In this paper, the evolutionary behavior of N-solitons for a (2 + 1)-dimensional Konopelchenko-Dubrovsky equations is studied by using the Hirota bilinear method and the long wave limit method. Based on the N-soliton ...In this paper, the evolutionary behavior of N-solitons for a (2 + 1)-dimensional Konopelchenko-Dubrovsky equations is studied by using the Hirota bilinear method and the long wave limit method. Based on the N-soliton solution, we first study the evolution from N-soliton to T-order (T=1,2) breather wave solutions via the paired-complexification of parameters, and then we get the N-order rational solutions, M-order (M=1,2) lump solutions, and the hybrid behavior between a variety of different types of solitons combined with the parameter limit technique and the paired-complexification of parameters. Meanwhile, we also provide a large number of three-dimensional figures in order to better show the degeneration of the N-soliton and the interaction behavior between different N-solitons.展开更多
In this paper, some exact solutions of the (3 + 1)-dimensional variable-coefficient Yu-Toda-Sasa-Fukuyama equation are investigated. By using Hirota’s direct method and symbolic computation, we obtained N-soliton sol...In this paper, some exact solutions of the (3 + 1)-dimensional variable-coefficient Yu-Toda-Sasa-Fukuyama equation are investigated. By using Hirota’s direct method and symbolic computation, we obtained N-soliton solution. By using the long wave limit method, the N-order rational solution can be obtained from N-order soliton solution. Then, through the paired complexification of parameters, the lump solution is obtained from N-order rational solution. Meanwhile, we obtained a hybrid solution between 1-lump solution and N-soliton (N=1,2) by using the long wave limit method and parameter complex. Furthermore, four different sets of three-dimensional graphs of solitons, lump solutions and hybrid solutions are drawn by selecting four different sets of coefficient functions which include one set of constant coefficient function and three sets of variable coefficient functions.展开更多
The Gerdjikov-Ivanov(GI)hierarchy is derived via recursion operator,in this article,we mainly investigate the third-order flow GI equation.In the framework of the Riemann-Hilbert method,the soliton matrices of the thi...The Gerdjikov-Ivanov(GI)hierarchy is derived via recursion operator,in this article,we mainly investigate the third-order flow GI equation.In the framework of the Riemann-Hilbert method,the soliton matrices of the third-order flow GI equation with simple zeros and elementary high-order zeros of Riemann-Hilbert problem are constructed through the standard dressing process.Taking advantage of this result,some properties and asymptotic analysis of single soliton solution and two soliton solution are discussed,and the simple elastic interaction of two soliton are proved.Compared with soliton solution of the classical second-order flow,we find that the higher-order dispersion term affects the propagation velocity,propagation direction and amplitude of the soliton.Finally,by means of a certain limit technique,the high-order soliton solution matrix for the third-order flow GI equation is derived.展开更多
We investigate theoretically the effects of chirped laser pulses on high-order harmonic generation(HHG)from solids.We find that the harmonic spectra display redshifts for the driving laser pulses with negative chirp a...We investigate theoretically the effects of chirped laser pulses on high-order harmonic generation(HHG)from solids.We find that the harmonic spectra display redshifts for the driving laser pulses with negative chirp and blueshifts for those with positive chirp,which is due to the change in the instantaneous frequency of the driving laser for different chirped pulses.The analysis of crystal-momentum-resolved(k-resolved)HHG reveals that the frequency shifts are equal for the harmonics generated by different crystal momentum channels.The frequency shifts in the cutoff region are larger than those in the plateau region.With the increase of the absolute value of the chirp parameters,the frequency shifts of HHG become more significant,leading to the shifts from odd-to even-order harmonics.We also demonstrate that the frequency shifts of harmonic spectra are related to the duration of the chirped laser field,but are insensitive to the laser intensity and dephasing time.展开更多
This paper investigates the design of an attitude autopilot for a dual-channel controlled spinning glideguided projectile(SGGP),addressing model uncertainties and external disturbances.Based on fixed-time stable theor...This paper investigates the design of an attitude autopilot for a dual-channel controlled spinning glideguided projectile(SGGP),addressing model uncertainties and external disturbances.Based on fixed-time stable theory,a disturbance observer with integral sliding mode and adaptive techniques is proposed to mitigate total disturbance effects,irrespective of initial conditions.By introducing an error integral signal,the dynamics of the SGGP are transformed into two separate second-order fully actuated systems.Subsequently,employing the high-order fully actuated approach and a parametric approach,the nonlinear dynamics of the SGGP are recast into a constant linear closed-loop system,ensuring that the projectile's attitude asymptotically tracks the given goal with the desired eigenstructure.Under the proposed composite control framework,the ultimately uniformly bounded stability of the closed-loop system is rigorously demonstrated via the Lyapunov method.Validation of the effectiveness of the proposed attitude autopilot design is provided through extensive numerical simulations.展开更多
