期刊文献+
共找到45,041篇文章
< 1 2 250 >
每页显示 20 50 100
Frequency shifts of high-order harmonics from ZnO crystals by chirped laser pulses
1
作者 Yu Zhao Xiao-Jin Liu +3 位作者 Shuang Wang Xiao-Xin Huo Yun-He Xing Jun Zhang 《Chinese Physics B》 2025年第3期340-346,共7页
We investigate theoretically the effects of chirped laser pulses on high-order harmonic generation(HHG)from solids.We find that the harmonic spectra display redshifts for the driving laser pulses with negative chirp a... We investigate theoretically the effects of chirped laser pulses on high-order harmonic generation(HHG)from solids.We find that the harmonic spectra display redshifts for the driving laser pulses with negative chirp and blueshifts for those with positive chirp,which is due to the change in the instantaneous frequency of the driving laser for different chirped pulses.The analysis of crystal-momentum-resolved(k-resolved)HHG reveals that the frequency shifts are equal for the harmonics generated by different crystal momentum channels.The frequency shifts in the cutoff region are larger than those in the plateau region.With the increase of the absolute value of the chirp parameters,the frequency shifts of HHG become more significant,leading to the shifts from odd-to even-order harmonics.We also demonstrate that the frequency shifts of harmonic spectra are related to the duration of the chirped laser field,but are insensitive to the laser intensity and dephasing time. 展开更多
关键词 high-order harmonic generation ZnO crystal chirped laser pulse spectral shift
在线阅读 下载PDF
Unveiling the role of high-order anharmonicity in thermal expansion: A first-principles perspective
2
作者 Tianxu Zhang Kun Zhou +5 位作者 Yingjian Li Chenhao Yi Muhammad Faizan Yuhao Fu Xinjiang Wang Lijun Zhang 《Chinese Physics B》 2025年第4期212-219,共8页
Thermal expansion is crucial for various industrial processes and is increasingly the focus of research endeavors aimed at improving material performance.However,it is the continuous advancements in first-principles c... Thermal expansion is crucial for various industrial processes and is increasingly the focus of research endeavors aimed at improving material performance.However,it is the continuous advancements in first-principles calculations that have enabled researchers to understand the microscopic origins of thermal expansion.In this study,we propose a coefficient of thermal expansion(CTE)calculation scheme based on self-consistent phonon theory,incorporating the fourth-order anharmonicity.We selected four structures(Si,CaZrF_(6),SrTiO_(3),NaBr)to investigate high-order anharmonicity’s impact on their CTEs,based on bonding types.The results indicate that our method goes beyond the second-order quasi-harmonic approximation and the third-order perturbation theory,aligning closely with experimental data.Furthermore,we observed that an increase in the ionicity of the structures leads to a more pronounced influence of high-order anharmonicity on CTE,with this effect primarily manifesting in variations of the Grüneisen parameter.Our research provides a theoretical foundation for accurately predicting and regulating the thermal expansion behavior of materials. 展开更多
关键词 high-order anharmonicity Grüneisen parameter thermal expansion first-principles calculations
在线阅读 下载PDF
Iterated rational quadratic kernel-High-order unscented Kalman filtering algorithm for spacecraft tracking
3
作者 Xinru Liang Changsheng Gao +1 位作者 Wuxing Jing Ruoming An 《Defence Technology(防务技术)》 2025年第3期238-250,共13页
The high-speed development of space defense technology demands a high state estimation capacity for spacecraft tracking methods.However,reentry flight is accompanied by complex flight environments,which brings to the ... The high-speed development of space defense technology demands a high state estimation capacity for spacecraft tracking methods.However,reentry flight is accompanied by complex flight environments,which brings to the uncertain,complex,and strongly coupled non-Gaussian detection noise.As a result,there are several intractable considerations on the problem of state estimation tasks corrupted by complex non-Gaussian outliers for non-linear dynamics systems in practical application.To address these issues,a new iterated rational quadratic(RQ)kernel high-order unscented Kalman filtering(IRQHUKF)algorithm via capturing the statistics to break through the limitations of the Gaussian assumption