In this paper, the factors to influence the dynamic heat - moisture comfort of summer clothing fabrics have been studied. It is pointed out that, when the wind speed outside is high, or the air permeability is very go...In this paper, the factors to influence the dynamic heat - moisture comfort of summer clothing fabrics have been studied. It is pointed out that, when the wind speed outside is high, or the air permeability is very good, the sweat of human body will evaporate mainly through turbulent diffusion. Because of the rapid sweat evaporation, human body will feel cold, and then, the difference in temperature and humidity of the micro - climatic section will be very slight. On the contrary, when the wind speed outside is slow or the air permeability is unsatisfactory, the sweat of human body will evaporate mainly through molecular diffusion, and in this case, the humidity of the micro - climatic section will be depended on the hygroscopicity of the fabric, that’ s to say, the better the hygroscopicity, the lower the humidity. It is difficult for pure wool fabric to loss heat because of its giving out much heat during the course of moisture - absorption in the initial stages of sweating. For pure polyester fabric,展开更多
The Grand Shangri-La(GSL) region has strong international tourist appeal. GSL has considerable international eco-tourist potential as well as being attractive for leisure, vacation, health, explorative, and scientific...The Grand Shangri-La(GSL) region has strong international tourist appeal. GSL has considerable international eco-tourist potential as well as being attractive for leisure, vacation, health, explorative, and scientific research activities in addition to high-end tourism experiences. These factors could promote the development of its regional tourism. GSL has been identified as a key area for tourism development in China. In this study, we investigated tourism climate conditions in GSL from 1980 to 2016 using a tourism climate index(TCI). We found that through global warming, the number of annual and monthly good-weather days, as assessed with the TCI, showed an increase over most of GSL;that trend was especially true for very good, excellent, and ideal days. The optimal travel period was May–October. We obtained the same result using cluster heat maps, in which we categorized 31 studied meteorological stations into eight types. However, heavy rainfall tended to occur during that optimal period, and it was concentrated at certain times. The annual total number of comfortable days greater than 300 was mainly located in southern GSL. We observed significant correlations between monthly and annual excellent and ideal days with latitude and elevation;in particular, we identified a significant nonlinear correlation between excellent(and ideal) days and elevation.展开更多
A thermal stress index of a geographic location over a period of time can provide knowledge of overall climate perceptible to the general public. Out of the three approaches to assessing thermal comfort namely, ration...A thermal stress index of a geographic location over a period of time can provide knowledge of overall climate perceptible to the general public. Out of the three approaches to assessing thermal comfort namely, rational, empirical and direct, the direct approach is being used in the present study because of easy availability of all inputs and reasonable comprehension of the assessments. Assessment and ranking of cities using this approach based on the percentage of comfortable hours alone may however be erroneous and misleading as this approach does not consider the percentages of uncomfortable classes which could often be substantially high. The modified approach for thermal comfort classification demonstrates cumulative representation of all classes of thermal comfort including uncomfortablity and provides relative ranking of cities. Analysis of the results is presented here for five megacities (Delhi, Mumbai, Chennai, Kolkata and Hyderabad) representing varying geographical and climatic locations of India. These cities are ranked based on the routine and modified approaches and results are discussed in detail on monthly, seasonal and annual average basis. When the cities are compared only on the basis of comfortable hours, the decreasing order of comfortability is Hyderabad, Kolkata, Delhi, Chennai and Mumbai. However, considering the second methodology, it is revealed that the contribution of uncomfortable hours is greater in Kolkata and Chennai in comparison to Mumbai. The proposed methodology could be an improvement over the current practices and provides a more rational method for relative ranking of cities that could be used for tourism and energy demands.展开更多