We delve into the phenomenon of high-order harmonic generation within a helium atom under the influence of a plasmon-assisted shaping pulse.Our findings reveal an intriguing manipulation of the frequency peak position...We delve into the phenomenon of high-order harmonic generation within a helium atom under the influence of a plasmon-assisted shaping pulse.Our findings reveal an intriguing manipulation of the frequency peak position in the harmonic emission by adjusting the absolute phase parameter within the frequency domain of the shaping pulse.This phenomenon holds potential significance for experimental setups necessitating precisely tuned single harmonics.Notably,we observe a modulated shift in the created harmonic photon energy,spanning an impressive range of 1.2 eV.This frequency peak shift is rooted in the asymmetry exhibited by the rising and falling edges of the laser pulse,directly influencing the position of the peak frequency emission.Our study quantifies the dependence of this tuning range and the asymmetry of the laser pulse,offering valuable insights into the underlying mechanisms driving this phenomenon.Furthermore,our investigation uncovers the emergence of semi-integer order harmonics as the phase parameter is altered.We attribute this discovery to the intricate interference between harmonics generated by the primary and secondary return cores.This observation introduces an innovative approach for generating semi-integer order harmonics,thus expanding our understanding of high-order harmonic generation.Ultimately,our work contributes to the broader comprehension of complex phenomena in laser-matter interactions and provides a foundation for harnessing these effects in various applications,particularly those involving precise spectral control and the generation of unique harmonic patterns.展开更多
In studying interactions between intense laser fields and atoms or molecules,the role of electron correlation effects on the dynamical response is an important and pressing issue to address.Utilizing Bohmian mechanics...In studying interactions between intense laser fields and atoms or molecules,the role of electron correlation effects on the dynamical response is an important and pressing issue to address.Utilizing Bohmian mechanics(BM),we have theoretically explored the two-electron correlation characteristics while generating high-order harmonics in xenon atoms subjected to intense laser fields.We initially employed Bohmian trajectories to reproduce the dynamics of the electrons and subsequently utilized time-frequency analysis spectra to ascertain the emission time windows for high-order harmonics.Within these time windows,we classified the nuclear region Bohmian trajectories and observed that intense high-order harmonics are solely generated when paired Bohmian particles(BPs)concurrently appear in the nuclear region and reside there for a duration within a re-collision time window.Furthermore,our analysis of characteristic trajectories producing high-order harmonics led us to propose a two-electron re-collision model to elucidate this phenomenon.The study demonstrates that intense high-order harmonics are only generated when both electrons are in the ground state within the re-collision time window.This work discusses the implications of correlation effects between two electrons and offers valuable insights for studying correlation in multi-electron high-order harmonic generation.展开更多
High-order harmonic generation(HHG) of Ar atom in an elliptically polarized intense laser field is experimentally investigated in this work.Interestingly,the anomalous ellipticity dependence on the laser ellipticity(...High-order harmonic generation(HHG) of Ar atom in an elliptically polarized intense laser field is experimentally investigated in this work.Interestingly,the anomalous ellipticity dependence on the laser ellipticity(ε) in the lower-order harmonics is observed,specifically in the 13rd-order,which displays a maximal harmonic intensity at ε ≈ 0.1,rather than at ε = 0 as expected.This contradicts the general trend of harmonic yield,which typically decreases with the increase of laser ellipticity.In this study,we attribute this phenomenon to the disruption of the symmetry of the wave function by the Coulomb effect,leading to the generation of a harmonic with high ellipticity.This finding provides valuable insights into the behavior of elliptically polarized harmonics and opens up a potential way for exploring new applications in ultrafast spectroscopy and light–matter interactions.展开更多
Acoustic scattering modulation caused by an undulating sea surface on the space-time dimension seriously affects underwater detection and target recognition.Herein,underwater acoustic scattering modulation from a movi...Acoustic scattering modulation caused by an undulating sea surface on the space-time dimension seriously affects underwater detection and target recognition.Herein,underwater acoustic scattering modulation from a moving rough sea surface is studied based on integral equation and parabolic equation.And with the principles of grating and constructive interference,the mechanism of this acoustic scattering modulation is explained.The periodicity of the interference of moving rough sea surface will lead to the interference of the scattering field at a series of discrete angles,which will form comb-like and frequency-shift characteristics on the intensity and the frequency spectrum of the acoustic scattering field,respectively,which is a high-order Bragg scattering phenomenon.Unlike the conventional Doppler effect,the frequency shifts of the Bragg scattering phenomenon are multiples of the undulating sea surface frequency and are independent of the incident sound wave frequency.Therefore,even if a low-frequency underwater acoustic field is incident,it will produce obvious frequency shifts.Moreover,under the action of ideal sinusoidal waves,swells,fully grown wind waves,unsteady wind waves,or mixed waves,different moving rough sea surfaces create different acoustic scattering processes and possess different frequency shift characteristics.For the swell wave,which tends to be a single harmonic wave,the moving rough sea surface produces more obvious high-order scattering and frequency shifts.The same phenomena are observed on the sea surface under fully grown wind waves,however,the frequency shift slightly offsets the multiple peak frequencies of the wind wave spectrum.Comparing with the swell and fully-grown wind waves,the acoustic scattering and frequency shift are not obvious for the sea surface under unsteady wind waves.展开更多
