期刊文献+
共找到1,346篇文章
< 1 2 68 >
每页显示 20 50 100
CNOOC Harvests in Cooperation withForeign Firms in 1996
1
《China Oil & Gas》 CAS 1997年第2期115-115,共1页
关键词 CNOOC harvests in Cooperation withForeign Firms in 1996
在线阅读 下载PDF
Evaluation of Sweet Sorghum as a Feedstock by Multiple Harvests for Sustainable Bioenergy Production 被引量:1
2
作者 Mingli Wang Zhanguo Xin +7 位作者 Brandon Tonnis Glenn Farrell David Pinnow Zhenbang Chen Jerry Davis Jianming Yu Yen-Con Hung Gary A. Pederson 《Journal of Sustainable Bioenergy Systems》 2012年第4期122-137,共16页
Sweet sorghum has become an important feedstock for bioethanol production. Total sugar yield and multiple harvests can directly affect ethanol production cost. Little is known about stem traits and multiple harvests t... Sweet sorghum has become an important feedstock for bioethanol production. Total sugar yield and multiple harvests can directly affect ethanol production cost. Little is known about stem traits and multiple harvests that contribute to sugar yield in sweet sorghum. Stem traits were evaluated from 25 sweet and grain sorghum accessions. Stems were harvested twice at the soft-dough stage and the stems were pressed with a hydraulic press. Sugars in the stem juice were quantified by high performance liquid chromatography. Sweet sorghum produced five times more fresh stem weight and dry stem mass (830 gand164 g) than grain sorghum (150 gand27g). Sweet sorghum produced a much higher volume of juice and higher yield of sugars (366 ml and42 g) per stem than grain sorghum (70 ml and4 g). Significant variability in fresh stem weight (72 - 1837 g), juice volume (31 - 753 ml), sugar yield (3 - 81 g), dry stem mass (14 - 383 g), and sugar yield/dry stem mass ratio (0.11 - 0.53) per stem was detected among sweet sorghum accessions. Stem sugar yield was significantly correlated with stem fresh weight and juice volume. Sorghum was harvested twice within one growing season resulting in some sweet sorghum accessions producing double amount of sugars. Sweet sorghum produced three times more dry mass weight (bagasse) than fermentable sugar weight. To reduce feedstock cost, methods have to be developed for efficiently utilizing bagasse. Our results showed high fresh stem weight, high ratio of sugar yield to dry stem mass, and double harvests are prime traits to boost sugar yield. Sweet sorghum may be suitable for multiple harvests in certain regions of theU.S.TheU.S.sweet sorghum collection needs to be screened for acces- sions that can be harvested twice with an extended feedstock-production season and used as a feedstock for sustainable and renewable bioenergy production. 展开更多
关键词 Sorghum Fresh STEM Weight Juice Volume Sugar Yield Dry STEM Mass Hydraulic Press (HP) High Performance Liquid Chromatography (HPLC) MULTIPLE Harvest BAGASSE SUSTAINABLE BIOENERGY Production
在线阅读 下载PDF
Transmission of climate change impacts from temperature change to grain harvests, famines and peasant uprisings in the historical China 被引量:15
3
作者 FANG XiuQi SU Yun +1 位作者 YIN Jun TENG JingChao 《Science China Earth Sciences》 SCIE EI CAS CSCD 2015年第8期1427-1439,共13页
Because of the complexity of social responses to climate change,as well as limitations of proxy data concerning interactions between climate change and human responses,the social impacts of past climate change and ass... Because of the complexity of social responses to climate change,as well as limitations of proxy data concerning interactions between climate change and human responses,the social impacts of past climate change and associated response mechanisms,thus,require further investigation.To shed light on the transmission of climate change impacts within historical Chinese society,we selected 30-year resolution sequences of temperature anomalies in eastern China and 10-year resolution sequences of grain harvest grades,famine indices,and frequencies of peasant uprisings in China over the past 2000 years.Using a food security perspective,we analyzed the impacts of temperature changes historically transmitted through Chinese production,population,and social subsystems,and differences in transmission characteristics between cold and warm units.Our results were as follows.(1)From 210 BC to 1910 AD,temperature changes in China were significantly positively correlated with grain harvest grades(correlation coefficient,0.338),and significantly negatively correlated with famine indices,and frequencies of peasant uprisings(correlation coefficients,-0.301 and-0.277,respectively).The correlation coefficients between famine indices and grain harvest grades or frequencies of peasant uprisings were very low.(2)There was a higher proportion of bumper or normal harvests(86.5%of the total decades),more moderate and mild famines(76%),and a lower proportion of peasant uprisings(33.3%)in the 30-year warm units.Conversely,there was a higher proportion of poor or normal harvests(70.7%),a greater proportion of moderate and severe famines(77.6%),and more peasant uprisings(51.7%)in the 30-year cold units.