductance drop of PolFETs at different gate biases shows different temperature dependences. From the aspect of the unique carrier behaviors of graded AlGaN/GaN heterostructure, we propose a quasi-multi-channel model to investigate the physics behind the temperature-dependent performance of AlGaN/GaN PolFETs.展开更多
Based on the project titled "Investigation and evaluation of shallow geothermal energy in major cities of Tibet Autonomous Region", the distribution characteristics and occurrence conditions of shallow geoth...Based on the project titled "Investigation and evaluation of shallow geothermal energy in major cities of Tibet Autonomous Region", the distribution characteristics and occurrence conditions of shallow geothermal fields in these cities were introduced in this paper. To this end, relevant data in Lhasa, Shigatse and Nyingchi Cities through vertical thermometry was a focus, so as to analyze groundwater temperature and the distribution law of strata with constant temperature. Then through comprehensive comparisons and analysis of the relationship between groundwater temperature and climate, differences in this aspect of Nagqu City were taken as a typical case to clarify formation of geothermal field and corresponding influence on groundwater temperature, furthermore providing basic data for rational development and utilization of shallow geothermal energy in Tibet Autonomous Region.展开更多
The local distributions of both the temperature and pressure have a great influence on the rheological characteristics of the drilling fluid,thereby affecting its flow law in a wellbore.Along these lines,in this work,...The local distributions of both the temperature and pressure have a great influence on the rheological characteristics of the drilling fluid,thereby affecting its flow law in a wellbore.Along these lines,in this work,the rheology of water-based drilling fluid samples under high-temperature(30°C–210°C)and high-pressure(34.5 MPa–172.4 MPa)(HTHP)conditions was systematically analyzed.The constitutive model of the variation of the apparent viscosity of the drilling fluid with the temperature and pressure was successfully established.The analysis revealed that,among the Bingham model,the Power law model,the Herschel-Bulkley(H-B)model,and the Casson model,the H-B model can accurately describe the rheology of the drilling fluid under HTHP conditions.Therefore,the H-B model was used to perform numerical simulations of the flow law of the water-based drilling fluid in the wellbore.The simulation results demonstrated that the drilling fluid viscosity decreased as the depth of the wellbore increased,and was mainly influenced by the temperature.The maximum viscosity inside the drill pipe was mainly concentrated in the middle region,and that of the fluid when flowing in the annulus was mainly concentrated on the side near the outer wall of the annulus.This work provides valuable insights for setting the key parameters of the drilling fluid and wellbore cleaning in the drilling operation of a 1×104 m deep well.展开更多
基金The National Natural Science Foundation of China(No.51878167)the Postgraduate Research and Practice Innovation Program of Jiangsu Province(No.KYCX23_0300).
文摘To enhance the serviceability of steel bridge deck pavement(SBDP)in high-temperature and rainy regions,a concept of rigid bottom and flexible top was summarized using engineering practices,which led to the proposal of a three-layer ultra-high-performance pavement(UHPP).The high-temperature rutting resistance and wet-weather skid resistance of UHPP were evaluated through composite structure tests.The internal temperature distribution within the pavement under typical high-temperature conditions was analyzed using a temperature field model.Additionally,a temperature-stress coupling model was employed to investigate the key load positions and stress response characteristics of the UHPP.The results indicate that compared with the traditional guss asphalt+stone mastic asphalt structure,the dynamic stability of the UHPP composite structure can be improved by up to 20.4%.Even under cyclic loading,UHPP still exhibits superior surface skid resistance compared to two traditional SBDPs.The thickness composition of UHPP significantly impacts its rutting resistance and skid resistance.UHPP exhibits relatively low tensile stress but higher shear stress levels,with the highest shear stress occurring between the UHPP and the steel plate.This suggests that the potential risk of damage for UHPP primarily lies within the interlayer of the pavement.Based on engineering examples,introducing interlayer gravel and optimizing the amount of bonding layer are advised to ensure that UHPP possesses sufficient interlayer shear resistance.
基金Project supported by the National Natural Science Foundation of China (Nos. 90505015 and10702035)
文摘High-temperature oxidation is an important property to evaluate thermal protection materials. However, since oxidation is a complex process involving microstructure evolution, its quantitative analysis has always been a challenge. In this work, a phase field method (PFM) based on the thermodynamics theory is developed to simulate the oxidation behavior and oxidation induced growth stress. It involves microstructure evolution and solves the problem of quantitatively computational analysis for the oxidation behavior and growth stress. Employing this method, the diffusion process, oxidation performance, and stress evolution axe predicted for Fe-Cr-A1-Y alloys. The numerical results agree well with the experimental data. The linear relationship between the maximum growth stress and the environment oxygen concentration is found. PFM provides a powerful tool to investigate high-temperature oxidation in complex environments.