High harmonic generation in ZnO crystals under chirped single-color field and static electric field are investigated by solving the semiconductor Bloch equation(SBE). It is found that when the chirp pulse is introduce...High harmonic generation in ZnO crystals under chirped single-color field and static electric field are investigated by solving the semiconductor Bloch equation(SBE). It is found that when the chirp pulse is introduced, the interference structure becomes obvious while the harmonic cutoff is not extended. Furthermore, the harmonic efficiency is improved when the static electric field is included. These phenomena are demonstrated by the classical recollision model in real space affected by the waveform of laser field and inversion symmetry. Specifically, the electron motion in k-space shows that the change of waveform and the destruction of the symmetry of the laser field lead to the incomplete X-structure of the crystal-momentum-resolved(k-resolved) inter-band harmonic spectrum. Furthermore, a pre-acceleration process in the solid four-step model is confirmed.展开更多
Due to the coupling between the hydrodynamic equation and the phase-field equation in two-phase incompressible flows,it is desirable to develop efficient and high-order accurate numerical schemes that can decouple the...Due to the coupling between the hydrodynamic equation and the phase-field equation in two-phase incompressible flows,it is desirable to develop efficient and high-order accurate numerical schemes that can decouple these two equations.One popular and efficient strategy is to add an explicit stabilizing term to the convective velocity in the phase-field equation to decouple them.The resulting schemes are only first-order accurate in time,and it seems extremely difficult to generalize the idea of stabilization to the second-order or higher version.In this paper,we employ the spectral deferred correction method to improve the temporal accuracy,based on the first-order decoupled and energy-stable scheme constructed by the stabilization idea.The novelty lies in how the decoupling and linear implicit properties are maintained to improve the efficiency.Within the framework of the spatially discretized local discontinuous Galerkin method,the resulting numerical schemes are fully decoupled,efficient,and high-order accurate in both time and space.Numerical experiments are performed to validate the high-order accuracy and efficiency of the methods for solving phase-field models of two-phase incompressible flows.展开更多
This paper mainly addresses control problems of strict-feedback systems(SFSs)with increasing dimensions.Compared with the commonly-considered SFSs where the subsystems have the same dimension,we aim to handle more com...This paper mainly addresses control problems of strict-feedback systems(SFSs)with increasing dimensions.Compared with the commonly-considered SFSs where the subsystems have the same dimension,we aim to handle more complex cases,i.e.,the subsystems in the considered SFSs are assumed to have increasing dimensions.By transforming the systems into highorder fully-actuated system(HOFAS)models,the stabilizing controllers can be directly given.Besides first-order SFSs,secondorder and high-order SFSs are also considered.展开更多
Although constraint satisfaction approaches have achieved fruitful results,system states may lose their smoothness and there may be undesired chattering of control inputs due to switching characteristics.Furthermore,i...Although constraint satisfaction approaches have achieved fruitful results,system states may lose their smoothness and there may be undesired chattering of control inputs due to switching characteristics.Furthermore,it remains a challenge when there are additional constraints on control torques of robotic systems.In this article,we propose a novel high-order control barrier function(HoCBF)-based safety control method for robotic systems subject to input-output constraints,which can maintain the desired smoothness of system states and reduce undesired chattering vibration in the control torque.In our design,augmented dynamics are introduced into the HoCBF by constructing its output as the control input of the robotic system,so that the constraint satisfaction is facilitated by HoCBFs and the smoothness of system states is maintained by the augmented dynamics.This proposed scheme leads to the quadratic program(QP),which is more user-friendly in implementation since the constraint satisfaction control design is implemented as an add-on to an existing tracking control law.The proposed closed-loop control system not only achieves the requirements of real-time capability,stability,safety and compliance,but also reduces undesired chattering of control inputs.Finally,the effectiveness of the proposed control scheme is verified by simulations and experiments on robotic manipulators.展开更多
With the rapid development of communication technology,optical fiber communication has become a key research area in communications.When there are two signals in the optical fiber,the transmission of them can be abstr...With the rapid development of communication technology,optical fiber communication has become a key research area in communications.When there are two signals in the optical fiber,the transmission of them can be abstracted as a high-order coupled nonlinear Schr¨odinger system.In this paper,by using the Hirota’s method,we construct the bilinear forms,and study the analytical solution of three solitons in the case of focusing interactions.In addition,by adjusting different wave numbers for phase control,we further discuss the influence of wave numbers on soliton transmissions.It is verified that wave numbers k_(11),k_(21),k_(31),k_(22),and k_(32)can control the fusion and fission of solitons.The results are beneficial to the study of all-optical switches and fiber lasers in nonlinear optics.展开更多
In this paper we use Böcklund transformation to construct soliton solutions for a coupled KdV system.This system was first proposed by Wang in 2010.First we generalize the well-known Bäcklund transformation ...In this paper we use Böcklund transformation to construct soliton solutions for a coupled KdV system.This system was first proposed by Wang in 2010.First we generalize the well-known Bäcklund transformation for the KdV equation to such coupled KdV system.Then from a trivial seed solution,we construct soliton solutions.We also give a nonlinear superposition formula,which allows us to generate multi-soliton solutions.展开更多