is proposed.Firstly,the characteristic analysis of the RQ kernel is investigated in detail,which is the first attempt to carry out an exploration of the heavy-tailed characteristic and the ability on capturing highorder moments of the RQ kernel.Subsequently,the RQ kernel method is first introduced into the UKF algorithm as an error optimization criterion,termed the iterated RQ kernel-UKF(RQ-UKF)algorithm by derived analytically,which not only retains the high-order moments propagation process but also enhances the approximation capacity in the non-Gaussian noise problem for its ability in capturing highorder moments and heavy-tailed characteristics.Meanwhile,to tackle the limitations of the Gaussian distribution assumption in the linearization process of the non-linear systems,the high-order Sigma Points(SP)as a subsidiary role in propagating the state high-order statistics is devised by the moments matching method to improve the RQ-UKF.Finally,to further improve the flexibility of the IRQ-HUKF algorithm in practical application,an adaptive kernel parameter is derived analytically grounded in the Kullback-Leibler divergence(KLD)method and parametric sensitivity analysis of the RQ kernel.The simulation results demonstrate that the novel IRQ-HUKF algorithm is more robust and outperforms the existing advanced UKF with respect to the kernel method in reentry vehicle tracking scenarios under various noise environments. 展开更多
关键词 Kernel method Rational quadratic(RQ)kernel high-order sigma points SPACECRAFT Reentry vehicles
在线阅读 下载PDF
Observer-based robust high-order fully actuated attitude autopilot design for spinning glide-guided projectiles 被引量:2
4
作者 Wei Wang Yuchen Wang +2 位作者 Shiwei Chen Yongcang Guo Zhongjiao Shi 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第4期282-294,共13页
This paper investigates the design of an attitude autopilot for a dual-channel controlled spinning glideguided projectile(SGGP),addressing model uncertainties and external disturbances.Based on fixed-time stable theor... This paper investigates the design of an attitude autopilot for a dual-channel controlled spinning glideguided projectile(SGGP),addressing model uncertainties and external disturbances.Based on fixed-time stable theory,a disturbance observer with integral sliding mode and adaptive techniques is proposed to mitigate total disturbance effects,irrespective of initial conditions.By introducing an error integral signal,the dynamics of the SGGP are transformed into two separate second-order fully actuated systems.Subsequently,employing the high-order fully actuated approach and a parametric approach,the nonlinear dynamics of the SGGP are recast into a constant linear closed-loop system,ensuring that the projectile's attitude asymptotically tracks the given goal with the desired eigenstructure.Under the proposed composite control framework,the ultimately uniformly bounded stability of the closed-loop system is rigorously demonstrated via the Lyapunov method.Validation of the effectiveness of the proposed attitude autopilot design is provided through extensive numerical simulations. 展开更多
关键词 Spinning glide-guided projectile Attitude control Sliding mode disturbance observer Fixed-time stable theory high-order fully actuated approach
在线阅读 下载PDF
Tunable spectral continuous shift of high-order harmonic generation in atoms by a plasmon-assisted shaping pulse
5
作者 王源 李玉龙 +7 位作者 乔月 高娜 郭福明 陈洲 赫兰海 杨玉军 赵曦 王俊 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期433-440,共8页
We delve into the phenomenon of high-order harmonic generation within a helium atom under the influence of a plasmon-assisted shaping pulse.Our findings reveal an intriguing manipulation of the frequency peak position... We delve into the phenomenon of high-order harmonic generation within a helium atom under the influence of a plasmon-assisted shaping pulse.Our findings reveal an intriguing manipulation of the frequency peak position in the harmonic emission by adjusting the absolute phase parameter within the frequency domain of the shaping pulse.This phenomenon holds potential significance for experimental setups necessitating precisely tuned single harmonics.Notably,we observe a modulated shift in the created harmonic photon energy,spanning an impressive range of 1.2 eV.This frequency peak shift is rooted in the asymmetry exhibited by the rising and falling edges of the laser pulse,directly