It is well known that one unit of electrical energy saved is equal to more than two units produced. One way of economizing the power is utilization of energy efficient systems at all locations. In the present study, t...It is well known that one unit of electrical energy saved is equal to more than two units produced. One way of economizing the power is utilization of energy efficient systems at all locations. In the present study, the air conditioning system is analysed and an innovative way is suggested. We use natural low temperature of shallow sub surface (1 - 3 m) of the earth—geothermal cooling system. It is known that majority of the households and the apartment complexes in India have two tanks for water storage. One is the underground water sump and the other is the overhead water tank. In our study, we use these two water storage systems for space cooling during summer and also for heating during winter. The main aim of our paper is air-conditioning of the space in an economic way to save electricity. It is based on a simple idea of transferring the low temperature from underground water sump to the room in the house using water as a mode of transport. Since India is a tropical country located at low latitude, most of the year, the air temperature is high and demands space cooling. However, for a couple of months during severe winter months (Dec.-Jan.) at Ahmedabad, heating of the space is required. For heating the space, we suggest to use the well-known solar water heater. Effective use of heat exchanger is shown through computation, modelling schemes and lab experiment. We recommend geothermal cooling for 10 months in a year and solar hot water system during 2 months of winter. It is observed that the ambient air temperature of 35°C - 40°C in the room can be brought down to 26°C without much consumption of electricity. In a similar manner, the room temperature at night (13°C) during winter in Ahmedabad can be increased to 27°C through circulation of water from solar water heater in the heat exchanger.展开更多
The main aim of this paper is to study the effect of building envelope constructed with different materials on thermal comfort of buildings located in Jeddah, Saudi Arabia. Four different buildings constructed with br...The main aim of this paper is to study the effect of building envelope constructed with different materials on thermal comfort of buildings located in Jeddah, Saudi Arabia. Four different buildings constructed with brick, glass, stone, and gypsum are taken into account to study the difference in temperature of the indoor and outdoor environments. Also, this paper explores the heat conducted by walls of different materials with different thicknesses. In addition, survey is conducted among the residents of Jeddah to know their perspective about thermal comfort of buildings. From the study, it is found that building envelope constructed with glass is more effective compared to envelope constructed with other materials of with least thickness of wall. Also, it is found that the envelope constructed with brick is more effective in absorbing the heat provided the thickness of the walls remains the same.展开更多
为分析热防护材料领域研究现状和未来发展趋势,文章采用信息可视化、网络分析的研究方法,以Web of Science(WOS)数据库及中国知网(CNKI)数据库中近30年(1993年1月—2023年6月)热防护材料相关的文献作为数据来源绘制可视化信息图谱,对发...为分析热防护材料领域研究现状和未来发展趋势,文章采用信息可视化、网络分析的研究方法,以Web of Science(WOS)数据库及中国知网(CNKI)数据库中近30年(1993年1月—2023年6月)热防护材料相关的文献作为数据来源绘制可视化信息图谱,对发文量、发文国家地区和机构、研究方向、核心作者、关键词等元素逐一进行分析,剖析热防护材料研究领域的发展动态、研究热点及前沿趋势。结果显示,美国、中国为主要研究国家,在该领域居重要地位;LI J(Li Jun)、SONG G W(Song Guowen)、SU Y(Su Yun)、LU Y H(Lu Yehu)、王云仪、朱方龙等作者为该领域的核心作者,在热应激、热防护服的研究中具有重要影响力;热防护服的热防护性与传热机制、人体的热生理与热舒适为活跃的研究主题与研究热点;相变材料、气凝胶、形状记忆织物、蜂窝夹芯织物、三维间隔织物为当前的研究热点材料,新型热防护材料的研发、服装内部结构的优化是未来研究中有效应对热应激的解决方法,是兼顾热防护服的热防护与热舒适平衡的重要途径。展开更多
文摘In this paper, the factors to influence the dynamic heat - moisture comfort of summer clothing fabrics have been studied. It is pointed out that, when the wind speed outside is high, or the air permeability is very good, the sweat of human body will evaporate mainly through turbulent diffusion. Because of the rapid sweat evaporation, human body will feel cold, and then, the difference in temperature and humidity of the micro - climatic section will be very slight. On the contrary, when the wind speed outside is slow or the air permeability is unsatisfactory, the sweat of human body will evaporate mainly through molecular diffusion, and in this case, the humidity of the micro - climatic section will be depended on the hygroscopicity of the fabric, that’ s to say, the better the hygroscopicity, the lower the humidity. It is difficult for pure wool fabric to loss heat because of its giving out much heat during the course of moisture - absorption in the initial stages of sweating. For pure polyester fabric,
基金supported by the National Natural Science Foundation of China (Grant No. 41571516, 41471448)the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA19040503, XDA19040504)
文摘The Grand Shangri-La(GSL) region has strong international tourist appeal. GSL has considerable international eco-tourist potential as well as being attractive for leisure, vacation, health, explorative, and scientific research activities in addition to high-end tourism experiences. These factors could promote the development of its regional tourism. GSL has been identified as a key area for tourism development in China. In this study, we investigated tourism climate conditions in GSL from 1980 to 2016 using a tourism climate index(TCI). We found that through global warming, the number of annual and monthly good-weather days, as assessed with the TCI, showed an increase over most of GSL;that trend was especially true for very good, excellent, and ideal days. The optimal travel period was May–October. We obtained the same result using cluster heat maps, in which we categorized 31 studied meteorological stations into eight types. However, heavy rainfall tended to occur during that optimal period, and it was concentrated at certain times. The annual total number of comfortable days greater than 300 was mainly located in southern GSL. We observed significant correlations between monthly and annual excellent and ideal days with latitude and elevation;in particular, we identified a significant nonlinear correlation between excellent(and ideal) days and elevation.