We take the higher-order nonlinear Schrodinger equation as a mathematical model and employ the bilinear method to analytically study the evolution characteristics of femtosecond solitons in optical fibers under higher...We take the higher-order nonlinear Schrodinger equation as a mathematical model and employ the bilinear method to analytically study the evolution characteristics of femtosecond solitons in optical fibers under higherorder nonlinear effects and higher-order dispersion effects.The results show that the effects have a significant impact on the amplitude and interaction characteristics of optical solitons.The larger the higher-order nonlinear coefficient,the more intense the interaction between optical solitons,and the more unstable the transmission.At the same time,we discuss the influence of other free parameters on third-order soliton interactions.Effectively regulate the interaction of three optical solitons by controlling relevant parameters.These studies will lay a theoretical foundation for experiments and further practicality of optical soliton communications.展开更多
For optical solitons with the pulse width in the subpicosecond and femtosecond scales in optical fibers,a modified model containing higher-order effects such as third-order dispersion and third-order nonlinearity is n...For optical solitons with the pulse width in the subpicosecond and femtosecond scales in optical fibers,a modified model containing higher-order effects such as third-order dispersion and third-order nonlinearity is needed.In this paper,in order to study the dynamic mechanism of femtosecond solitons in different media,we take the nonlinear Schr?dinger equation considering higher-order effects as the theoretical model,discuss the propagation of solitons in single-mode fibers,and explore the third-order dispersion and third-order nonlinear effects on the generation of optical solitons.The exact solution of the theoretical model is obtained through the bilinear method,and the transmission characteristics of two solitons with exact soliton solutions in actual fiber systems are analyzed and studied.The influence of various conditions on the transmission and interaction of optical solitons is explored.Methods for optimizing the transmission characteristics of optical solitons in optical communication systems are suggested.The relevant conclusions of this paper have guiding significance for improving the quality of fiber optic communication and increasing bit rates.展开更多
High-order Laguerre–Gaussian(LG)petal-like beams have become a topic of significant interest due to their potential application in next-generation optical trapping,quantum optics,and materials processing technologies...High-order Laguerre–Gaussian(LG)petal-like beams have become a topic of significant interest due to their potential application in next-generation optical trapping,quantum optics,and materials processing technologies.In this work,we demonstrate the generation of high-order LG beams with petal-like spatial profiles and tunable orbital angular momentum(OAM)in the mid-infrared wavelength region.These beams are generated using idler-resonant optical parametric oscillation(OPO)in a KTiOAsO_(4)(KTA)crystal.By adjusting the length of the resonant cavity,the OAM of the mid-infrared idler field can be tuned and we demonstrate tuning in the range of 0 to10.When using a maximum pump energy of 20.2 mJ,the maximum output energy of high-order modes LG_(0.45),LG_(0.48),and LG_(0.410) were 0.8,0.53,and 0.46 mJ,respectively.The means by which high-order LG modes with petal-like spatial profiles and tunable OAM were generated from the OPO is theoretically modeled by examining the spatial overlap efficiency of the beam waists of the pump and resonant idler fields within the center of the KTA crystal.The methodology presented in this work offers a simple and flexible method to wavelength-convert laser emission and generate high-order LG modes.展开更多
The N=3 femtosecond solitonlike pulses are observed directly in a self-mode-locked Ti:sapphire laser as well as even higher-order solitonlike pulses for the first time.When the laser is operating in a stable train of ...The N=3 femtosecond solitonlike pulses are observed directly in a self-mode-locked Ti:sapphire laser as well as even higher-order solitonlike pulses for the first time.When the laser is operating in a stable train of mode-locked pulses,the periodic pulse train appears by only varying the intracavity dispersion.The soliton period with N=3 corresponds to a cavity round trip number of 164.展开更多
Recent theoretical verification of self-similar and dissipative pure-quartic solitons(PQSs)emphasized the similarity between PQS lasers and conventional fiber lasers,but the unique equilibrium mechanism hinders the fo...Recent theoretical verification of self-similar and dissipative pure-quartic solitons(PQSs)emphasized the similarity between PQS lasers and conventional fiber lasers,but the unique equilibrium mechanism hinders the formation of PQS molecules in normal fourth-order dispersion(FOD)regimes.In this paper,we investigated the effect of filters on shaping PQSs in normal FOD based on a passively mode-locked fiber laser model.A bandpass filter eliminates the time pedestal of dissipative PQSs,thus realizing a multi-pulsing state.When the filter bandwidth is appropriate,the effective spectral filtering effect can lower the pulse splitting threshold and enable the coherent restoration from chaotic PQSs to PQS molecules.Additionally,changing the central wavelength of the filter can generate PQSs and PQS molecules with asymmetric intensity distributions.These results are important guides for the manipulation of PQSs and the construction of high repetition-frequency fiber lasers.展开更多
文摘In this paper, the evolutionary behavior of N-solitons for a (2 + 1)-dimensional Konopelchenko-Dubrovsky equations is studied by using the Hirota bilinear method and the long wave limit method. Based on the N-soliton solution, we first study the evolution from N-soliton to T-order (T=1,2) breather wave solutions via the paired-complexification of parameters, and then we get the N-order rational solutions, M-order (M=1,2) lump solutions, and the hybrid behavior between a variety of different types of solitons combined with the parameter limit technique and the paired-complexification of parameters. Meanwhile, we also provide a large number of three-dimensional figures in order to better show the degeneration of the N-soliton and the interaction behavior between different N-solitons.