influencing the position of the peak frequency emission.Our study quantifies the dependence of this tuning range and the asymmetry of the laser pulse,offering valuable insights into the underlying mechanisms driving this phenomenon.Furthermore,our investigation uncovers the emergence of semi-integer order harmonics as the phase parameter is altered.We attribute this discovery to the intricate interference between harmonics generated by the primary and secondary return cores.This observation introduces an innovative approach for generating semi-integer order harmonics,thus expanding our understanding of high-order harmonic generation.Ultimately,our work contributes to the broader comprehension of complex phenomena in laser-matter interactions and provides a foundation for harnessing these effects in various applications,particularly those involving precise spectral control and the generation of unique harmonic patterns. 展开更多
关键词 high-order harmonic semi-integer-order spectra shift inhomogeneous field
在线阅读 下载PDF
Electron correlation in two-electron atoms:A Bohmian analysis of high-order harmonic generation in high-frequency domain
6
作者 Yang Song Shu Han +1 位作者 Yujun Yang Fuming Guo 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第12期249-257,共9页
In studying interactions between intense laser fields and atoms or molecules,the role of electron correlation effects on the dynamical response is an important and pressing issue to address.Utilizing Bohmian mechanics... In studying interactions between intense laser fields and atoms or molecules,the role of electron correlation effects on the dynamical response is an important and pressing issue to address.Utilizing Bohmian mechanics(BM),we have theoretically explored the two-electron correlation characteristics while generating high-order harmonics in xenon atoms subjected to intense laser fields.We initially employed Bohmian trajectories to reproduce the dynamics of the electrons and subsequently utilized time-frequency analysis spectra to ascertain the emission time windows for high-order harmonics.Within these time windows,we classified the nuclear region Bohmian trajectories and observed that intense high-order harmonics are solely generated when paired Bohmian particles(BPs)concurrently appear in the nuclear region and reside there for a duration within a re-collision time window.Furthermore,our analysis of characteristic trajectories producing high-order harmonics led us to propose a two-electron re-collision model to elucidate this phenomenon.The study demonstrates that intense high-order harmonics are only generated when both electrons are in the ground state within the re-collision time window.This work discusses the implications of correlation effects between two electrons and offers valuable insights for studying correlation in multi-electron high-order harmonic generation. 展开更多
关键词 Bohmian mechanics high-order harmonics generation two-electron atom
在线阅读 下载PDF
Elliptically polarized high-order harmonic generation of Ar atom in an intense laser field
7
作者 胡杰 王一琛 +6 位作者 景秋霜 姜威 王革文 赵逸文 肖礴 梁红静 马日 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期453-457,共5页
High-order harmonic generation(HHG) of Ar atom in an elliptically polarized intense laser field is experimentally investigated in this work.Interestingly,the anomalous ellipticity dependence on the laser ellipticity(... High-order harmonic generation(HHG) of Ar atom in an elliptically polarized intense laser field is experimentally investigated in this work.Interestingly,the anomalous ellipticity dependence on the laser ellipticity(ε) in the lower-order harmonics is observed,specifically in the 13rd-order,which displays a maximal harmonic intensity at ε ≈ 0.1,rather than at ε = 0 as expected.This contradicts the general trend of harmonic yield,which typically decreases with the increase of laser ellipticity.In this study,we attribute this phenomenon to the disruption of the symmetry of the wave function by the Coulomb effect,leading to the generation of a harmonic with high ellipticity.This finding provides valuable insights into the behavior of elliptically polarized harmonics and opens up a potential way for exploring new applications in ultrafast spectroscopy and light–matter interactions. 展开更多
关键词 high-order harmonic generation Coulomb effect elliptically polarized intense laser field
在线阅读 下载PDF