基金partly supported by the National Natural Science Foundation of China under Grants No.61473061 and No.61104104the Sichuan Science and Technology Program under Grant No.2020YFSY0012the Program for New Century Excellent Talents in University under Grant No.NCET-13-0091。
文摘The electromagnetic characteristics and iron loss of a high-temperature superconductor wind generator(HWG)equipped with an overlapped field coil arrangement(OFCA)are studied by comparing with the one equipped with the conventional field coil arrangement(CFCA).Through a quantitative analysis,it was found that HWG with OFCA exhibits better electromagnetic characteristics than HWG with CFCA and can reduce the iron loss by eliminating the magnetic flux sag caused by the adjacent field coil sides with the same current flow direction.In addition,the OFCA topology can further reduce the volume of the wind generator.
文摘The paper deals with calculation of the centrally symmetric and vortex forces for the momentum of a particle in the distortion tensor field from the action minimum, by analogy with the calculation of forces for a charge in an electromagnetic field. It is demonstrated that: 1) The compensating interaction tensor corresponds to the distortion tensor in a solid. 2) The centrally symmetric force of the distortion tensor acts on the momentum as a charge, and is analogous to the Coulomb force. In a gas, it results in change in the momentum value of the molecules exponentially to some extent. The action of this force explains the high-temperature plasma in the gas. 3) The vortex force of the distortion tensor is equivalent to the Peach-Koehler force in a solid. It acts on the momentum flow, similar to the Lorentz magnetic force, and explains the vortex motions in space, in the form of “black holes”, and in the atmosphere, in the form of cyclones and anticyclones.
文摘We report on the temperature-dependent dc performance of A1GaN/GaN polarization doped field effect transistors (PolFETs). The rough decrements of drain current and transeonductance with the operation temperature are observed. Compared with the conventional HFETs, the drain current drop of the PolFET is smaller. The transeonductance drop of PolFETs at different gate biases shows different temperature dependences. From the aspect of the unique carrier behaviors of graded AlGaN/GaN heterostructure, we propose a quasi-multi-channel model to investigate the physics behind the temperature-dependent performance of AlGaN/GaN PolFETs.
基金jointly funded by the China Geological Survey "Investigation and evaluation of shallow geothermal energy in Lhasa City (No.1212011120160)" and "Hydrogeological survey of shallow geothermal energy development zones in major cities of Tibet Autonomous Region on a scale of 1:50 000 (No.12120114086501)"
文摘Based on the project titled "Investigation and evaluation of shallow geothermal energy in major cities of Tibet Autonomous Region", the distribution characteristics and occurrence conditions of shallow geothermal fields in these cities were introduced in this paper. To this end, relevant data in Lhasa, Shigatse and Nyingchi Cities through vertical thermometry was a focus, so as to analyze groundwater temperature and the distribution law of strata with constant temperature. Then through comprehensive comparisons and analysis of the relationship between groundwater temperature and climate, differences in this aspect of Nagqu City were taken as a typical case to clarify formation of geothermal field and corresponding influence on groundwater temperature, furthermore providing basic data for rational development and utilization of shallow geothermal energy in Tibet Autonomous Region.
基金supported by the Department of Natural Resources of Guangdong Province(Grant No.[2023]31).
文摘The local distributions of both the temperature and pressure have a great influence on the rheological characteristics of the drilling fluid,thereby affecting its flow law in a wellbore.Along these lines,in this work,the rheology of water-based drilling fluid samples under high-temperature(30°C–210°C)and high-pressure(34.5 MPa–172.4 MPa)(HTHP)conditions was systematically analyzed.The constitutive model of the variation of the apparent viscosity of the drilling fluid with the temperature and pressure was successfully established.The analysis revealed that,among the Bingham model,the Power law model,the Herschel-Bulkley(H-B)model,and the Casson model,the H-B model can accurately describe the rheology of the drilling fluid under HTHP conditions.Therefore,the H-B model was used to perform numerical simulations of the flow law of the water-based drilling fluid in the wellbore.The simulation results demonstrated that the drilling fluid viscosity decreased as the depth of the wellbore increased,and was mainly influenced by the temperature.The maximum viscosity inside the drill pipe was mainly concentrated in the middle region,and that of the fluid when flowing in the annulus was mainly concentrated on the side near the outer wall of the annulus.This work provides valuable insights for setting the key parameters of the drilling fluid and wellbore cleaning in the drilling operation of a 1×104 m deep well.