文摘In this paper, some exact solutions of the (3 + 1)-dimensional variable-coefficient Yu-Toda-Sasa-Fukuyama equation are investigated. By using Hirota’s direct method and symbolic computation, we obtained N-soliton solution. By using the long wave limit method, the N-order rational solution can be obtained from N-order soliton solution. Then, through the paired complexification of parameters, the lump solution is obtained from N-order rational solution. Meanwhile, we obtained a hybrid solution between 1-lump solution and N-soliton (N=1,2) by using the long wave limit method and parameter complex. Furthermore, four different sets of three-dimensional graphs of solitons, lump solutions and hybrid solutions are drawn by selecting four different sets of coefficient functions which include one set of constant coefficient function and three sets of variable coefficient functions.
基金supported by the National Natural Science Foundation of China(No.12175069 and No.12235007)Science and Technology Commission of Shanghai Municipality(No.21JC1402500 and No.22DZ2229014)Natural Science Foundation of Shanghai,China(No.23ZR1418100).
文摘The Gerdjikov-Ivanov(GI)hierarchy is derived via recursion operator,in this article,we mainly investigate the third-order flow GI equation.In the framework of the Riemann-Hilbert method,the soliton matrices of the third-order flow GI equation with simple zeros and elementary high-order zeros of Riemann-Hilbert problem are constructed through the standard dressing process.Taking advantage of this result,some properties and asymptotic analysis of single soliton solution and two soliton solution are discussed,and the simple elastic interaction of two soliton are proved.Compared with soliton solution of the classical second-order flow,we find that the higher-order dispersion term affects the propagation velocity,propagation direction and amplitude of the soliton.Finally,by means of a certain limit technique,the high-order soliton solution matrix for the third-order flow GI equation is derived.
基金Project supported by the Natural Science Foundation of Jilin Province of China(Grant No.20230101014JC)the National Natural Science Foundation of China(Grant No.12374265)。
文摘We investigate theoretically the effects of chirped laser pulses on high-order harmonic generation(HHG)from solids.We find that the harmonic spectra display redshifts for the driving laser pulses with negative chirp and blueshifts for those with positive chirp,which is due to the change in the instantaneous frequency of the driving laser for different chirped pulses.The analysis of crystal-momentum-resolved(k-resolved)HHG reveals that the frequency shifts are equal for the harmonics generated by different crystal momentum channels.The frequency shifts in the cutoff region are larger than those in the plateau region.With the increase of the absolute value of the chirp parameters,the frequency shifts of HHG become more significant,leading to the shifts from odd-to even-order harmonics.We also demonstrate that the frequency shifts of harmonic spectra are related to the duration of the chirped laser field,but are insensitive to the laser intensity and dephasing time.
基金supported by the National Natural Science Foundation of China(Grant Nos.52272358 and 62103052)。
文摘This paper investigates the design of an attitude autopilot for a dual-channel controlled spinning glideguided projectile(SGGP),addressing model uncertainties and external disturbances.Based on fixed-time stable theory,a disturbance observer with integral sliding mode and adaptive techniques is proposed to mitigate total disturbance effects,irrespective of initial conditions.By introducing an error integral signal,the dynamics of the SGGP are transformed into two separate second-order fully actuated systems.Subsequently,employing the high-order fully actuated approach and a parametric approach,the nonlinear dynamics of the SGGP are recast into a constant linear closed-loop system,ensuring that the projectile's attitude asymptotically tracks the given goal with the desired eigenstructure.Under the proposed composite control framework,the ultimately uniformly bounded stability of the closed-loop system is rigorously demonstrated via the Lyapunov method.Validation of the effectiveness of the proposed attitude autopilot design is provided through extensive numerical simulations.
基金This project was supported by the National Key Research and Development Program of China(Grant Nos.2022YFE134200 and 2019YFA0307700)the National Natural Science Foundation of China(Grant Nos.11604119,12104177,11904192,12074145,and 11704147)the Fundamental Research Funds for the Central Universities(Grant Nos.GK202207012 and QCYRCXM-2022-241).