(3)Of the 23 main transmission pathways extending from temperature change to the social subsystem,13 occurred in cold units,of which 7 had an endpoint of peasant uprisings,and 10 occurred in warm units of which 3 had an endpoint of peasant uprisings.The main transmission pathways that were more likely to be associated with the impacts of temperature change were:Cold→poor harvests→severe famines→more uprisings;cold→poor harvests→moderate famines→more uprisings;warm→bumper harvests→mild famines→no uprisings;warm→bumper harvests→moderate harvests→no uprisings;warm→normal harvests→mild famines→no uprisings;and warm→normal harvests→moderate famines→no uprisings.(4)The transmission of the impacts of temperature change was a complex process.Within this process,famine was most prone to being modulated by human society.In the transmission pathways from the production to the social subsystem,there was a stepwise decrease in the occurrence rate of decades that were probably affected by climate change.In all cold units,10.4%of decades ending in more uprisings were most likely to be associated with the impacts of temperature change.In all warm units,47.9%of decades ending in no uprisings were most likely to be associated with the impacts of temperature change.This research can contribute a better understanding on the past interaction mechanisms and processes within the human-climate-ecosystem complex,as well as a better response to the impacts of the ongoing climate change. 展开更多
关键词 chain of climate change impacts grain harvests famines peasant uprisings historical Chinese society
原文传递
MXene Hybridized Polymer with Enhanced Electromagnetic Energy Harvest for Sensitized Microwave Actuation and Self‑Powered Motion Sensing
4
作者 Yu‑Ze Wang Yu‑Chang Wang +3 位作者 Ting‑Ting Liu Quan‑Liang Zhao Chen‑Sha Li Mao‑Sheng Cao 《Nano-Micro Letters》 SCIE EI CAS 2025年第3期265-279,共15页
Polymeric microwave actuators combining tissue-like softness with programmablemicrowave-responsive deformation hold great promise for mobile intelligentdevices and bionic soft robots. However, their application is cha... Polymeric microwave actuators combining tissue-like softness with programmablemicrowave-responsive deformation hold great promise for mobile intelligentdevices and bionic soft robots. However, their application is challenged by restricted electromagneticsensitivity and intricate sensing coupling. In this study, a sensitized polymericmicrowave actuator is fabricated by hybridizing a liquid crystal polymer with Ti3C2Tx(MXene). Compared to the initial counterpart, the hybrid polymer exhibits unique spacechargepolarization and interfacial polarization, resulting in significant improvements of230% in the dielectric loss factor and 830% in the apparent efficiency of electromagneticenergy harvest. The sensitized microwave actuation demonstrates as the shortenedresponse time of nearly 10 s, which is merely 13% of that for the initial shape memory polymer. Moreover, the ultra-low content of MXene (upto 0.15 wt%) benefits for maintaining the actuation potential of the hybrid polymer. An innovative self-powered sensing prototype that combinesdriving and piezoelectric polymers is developed, which generates real-time electric potential feedback (open-circuit potential of ~ 3 mV) duringactuation. The polarization-dominant energy conversion mechanism observed in the MXene-polymer hybrid structure furnishes a new approachfor developing efficient electromagnetic dissipative structures and shows potential for advancing polymeric electromagnetic intelligent devices. 展开更多
关键词 Microwave absorption Electromagnetic response Energy harvest SELF-SENSING Soft actuator
在线阅读 下载PDF
Defect Engineering with Rational Dopants Modulation for High‑Temperature Energy Harvesting in Lead‑Free Piezoceramics
5
作者 Kaibiao Xi Jianzhe Guo +2 位作者 Mupeng Zheng Mankang Zhu Yudong Hou 《Nano-Micro Letters》 SCIE EI CAS 2025年第3期87-101,共15页
High temperature piezoelectric energy harvester(HTPEH)is an important solution to replace chemical battery to achieve independent power supply of HT wireless sensors.However,simultaneously excellent performances,inclu... High temperature piezoelectric energy harvester(HTPEH)is an important solution to replace chemical battery to achieve independent power supply of HT wireless sensors.However,simultaneously excellent performances,including high figure of merit(FOM),insulation resistivity(ρ)and depolarization temperature(Td)are indispensable but hard to achieve in lead-free piezoceramics,especially operating at 250°C has not been reported before.Herein,well-balanced performances are achieved in BiFeO3–BaTiO3 ceramics via innovative defect engineering with respect to delicate manganese doping.Due to the synergistic effect of enhancing electrostrictive coefficient by polarization configuration optimization,regulating iron ion oxidation state by high valence manganese ion and stabilizing domain orientation by defect dipole,comprehensive excellent electrical performances(Td=340°C,ρ250°C>10^(7)Ωcm and FOM_(250°C)=4905×10^(–15)m^(2)N^(−1))are realized at the solid solubility limit of manganese ions.The HT-PEHs assembled using the rationally designed piezoceramic can allow for fast charging of commercial electrolytic capacitor at 250°C with high energy conversion efficiency(η=11.43%).These characteristics demonstrate that defect engineering tailored BF-BT can satisfy high-end HT-PEHs requirements,paving a new way in developing selfpowered wireless sensors working in HT environments. 展开更多