文摘A thermal stress index of a geographic location over a period of time can provide knowledge of overall climate perceptible to the general public. Out of the three approaches to assessing thermal comfort namely, rational, empirical and direct, the direct approach is being used in the present study because of easy availability of all inputs and reasonable comprehension of the assessments. Assessment and ranking of cities using this approach based on the percentage of comfortable hours alone may however be erroneous and misleading as this approach does not consider the percentages of uncomfortable classes which could often be substantially high. The modified approach for thermal comfort classification demonstrates cumulative representation of all classes of thermal comfort including uncomfortablity and provides relative ranking of cities. Analysis of the results is presented here for five megacities (Delhi, Mumbai, Chennai, Kolkata and Hyderabad) representing varying geographical and climatic locations of India. These cities are ranked based on the routine and modified approaches and results are discussed in detail on monthly, seasonal and annual average basis. When the cities are compared only on the basis of comfortable hours, the decreasing order of comfortability is Hyderabad, Kolkata, Delhi, Chennai and Mumbai. However, considering the second methodology, it is revealed that the contribution of uncomfortable hours is greater in Kolkata and Chennai in comparison to Mumbai. The proposed methodology could be an improvement over the current practices and provides a more rational method for relative ranking of cities that could be used for tourism and energy demands.
文摘It is well known that one unit of electrical energy saved is equal to more than two units produced. One way of economizing the power is utilization of energy efficient systems at all locations. In the present study, the air conditioning system is analysed and an innovative way is suggested. We use natural low temperature of shallow sub surface (1 - 3 m) of the earth—geothermal cooling system. It is known that majority of the households and the apartment complexes in India have two tanks for water storage. One is the underground water sump and the other is the overhead water tank. In our study, we use these two water storage systems for space cooling during summer and also for heating during winter. The main aim of our paper is air-conditioning of the space in an economic way to save electricity. It is based on a simple idea of transferring the low temperature from underground water sump to the room in the house using water as a mode of transport. Since India is a tropical country located at low latitude, most of the year, the air temperature is high and demands space cooling. However, for a couple of months during severe winter months (Dec.-Jan.) at Ahmedabad, heating of the space is required. For heating the space, we suggest to use the well-known solar water heater. Effective use of heat exchanger is shown through computation, modelling schemes and lab experiment. We recommend geothermal cooling for 10 months in a year and solar hot water system during 2 months of winter. It is observed that the ambient air temperature of 35°C - 40°C in the room can be brought down to 26°C without much consumption of electricity. In a similar manner, the room temperature at night (13°C) during winter in Ahmedabad can be increased to 27°C through circulation of water from solar water heater in the heat exchanger.
文摘The main aim of this paper is to study the effect of building envelope constructed with different materials on thermal comfort of buildings located in Jeddah, Saudi Arabia. Four different buildings constructed with brick, glass, stone, and gypsum are taken into account to study the difference in temperature of the indoor and outdoor environments. Also, this paper explores the heat conducted by walls of different materials with different thicknesses. In addition, survey is conducted among the residents of Jeddah to know their perspective about thermal comfort of buildings. From the study, it is found that building envelope constructed with glass is more effective compared to envelope constructed with other materials of with least thickness of wall. Also, it is found that the envelope constructed with brick is more effective in absorbing the heat provided the thickness of the walls remains the same.
文摘为分析热防护材料领域研究现状和未来发展趋势,文章采用信息可视化、网络分析的研究方法,以Web of Science(WOS)数据库及中国知网(CNKI)数据库中近30年(1993年1月—2023年6月)热防护材料相关的文献作为数据来源绘制可视化信息图谱,对发文量、发文国家地区和机构、研究方向、核心作者、关键词等元素逐一进行分析,剖析热防护材料研究领域的发展动态、研究热点及前沿趋势。结果显示,美国、中国为主要研究国家,在该领域居重要地位;LI J(Li Jun)、SONG G W(Song Guowen)、SU Y(Su Yun)、LU Y H(Lu Yehu)、王云仪、朱方龙等作者为该领域的核心作者,在热应激、热防护服的研究中具有重要影响力;热防护服的热防护性与传热机制、人体的热生理与热舒适为活跃的研究主题与研究热点;相变材料、气凝胶、形状记忆织物、蜂窝夹芯织物、三维间隔织物为当前的研究热点材料,新型热防护材料的研发、服装内部结构的优化是未来研究中有效应对热应激的解决方法,是兼顾热防护服的热防护与热舒适平衡的重要途径。