High-order Bragg forward scattering and frequency shift of low-frequency underwater acoustic field by moving rough sea surface
8
作者 莫亚枭 张朝金 +2 位作者 鹿力成 孙启航 马力 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期459-470,共12页
Acoustic scattering modulation caused by an undulating sea surface on the space-time dimension seriously affects underwater detection and target recognition.Herein,underwater acoustic scattering modulation from a movi... Acoustic scattering modulation caused by an undulating sea surface on the space-time dimension seriously affects underwater detection and target recognition.Herein,underwater acoustic scattering modulation from a moving rough sea surface is studied based on integral equation and parabolic equation.And with the principles of grating and constructive interference,the mechanism of this acoustic scattering modulation is explained.The periodicity of the interference of moving rough sea surface will lead to the interference of the scattering field at a series of discrete angles,which will form comb-like and frequency-shift characteristics on the intensity and the frequency spectrum of the acoustic scattering field,respectively,which is a high-order Bragg scattering phenomenon.Unlike the conventional Doppler effect,the frequency shifts of the Bragg scattering phenomenon are multiples of the undulating sea surface frequency and are independent of the incident sound wave frequency.Therefore,even if a low-frequency underwater acoustic field is incident,it will produce obvious frequency shifts.Moreover,under the action of ideal sinusoidal waves,swells,fully grown wind waves,unsteady wind waves,or mixed waves,different moving rough sea surfaces create different acoustic scattering processes and possess different frequency shift characteristics.For the swell wave,which tends to be a single harmonic wave,the moving rough sea surface produces more obvious high-order scattering and frequency shifts.The same phenomena are observed on the sea surface under fully grown wind waves,however,the frequency shift slightly offsets the multiple peak frequencies of the wind wave spectrum.Comparing with the swell and fully-grown wind waves,the acoustic scattering and frequency shift are not obvious for the sea surface under unsteady wind waves. 展开更多
关键词 high-order Bragg scattering frequency shift low-frequency acoustic field moving rough sea surface
在线阅读 下载PDF
High-order harmonic generation of ZnO crystals in chirped and static electric fields
9
作者 张玲玉 何永林 +5 位作者 谢卓璇 高芳艳 徐清芸 葛鑫磊 罗香怡 郭静 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期335-343,共9页
High harmonic generation in ZnO crystals under chirped single-color field and static electric field are investigated by solving the semiconductor Bloch equation(SBE). It is found that when the chirp pulse is introduce... High harmonic generation in ZnO crystals under chirped single-color field and static electric field are investigated by solving the semiconductor Bloch equation(SBE). It is found that when the chirp pulse is introduced, the interference structure becomes obvious while the harmonic cutoff is not extended. Furthermore, the harmonic efficiency is improved when the static electric field is included. These phenomena are demonstrated by the classical recollision model in real space affected by the waveform of laser field and inversion symmetry. Specifically, the electron motion in k-space shows that the change of waveform and the destruction of the symmetry of the laser field lead to the incomplete X-structure of the crystal-momentum-resolved(k-resolved) inter-band harmonic spectrum. Furthermore, a pre-acceleration process in the solid four-step model is confirmed. 展开更多
关键词 high-order harmonic generation the semiconductor Bloch equation k-resolved inter-band harmonic spectrum four-step semiclassical model
在线阅读 下载PDF
Arbitrary High-Order Fully-Decoupled Numerical Schemes for Phase-Field Models of Two-Phase Incompressible Flows
10
作者 Ruihan Guo Yinhua Xia 《Communications on Applied Mathematics and Computation》 EI 2024年第1期625-657,共33页