文摘We delve into the phenomenon of high-order harmonic generation within a helium atom under the influence of a plasmon-assisted shaping pulse.Our findings reveal an intriguing manipulation of the frequency peak position in the harmonic emission by adjusting the absolute phase parameter within the frequency domain of the shaping pulse.This phenomenon holds potential significance for experimental setups necessitating precisely tuned single harmonics.Notably,we observe a modulated shift in the created harmonic photon energy,spanning an impressive range of 1.2 eV.This frequency peak shift is rooted in the asymmetry exhibited by the rising and falling edges of the laser pulse,directly influencing the position of the peak frequency emission.Our study quantifies the dependence of this tuning range and the asymmetry of the laser pulse,offering valuable insights into the underlying mechanisms driving this phenomenon.Furthermore,our investigation uncovers the emergence of semi-integer order harmonics as the phase parameter is altered.We attribute this discovery to the intricate interference between harmonics generated by the primary and secondary return cores.This observation introduces an innovative approach for generating semi-integer order harmonics,thus expanding our understanding of high-order harmonic generation.Ultimately,our work contributes to the broader comprehension of complex phenomena in laser-matter interactions and provides a foundation for harnessing these effects in various applications,particularly those involving precise spectral control and the generation of unique harmonic patterns.
基金Project supported by the Natural Science Foundation(General Project)of Jilin Province,China(Grant No.20230101283JC)。
文摘In studying interactions between intense laser fields and atoms or molecules,the role of electron correlation effects on the dynamical response is an important and pressing issue to address.Utilizing Bohmian mechanics(BM),we have theoretically explored the two-electron correlation characteristics while generating high-order harmonics in xenon atoms subjected to intense laser fields.We initially employed Bohmian trajectories to reproduce the dynamics of the electrons and subsequently utilized time-frequency analysis spectra to ascertain the emission time windows for high-order harmonics.Within these time windows,we classified the nuclear region Bohmian trajectories and observed that intense high-order harmonics are solely generated when paired Bohmian particles(BPs)concurrently appear in the nuclear region and reside there for a duration within a re-collision time window.Furthermore,our analysis of characteristic trajectories producing high-order harmonics led us to propose a two-electron re-collision model to elucidate this phenomenon.The study demonstrates that intense high-order harmonics are only generated when both electrons are in the ground state within the re-collision time window.This work discusses the implications of correlation effects between two electrons and offers valuable insights for studying correlation in multi-electron high-order harmonic generation.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.92250306,11974137,and 12304302)the National Key Program for Science and Technology Research and Development of China(Grant No.2019YFA0307700)+1 种基金the Natural Science Foundation of Jilin Province,China(Grant Nos.YDZJ202101ZYTS157 and YDZJ202201ZYTS314)the Scientific Research Foundation of the Education Department of Jilin Province,China(Grant No.JJKH20230283KJ)。
文摘High-order harmonic generation(HHG) of Ar atom in an elliptically polarized intense laser field is experimentally investigated in this work.Interestingly,the anomalous ellipticity dependence on the laser ellipticity(ε) in the lower-order harmonics is observed,specifically in the 13rd-order,which displays a maximal harmonic intensity at ε ≈ 0.1,rather than at ε = 0 as expected.This contradicts the general trend of harmonic yield,which typically decreases with the increase of laser ellipticity.In this study,we attribute this phenomenon to the disruption of the symmetry of the wave function by the Coulomb effect,leading to the generation of a harmonic with high ellipticity.This finding provides valuable insights into the behavior of elliptically polarized harmonics and opens up a potential way for exploring new applications in ultrafast spectroscopy and light–matter interactions.
基金Project supported by the IACAS Young Elite Researcher Project(Grant No.QNYC201703)the Rising Star Foundation of Integrated Research Center for Islands and Reefs Sciences,CAS(Grant No.ZDRW-XH-2021-2-04)the Key Laboratory Foundation of Acoustic Science and Technology(Grant No.2021-JCJQ-LB-066-08).
文摘Acoustic scattering modulation caused by an undulating sea surface on the space-time dimension seriously affects underwater detection and target recognition.Herein,underwater acoustic scattering modulation from a moving rough sea surface is studied based on integral equation and parabolic equation.And with the principles of grating and constructive interference,the mechanism of this acoustic scattering modulation is explained.The periodicity of the interference of moving rough sea surface will lead to the interference of the scattering field at a series of discrete angles,which will form comb-like and frequency-shift characteristics on the intensity and the frequency spectrum of the acoustic scattering field,respectively,which is a high-order Bragg scattering phenomenon.Unlike the conventional Doppler effect,the frequency shifts of the Bragg scattering phenomenon are multiples of the undulating sea surface frequency and are independent of the incident sound wave frequency.Therefore,even if a low-frequency underwater acoustic field is incident,it will produce obvious frequency shifts.Moreover,under the action of ideal sinusoidal waves,swells,fully grown wind waves,unsteady wind waves,or mixed waves,different moving rough sea surfaces create different acoustic scattering processes and possess different frequency shift characteristics.For the swell wave,which tends to be a single harmonic wave,the moving rough sea surface produces more obvious high-order scattering and frequency shifts.The same phenomena are observed on the sea surface under fully grown wind waves,however,the frequency shift slightly offsets the multiple peak frequencies of the wind wave spectrum.Comparing with the swell and fully-grown wind waves,the acoustic scattering and frequency shift are not obvious for the sea surface under unsteady wind waves.