关键词 Lead-free piezoceramic Defect engineering Dopants modulation High-temperature Piezoelectric energy harvester
在线阅读 下载PDF
Moment analysis of bio-inspired stochastic energy harvesters under wind conditions
6
作者 WANG Kang-Ning HUANG Dong-Mei HAN Jia-Le 《四川大学学报(自然科学版)》 北大核心 2025年第1期246-256,共11页
To further understand the performance of the energy harvesters under the influence of the wind force and the random excitation,this paper investigates the stochastic response of the bio-inspired energy harvesters subj... To further understand the performance of the energy harvesters under the influence of the wind force and the random excitation,this paper investigates the stochastic response of the bio-inspired energy harvesters subjected to Gaussian white noise and galloping excitation,simulating the flapping pattern of a seagull and its interaction with wind force.The equivalent linearization method is utilized to convert the original nonlinear model into the Itôstochastic differential equation by minimizing the mean squared error.Then,the second-order steady-state moments about the displacement,velocity,and voltage are derived by combining the moment analysis theory.The theoretical results are simulated numerically to analyze the stochastic response performance under different noise intensities,wind speeds,stiffness coefficients,and electromechanical coupling coefficients,time domain analysis is also conducted to study the performance of the harvester with different parameters.The results reveal that the mean square displacement and voltage increase with increasing the noise intensity and wind speed,larger absolute values of stiffness coefficient correspond to smaller mean square displacement and voltage,and larger electromechanical coupling coefficients can enhance the mean square voltage.Finally,the influence of wind speed and electromechanical coupling coefficient on the stationary probability density function(SPDF)is investigated,revealing the existence of a bimodal distribution under varying environmental conditions. 展开更多
关键词 Bio-inspired energy harvesters Gaussian white noise Equivalent linearization method Steadystate moment
在线阅读 下载PDF
Optimizing bone marrow harvesting sites for enhanced mesenchymal stem cell yield and efficacy in knee osteoarthritis treatment
7
作者 Arulkumar Nallakumarasamy Sandeep Shrivastava +4 位作者 Ravi Velamoor Rangarajan Naveen Jeyaraman Avinash Gandi Devadas Swaminathan Ramasubramanian Madhan Jeyaraman 《World Journal of Methodology》 2025年第2期92-107,共16页
Knee osteoarthritis(OA)is a debilitating condition with limited long-term treatment options.The therapeutic potential of mesenchymal stem cells(MSCs),particularly those derived from bone marrow aspirate concentrate,ha... Knee osteoarthritis(OA)is a debilitating condition with limited long-term treatment options.The therapeutic potential of mesenchymal stem cells(MSCs),particularly those derived from bone marrow aspirate concentrate,has garnered attention for cartilage repair in OA.While the iliac crest is the traditional site for bone marrow harvesting(BMH),associated morbidity has prompted the exploration of alternative sites such as the proximal tibia,distal femur,and proximal humerus.This paper reviews the impact of different harvesting sites on mesenchymal stem cell(MSC)yield,viability,and regenerative potential,emphasizing their relevance in knee OA treatment.The iliac crest consistently offers the highest MSC yield,but alternative sites within the surgical field of knee procedures offer comparable MSC characteristics with reduced morbidity.The integration of harvesting techniques into existing knee surgeries,such as total knee arthroplasty,provides a less invasive approach while maintaining thera-peutic efficacy.However,variability in MSC yield from these alternative sites underscores the need for further research to standardize techniques and optimize clinical outcomes.Future directions include large-scale comparative studies,advanced characterization of MSCs,and the development of personalized harvesting strategies.Ultimately,the findings suggest that optimizing the site of BMH can significantly influence the quality of MSC-based therapies for knee OA,enhancing their clinical utility and patient outcomes. 展开更多
关键词 KNEE OSTEOARTHRITIS Mesenchymal stem cells Bone marrow harvest Regenerative medicine