Due to the coupling between the hydrodynamic equation and the phase-field equation in two-phase incompressible flows,it is desirable to develop efficient and high-order accurate numerical schemes that can decouple the... Due to the coupling between the hydrodynamic equation and the phase-field equation in two-phase incompressible flows,it is desirable to develop efficient and high-order accurate numerical schemes that can decouple these two equations.One popular and efficient strategy is to add an explicit stabilizing term to the convective velocity in the phase-field equation to decouple them.The resulting schemes are only first-order accurate in time,and it seems extremely difficult to generalize the idea of stabilization to the second-order or higher version.In this paper,we employ the spectral deferred correction method to improve the temporal accuracy,based on the first-order decoupled and energy-stable scheme constructed by the stabilization idea.The novelty lies in how the decoupling and linear implicit properties are maintained to improve the efficiency.Within the framework of the spatially discretized local discontinuous Galerkin method,the resulting numerical schemes are fully decoupled,efficient,and high-order accurate in both time and space.Numerical experiments are performed to validate the high-order accuracy and efficiency of the methods for solving phase-field models of two-phase incompressible flows. 展开更多
关键词 Two-phase incompressible flows Fully-decoupled high-order accurate Linear implicit Spectral deferred correction method Local discontinuous Galerkin method
在线阅读 下载PDF
High-Order Fully Actuated System Models for Strict-Feedback Systems With Increasing Dimensions
11
作者 Xiang Xu Guang-Ren Duan 《IEEE/CAA Journal of Automatica Sinica》 CSCD 2024年第12期2451-2462,共12页
This paper mainly addresses control problems of strict-feedback systems(SFSs)with increasing dimensions.Compared with the commonly-considered SFSs where the subsystems have the same dimension,we aim to handle more com... This paper mainly addresses control problems of strict-feedback systems(SFSs)with increasing dimensions.Compared with the commonly-considered SFSs where the subsystems have the same dimension,we aim to handle more complex cases,i.e.,the subsystems in the considered SFSs are assumed to have increasing dimensions.By transforming the systems into highorder fully-actuated system(HOFAS)models,the stabilizing controllers can be directly given.Besides first-order SFSs,secondorder and high-order SFSs are also considered. 展开更多
关键词 Increasing dimensions high-order fully-actuated system nonlinear systems strict-feedback systems
在线阅读 下载PDF
High-Order Control Barrier Function-Based Safety Control of Constrained Robotic Systems:An Augmented Dynamics Approach
12
作者 Haijing Wang Jinzhu Peng +1 位作者 Fangfang Zhang Yaonan Wang 《IEEE/CAA Journal of Automatica Sinica》 CSCD 2024年第12期2487-2496,共10页
Although constraint satisfaction approaches have achieved fruitful results,system states may lose their smoothness and there may be undesired chattering of control inputs due to switching characteristics.Furthermore,i... Although constraint satisfaction approaches have achieved fruitful results,system states may lose their smoothness and there may be undesired chattering of control inputs due to switching characteristics.Furthermore,it remains a challenge when there are additional constraints on control torques of robotic systems.In this article,we propose a novel high-order control barrier function(HoCBF)-based safety control method for robotic systems subject to input-output constraints,which can maintain the desired smoothness of system states and reduce undesired chattering vibration in the control torque.In our design,augmented dynamics are introduced into the HoCBF by constructing its output as the control input of the robotic system,so that the constraint satisfaction is facilitated by HoCBFs and the smoothness of system states is maintained by the augmented dynamics.This proposed scheme leads to the quadratic program(QP),which is more user-friendly in implementation since the constraint satisfaction control design is implemented as an add-on to an existing tracking control law.The proposed closed-loop control system not only achieves the requirements of real-time capability,stability,safety and compliance,but also reduces undesired chattering of control inputs.Finally,the effectiveness of the proposed control scheme is verified by simulations and experiments on robotic manipulators. 展开更多
关键词 Augmented dynamics high-order control barrier function(HoCBF) input-output constraints quadratic program(QP) robotic systems
在线阅读 下载PDF
Time-varying spillovers in high-order moments among cryptocurrencies
13
作者 Asil Azimli 《Financial Innovation》 2024年第1期2070-2108,共39页