基金supported by the Natural Science Foundation of Jilin Province (Grant No.20220101010JC)the National Natural Science Foundation of China (Grant No.12074146)。
文摘High harmonic generation in ZnO crystals under chirped single-color field and static electric field are investigated by solving the semiconductor Bloch equation(SBE). It is found that when the chirp pulse is introduced, the interference structure becomes obvious while the harmonic cutoff is not extended. Furthermore, the harmonic efficiency is improved when the static electric field is included. These phenomena are demonstrated by the classical recollision model in real space affected by the waveform of laser field and inversion symmetry. Specifically, the electron motion in k-space shows that the change of waveform and the destruction of the symmetry of the laser field lead to the incomplete X-structure of the crystal-momentum-resolved(k-resolved) inter-band harmonic spectrum. Furthermore, a pre-acceleration process in the solid four-step model is confirmed.
基金supported by the NSFC Grant no.12271492the Natural Science Foundation of Henan Province of China Grant no.222300420550+1 种基金supported by the NSFC Grant no.12271498the National Key R&D Program of China Grant no.2022YFA1005202/2022YFA1005200.
文摘Due to the coupling between the hydrodynamic equation and the phase-field equation in two-phase incompressible flows,it is desirable to develop efficient and high-order accurate numerical schemes that can decouple these two equations.One popular and efficient strategy is to add an explicit stabilizing term to the convective velocity in the phase-field equation to decouple them.The resulting schemes are only first-order accurate in time,and it seems extremely difficult to generalize the idea of stabilization to the second-order or higher version.In this paper,we employ the spectral deferred correction method to improve the temporal accuracy,based on the first-order decoupled and energy-stable scheme constructed by the stabilization idea.The novelty lies in how the decoupling and linear implicit properties are maintained to improve the efficiency.Within the framework of the spatially discretized local discontinuous Galerkin method,the resulting numerical schemes are fully decoupled,efficient,and high-order accurate in both time and space.Numerical experiments are performed to validate the high-order accuracy and efficiency of the methods for solving phase-field models of two-phase incompressible flows.
基金partly supported by Shenzhen Key Laboratory of Control Theory and Intelligent Systems(ZDSYS20220330161800001)the National Natural Science Foundation of China(NSFC)(62350055)。
文摘This paper mainly addresses control problems of strict-feedback systems(SFSs)with increasing dimensions.Compared with the commonly-considered SFSs where the subsystems have the same dimension,we aim to handle more complex cases,i.e.,the subsystems in the considered SFSs are assumed to have increasing dimensions.By transforming the systems into highorder fully-actuated system(HOFAS)models,the stabilizing controllers can be directly given.Besides first-order SFSs,secondorder and high-order SFSs are also considered.
基金supported in part by the National Natural Science Foundation of China(62273311,61773351)Henan Provincial Science Foundation for Distinguished Young Scholars(242300421051)。
文摘Although constraint satisfaction approaches have achieved fruitful results,system states may lose their smoothness and there may be undesired chattering of control inputs due to switching characteristics.Furthermore,it remains a challenge when there are additional constraints on control torques of robotic systems.In this article,we propose a novel high-order control barrier function(HoCBF)-based safety control method for robotic systems subject to input-output constraints,which can maintain the desired smoothness of system states and reduce undesired chattering vibration in the control torque.In our design,augmented dynamics are introduced into the HoCBF by constructing its output as the control input of the robotic system,so that the constraint satisfaction is facilitated by HoCBFs and the smoothness of system states is maintained by the augmented dynamics.This proposed scheme leads to the quadratic program(QP),which is more user-friendly in implementation since the constraint satisfaction control design is implemented as an add-on to an existing tracking control law.The proposed closed-loop control system not only achieves the requirements of real-time capability,stability,safety and compliance,but also reduces undesired chattering of control inputs.Finally,the effectiveness of the proposed control scheme is verified by simulations and experiments on robotic manipulators.
基金supported by the National Natural Science Foundation of China(Grant Nos.11875008,12075034,11975001,and 11975172)the Open Research Fund of State Key Laboratory of Pulsed Power Laser Technology(Grant No.SKL2018KF04)the Fundamental Research Funds for the Central Universities,China(Grant No.2019XD-A09-3)。
文摘With the rapid development of communication technology,optical fiber communication has become a key research area in communications.When there are two signals in the optical fiber,the transmission of them can be abstracted as a high-order coupled nonlinear Schr¨odinger system.In this paper,by using the Hirota’s method,we construct the bilinear forms,and study the analytical solution of three solitons in the case of focusing interactions.In addition,by adjusting different wave numbers for phase control,we further discuss the influence of wave numbers on soliton transmissions.It is verified that wave numbers k_(11),k_(21),k_(31),k_(22),and k_(32)can control the fusion and fission of solitons.The results are beneficial to the study of all-optical switches and fiber lasers in nonlinear optics.
基金Supported by the Jiangsu Higher School Undergraduate Innovation and Entrepreneurship Training Program(202311117078Y)。
文摘In this paper we use Böcklund transformation to construct soliton solutions for a coupled KdV system.This system was first proposed by Wang in 2010.First we generalize the well-known Bäcklund transformation for the KdV equation to such coupled KdV system.Then from a trivial seed solution,we construct soliton solutions.We also give a nonlinear superposition formula,which allows us to generate multi-soliton solutions.