This study uses high-frequency(1-min)price data to examine the connectedness among the leading cryptocurrencies(i.e.Bitcoin,Ethereum,Binance,Cardano,Litecoin,and Ripple)at volatility and high-order(third and fourth or... This study uses high-frequency(1-min)price data to examine the connectedness among the leading cryptocurrencies(i.e.Bitcoin,Ethereum,Binance,Cardano,Litecoin,and Ripple)at volatility and high-order(third and fourth orders in this paper)moments based on skewness and kurtosis.The sample period is from February 10,2020,to August 20,2022,which captures a pandemic,wartime,cryptocurrency market crashes,and the full collapse of a stablecoin.Using a time-varying parameter vector autoregressive(TVP-VAR)connectedness approach,we find that the total dynamic connectedness throughout all realized estimators grows with the time frequency of the data.Moreover,all estimators are time dependent and affected by significant events.As an exception,the Russia-Ukraine War did not increase the total connectedness among cryptocurrencies.Analysis of third-and fourth-order moments reveals additional dynamics not captured by the second moments,highlighting the importance of analyzing higher moments when studying systematic crash and fat-tail risks in the cryptocurrency market.Additional tests show that rolling-window-based VAR models do not reveal these patterns.Regarding the directional risk transmissions,Binance was a consistent net transmitter in all three connectedness systems and it dominated the volatility connectedness network.In contrast,skewness and kurtosis connectedness networks were dominated by Litecoin and Bitcoin and Ripple were net shock receivers in all three networks.These findings are expected to serve as a guide for portfolio optimization,risk management,and policy-making practices. 展开更多
关键词 SPILLOVERS high-order moments SKEWNESS KURTOSIS Cryptocurrencies
在线阅读 下载PDF
Preventing Pressure Oscillations Does Not Fix Local Linear Stability Issues of Entropy-Based Split-Form High-Order Schemes 被引量:1
14
作者 Hendrik Ranocha Gregor J.Gassner 《Communications on Applied Mathematics and Computation》 2022年第3期880-903,共24页
Recently,it was discovered that the entropy-conserving/dissipative high-order split-form discontinuous Galerkin discretizations have robustness issues when trying to solve the sim-ple density wave propagation example ... Recently,it was discovered that the entropy-conserving/dissipative high-order split-form discontinuous Galerkin discretizations have robustness issues when trying to solve the sim-ple density wave propagation example for the compressible Euler equations.The issue is related to missing local linear stability,i.e.,the stability of the discretization towards per-turbations added to a stable base flow.This is strongly related to an anti-diffusion mech-anism,that is inherent in entropy-conserving two-point fluxes,which are a key ingredi-ent for the high-order discontinuous Galerkin extension.In this paper,we investigate if pressure equilibrium preservation is a remedy to these recently found local linear stability issues of entropy-conservative/dissipative high-order split-form discontinuous Galerkin methods for the compressible Euler equations.Pressure equilibrium preservation describes the property of a discretization to keep pressure and velocity constant for pure density wave propagation.We present the full theoretical derivation,analysis,and show corresponding numerical results to underline our findings.In addition,we characterize numerical fluxes for the Euler equations that are entropy-conservative,kinetic-energy-preserving,pressure-equilibrium-preserving,and have a density flux that does not depend on the pressure.The source code to reproduce all numerical experiments presented in this article is available online(https://doi.org/10.5281/zenodo.4054366). 展开更多
关键词 entropy conservation Kinetic energy preservation Pressure equilibrium preservation Compressible Euler equations Local linear stability Summation-by-parts
在线阅读 下载PDF
Preparation of FeCoNi medium entropy alloy from Fe^(3+)-Co^(2+)-Ni^(2+)solution system
15
作者 Zongyou Cheng Qing Zhao +3 位作者 Mengjie Tao Jijun Du Xingxi Huang Chengjun Liu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期92-101,共10页