基金Scientific Research Foundation of Weifang University of Science and Technology(Grant No.KJRC2022002)Shandong Province Higher Educational Science and Technology Program(Grant No.J18KB108)Research start-up fees for doctoral degree holders and senior professional title holders with master’s degrees of Binzhou University(Grant No.2022Y12)。
文摘We take the higher-order nonlinear Schrodinger equation as a mathematical model and employ the bilinear method to analytically study the evolution characteristics of femtosecond solitons in optical fibers under higherorder nonlinear effects and higher-order dispersion effects.The results show that the effects have a significant impact on the amplitude and interaction characteristics of optical solitons.The larger the higher-order nonlinear coefficient,the more intense the interaction between optical solitons,and the more unstable the transmission.At the same time,we discuss the influence of other free parameters on third-order soliton interactions.Effectively regulate the interaction of three optical solitons by controlling relevant parameters.These studies will lay a theoretical foundation for experiments and further practicality of optical soliton communications.
基金Project supported by the Scientific Research Foundation of Weifang University of Science and Technology(Grant No.KJRC2022002)the Shandong Province Higher Educational Science and Technology Program(Grant No.J18KB108)the Research start-up fees for doctoral degree holders and senior professional title holders with master’s degrees of Binzhou University(Grant No.2022Y12)。
文摘For optical solitons with the pulse width in the subpicosecond and femtosecond scales in optical fibers,a modified model containing higher-order effects such as third-order dispersion and third-order nonlinearity is needed.In this paper,in order to study the dynamic mechanism of femtosecond solitons in different media,we take the nonlinear Schr?dinger equation considering higher-order effects as the theoretical model,discuss the propagation of solitons in single-mode fibers,and explore the third-order dispersion and third-order nonlinear effects on the generation of optical solitons.The exact solution of the theoretical model is obtained through the bilinear method,and the transmission characteristics of two solitons with exact soliton solutions in actual fiber systems are analyzed and studied.The influence of various conditions on the transmission and interaction of optical solitons is explored.Methods for optimizing the transmission characteristics of optical solitons in optical communication systems are suggested.The relevant conclusions of this paper have guiding significance for improving the quality of fiber optic communication and increasing bit rates.
基金supported by the National Natural Science Foundation of China(Grant Nos.12264049 and 11664041)the Xinjiang Normal University Young Outstanding Talent Programme(Grant No.XJNUQB2022-17).
文摘High-order Laguerre–Gaussian(LG)petal-like beams have become a topic of significant interest due to their potential application in next-generation optical trapping,quantum optics,and materials processing technologies.In this work,we demonstrate the generation of high-order LG beams with petal-like spatial profiles and tunable orbital angular momentum(OAM)in the mid-infrared wavelength region.These beams are generated using idler-resonant optical parametric oscillation(OPO)in a KTiOAsO_(4)(KTA)crystal.By adjusting the length of the resonant cavity,the OAM of the mid-infrared idler field can be tuned and we demonstrate tuning in the range of 0 to10.When using a maximum pump energy of 20.2 mJ,the maximum output energy of high-order modes LG_(0.45),LG_(0.48),and LG_(0.410) were 0.8,0.53,and 0.46 mJ,respectively.The means by which high-order LG modes with petal-like spatial profiles and tunable OAM were generated from the OPO is theoretically modeled by examining the spatial overlap efficiency of the beam waists of the pump and resonant idler fields within the center of the KTA crystal.The methodology presented in this work offers a simple and flexible method to wavelength-convert laser emission and generate high-order LG modes.
基金Supported by the Returned Teacher's Foundation of the National Education Committeethe Key Research Project in Climbing Program from the National Science and Technology Commission of Chinathe Hong Kong Research Grant Council Project HKUST 633/945P.
文摘The N=3 femtosecond solitonlike pulses are observed directly in a self-mode-locked Ti:sapphire laser as well as even higher-order solitonlike pulses for the first time.When the laser is operating in a stable train of mode-locked pulses,the periodic pulse train appears by only varying the intracavity dispersion.The soliton period with N=3 corresponds to a cavity round trip number of 164.
基金Project supported by the National Natural Science Foundation of China(Grant No.62175116)。
文摘Recent theoretical verification of self-similar and dissipative pure-quartic solitons(PQSs)emphasized the similarity between PQS lasers and conventional fiber lasers,but the unique equilibrium mechanism hinders the formation of PQS molecules in normal fourth-order dispersion(FOD)regimes.In this paper,we investigated the effect of filters on shaping PQSs in normal FOD based on a passively mode-locked fiber laser model.A bandpass filter eliminates the time pedestal of dissipative PQSs,thus realizing a multi-pulsing state.When the filter bandwidth is appropriate,the effective spectral filtering effect can lower the pulse splitting threshold and enable the coherent restoration from chaotic PQSs to PQS molecules.Additionally,changing the central wavelength of the filter can generate PQSs and PQS molecules with asymmetric intensity distributions.These results are important guides for the manipulation of PQSs and the construction of high repetition-frequency fiber lasers.