In recent years,medium entropy alloys have become a research hotspot due to their excellent physical and chemical performances.By controlling reasonable elemental composition and processing parameters,the medium entro... In recent years,medium entropy alloys have become a research hotspot due to their excellent physical and chemical performances.By controlling reasonable elemental composition and processing parameters,the medium entropy alloys can exhibit similar properties to high entropy alloys and have lower costs.In this paper,a FeCoNi medium entropy alloy precursor was prepared via sol-gel and coprecipitation methods,respectively,and FeCoNi medium entropy alloys were prepared by carbothermal and hydrogen reduction.The phases and magnetic properties of FeCoNi medium entropy alloy were investigated.Results showed that FeCoNi medium entropy alloy was produced by carbothermal and hydrogen reduction at 1500℃.Some carbon was detected in the FeCoNi medium entropy alloy prepared by carbothermal reduction.The alloy prepared by hydrogen reduction was uniform and showed a relatively high purity.Moreover,the hydrogen reduction product exhibited better saturation magnetization and lower coercivity. 展开更多
关键词 medium entropy alloy SOL-GEL CO-PRECIPITATION carbothermal hydrogen reduction
在线阅读 下载PDF
High-Order Soliton Solutions and Hybrid Behavior for the (2 + 1)-Dimensional Konopelchenko-Dubrovsky Equations
16
作者 Xingying Li Yin Ji 《Journal of Applied Mathematics and Physics》 2024年第7期2452-2466,共15页
In this paper, the evolutionary behavior of N-solitons for a (2 + 1)-dimensional Konopelchenko-Dubrovsky equations is studied by using the Hirota bilinear method and the long wave limit method. Based on the N-soliton ... In this paper, the evolutionary behavior of N-solitons for a (2 + 1)-dimensional Konopelchenko-Dubrovsky equations is studied by using the Hirota bilinear method and the long wave limit method. Based on the N-soliton solution, we first study the evolution from N-soliton to T-order (T=1,2) breather wave solutions via the paired-complexification of parameters, and then we get the N-order rational solutions, M-order (M=1,2) lump solutions, and the hybrid behavior between a variety of different types of solitons combined with the parameter limit technique and the paired-complexification of parameters. Meanwhile, we also provide a large number of three-dimensional figures in order to better show the degeneration of the N-soliton and the interaction behavior between different N-solitons. 展开更多
关键词 Konopelchenko-Dubrovsky Equations Hirota Bilinear Method M-Order Lump Solutions high-order Hybrid Solutions Interaction Behavior
在线阅读 下载PDF
Generation of tunable high-order Laguerre– Gaussian petal-like modes from a mid-infrared optical vortex parametric oscillator
17
作者 Yuxia Zhou Xining Yang +4 位作者 Jianqiang Ye Yuanyuan Ma Ying Wan Jianxiang Wen Taximaiti Yusufu 《Advanced Photonics Nexus》 2024年第3期113-119,共7页
High-order Laguerre–Gaussian(LG)petal-like beams have become a topic of significant interest due to their potential application in next-generation optical trapping,quantum optics,and materials processing technologies... High-order Laguerre–Gaussian(LG)petal-like beams have become a topic of significant interest due to their potential application in next-generation optical trapping,quantum optics,and materials processing technologies.In this work,we demonstrate the generation of high-order LG beams with petal-like spatial profiles and tunable orbital angular momentum(OAM)in the mid-infrared wavelength region.These beams are generated using idler-resonant optical parametric oscillation(OPO)in a KTiOAsO_(4)(KTA)crystal.By adjusting the length of the resonant cavity,the OAM of the mid-infrared idler field can be tuned and we demonstrate tuning in the range of 0 to10.When using a maximum pump energy of 20.2 mJ,the maximum output energy of high-order modes LG_(0.45),LG_(0.48),and LG_(0.410) were 0.8,0.53,and 0.46 mJ,respectively.The means by which high-order LG modes with petal-like spatial profiles and tunable OAM were generated from the OPO is theoretically modeled by examining the spatial overlap efficiency of the beam waists of the pump and resonant idler fields within the center of the KTA crystal.The methodology presented in this work offers a simple and flexible method to wavelength-convert laser emission and generate high-order LG modes. 展开更多
关键词 high-order Laguerre-Gaussian petal-like modes optical parametric oscillator nonlinear optics KTiOAsO_(4) optical vortices.
在线阅读 下载PDF
The Story of High Entropy Alloys: From the Immiscible to the Miscible States in Alloys—The Entropy versus the Enthalpy Alloys
18
作者 Swe-Kai Chen 《Journal of Modern Physics》 2025年第1期1-5,共5页
The role of entropy and enthalpy plays an essential key for the formation of an alloy. This paper illustrates how an alloy is to form and what and why the properties of the alloy are going to have by the entropy and e... The role of entropy and enthalpy plays an essential key for the formation of an alloy. This paper illustrates how an alloy is to form and what and why the properties of the alloy are going to have by the entropy and enthalpy effects via a designed enthalpy-entropy plane (EE-plane) based on the Gibbs free energy equation and the introducing a charactering pseudo-unitary lattice (PUL) for entropy alloys. Based on the PUL scheme, the so-called four effects in high entropy alloys are simply nothing but the entropy effect with the other three accompanying effects: the distortion, slow diffusion and cocktail effects. 展开更多
关键词 EE-Plane Pseudo-Unitary Lattice (PUL) High entropy Alloy Four Effects entropy Alloys Enthalpy Alloys Solubility Solid Solution
在线阅读 下载PDF
A high entropy stabilized perovskite oxide La_(0.2)Pr_(0.2)Sm_(0.2)Gd_(0.2)Sr_(0.2)Co_(0.8)Fe_(0.2)O_(3−δ)as a promising air electrode for reversible solid oxide cells
19
作者 LI Ruoyu LI Xiaoyu +2 位作者 ZHANG Jinke GAO Yuan LING Yihan 《燃料化学学报(中英文)》 北大核心 2025年第2期282-290,共9页
Reversible solid oxide cell(RSOC)is a new energy conversion device with significant applications,especially for power grid peaking shaving.However,the reversible conversion process of power generation/energy storage p... Reversible solid oxide cell(RSOC)is a new energy conversion device with significant applications,especially for power grid peaking shaving.However,the reversible conversion process of power generation/energy storage poses challenges for the performance and stability of air electrodes.In this work,a novel high-entropy perovskite oxide La_(0.2)Pr_(0.2)Gd_(0.2)Sm_(0.2)Sr_(0.2)Co_(0.8)Fe_(0.2)O_(3−δ)(HE-LSCF)is proposed and investigated as an air electrode in RSOC.The electrochemical behavior of HE-LSCF was studied as an air electrode in both fuel cell and electrolysis modes.The polarization impedance(Rp)of the HE-LSCF electrode is only 0.25Ω·cm^(2) at 800℃ in an air atmosphere.Notably,at an electrolytic voltage of 2 V and a temperature of 800℃,the current density reaches up to 1.68 A/cm^(2).The HE-LSCF air electrode exhibited excellent reversibility and stability,and its electrochemical performance remains stable after 100 h of reversible operation.With these advantages,HE-LSCF is shown to be an excellent air electrode for RSOC. 展开更多
关键词 reversible solid oxide cell high entropy stabilized perovskite air electrode electrochemical performance
在线阅读 下载PDF
Superconductivity in Medium-Entropy Alloys:Nb_(2)TiW and Nb_(2)TiMo
20
作者 Kuan Li Cui-Qun Chen +7 位作者 Lingyong Zeng Longfu Li Rui Chen Peifeng Yu Kangwang Wang Zaichen Xiang Dao-Xin Yao Huixia Luo 《Chinese Physics Letters》 2025年第1期163-176,共14页
This paper describes the synthesis and characterization of Nb_(2)TiW and Nb_(2)TiMo medium-entropy alloys(MEAs).The Nb_(2)TiW and Nb_(2)TiMo MEAs were successfully synthesized using the arc-melting method.Their struct... This paper describes the synthesis and characterization of Nb_(2)TiW and Nb_(2)TiMo medium-entropy alloys(MEAs).The Nb_(2)TiW and Nb_(2)TiMo MEAs were successfully synthesized using the arc-melting method.Their structures and superconducting properties were investigated through detailed characterization using X-ray diffraction(XRD),resistivity,magnetization,and specific heat measurements.The XRD results confirmed that the obtained Nb_(2)TiW and Nb_(2)TiMo compounds have the same body-centered cubic(BCC)structure and crystallize in the Imˉ3m space group(number 229).Experimental results showed that the superconducting transition temperatures(Tcs)of Nb_(2)TiW and Nb_(2)TiMo are approximately 4.86 and 3.22 K,respectively.The upper and lower critical fields of Nb_(2)TiW are 3.52(2)T and 53.36(2)Oe,respectively,and those of Nb_(2)TiMo are 2.11(2)T and 68.23(3)Oe,respectively.First-principles calculations revealed that the d electrons of Nb,Ti,andMo orW are the dominant contributors to the density of states near the Fermi level.Specific heat measurement results indicated that Nb_(2)TiW and Nb_(2)TMo exhibit BCS full-gap s-wave superconductivity. 展开更多
关键词 entropy RESISTIVITY MAGNETIZATION
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部