在线阅读 下载PDF
Design of Dipoles for the RF Energy Harvesting System Dedicated to GSM Applications
8
作者 Abdoul Karim Mbodji Mohamed El Moctar +1 位作者 Malang Kambaye Ousmane Dieme 《Energy and Power Engineering》 2025年第1期1-12,共12页
Nowadays, we are witnessing an era marked by the autonomy of wireless devices and sensor networks without the aid of batteries. RF energy harvesting therefore becomes a promising alternative for battery dependence. Th... Nowadays, we are witnessing an era marked by the autonomy of wireless devices and sensor networks without the aid of batteries. RF energy harvesting therefore becomes a promising alternative for battery dependence. This work presents the design of an RF energy harvesting system consisting mainly of a rectenna (antenna and rectification circuit) and an adaptation circuit. First of all, we designed two dipole type antennas. One operates in the GSM 900 MHz band and the other in the GSM 1800 MHz band. The performances of the proposed antennas are provided by the ANSYS HFSS software. Secondly, we proposed two rectification circuits in order to obtain conversion efficiencies at 0 dBm of 64% for the system operating at the frequency of 900 MHz and 37% for the system at the frequency of 1800 MHz RF-DC. The rectifiers used are based on Schottky diodes. For maximum transfer of power between the antenna and the rectification circuit, L-type matching circuits have been proposed. This rectifier offers DC voltage values of 806 mV for the circuit at the frequency of 900 MHz and 616 mV for the circuit at the frequency of 1800 MHz. The adaptation circuits are obtained by carrying out simulations on the ADS (Advanced Design System) software. 展开更多
关键词 RECTENNA ANTENNA RF-DC Conversion Schottky Diode Efficiency RF Energy Harvesting
在线阅读 下载PDF
Self-powered flexible sensors:from fundamental mechanisms toward diverse applications
9
作者 Jingjing Chen Jiangshan Zhang +6 位作者 Nuo Xu Mengmeng Chen Ju-Hyuck Lee Yu Wang Qijun Sun Baolin Liu Zhixian Gao 《International Journal of Extreme Manufacturing》 2025年第1期308-336,共29页
Today,energy is essential for every aspect of human life,including clothing,food,housing and transportation.However,traditional energy resources are insufficient to meet our modern needs.Self-powered sensing devices e... Today,energy is essential for every aspect of human life,including clothing,food,housing and transportation.However,traditional energy resources are insufficient to meet our modern needs.Self-powered sensing devices emerge as promising alternatives,offering sustained operation without relying on external power sources.Leveraging advancements in materials and manufacturing research,these devices can autonomously harvest energy from various sources.In this review,we focus on the current landscape of self-powered wearable sensors,providing a concise overview of energy harvesting technologies,conversion mechanisms,structural or material innovations,and energy storage platforms.Then,we present experimental advances in different energy sources,showing their underlying mechanisms,and the potential for energy acquisition.Furthermore,we discuss the applications of self-powered flexible sensors in diverse fields such as medicine,sports,and food.Despite significant progress in this field,widespread commercialization will necessitate enhanced sensor detection abilities,improved design factors for adaptable devices,and a balance between sensitivity and standardization. 展开更多
关键词 SELF-POWERED energy harvesting APPLICATIONS flexible sensing
在线阅读 下载PDF
A Multifunctional Hydrogel with Multimodal Self-Powered Sensing Capability and Stable Direct Current Output for Outdoor Plant Monitoring Systems
10
作者 Xinge Guo Luwei Wang +1 位作者 Zhenyang Jin Chengkuo Lee 《Nano-Micro Letters》 2025年第4期1-24,共24页
Smart farming with outdoor monitoring systems is critical to address food shortages and sustainability challenges.These systems facilitate informed decisions that enhance efficiency in broader environmental management... Smart farming with outdoor monitoring systems is critical to address food shortages and sustainability challenges.These systems facilitate informed decisions that enhance efficiency in broader environmental management.Existing outdoor systems equipped with energy harvesters and self-powered sensors often struggle with fluctuating energy sources,low durability under harsh conditions,non-transparent or non-biocompatible materials,and complex structures.Herein,a multifunctional hydrogel is developed,which can fulfill all the above requirements and build selfsustainable outdoor monitoring systems solely by it.It can serve as a stable energy harvester that continuously generates direct current output with an average power density of 1.9 W m^(-3)for nearly 60 days of operation in normal environments(24℃,60%RH),with an energy density of around 1.36×10^(7)J m^(-3).It also shows good self-recoverability in severe environments(45℃,30%RH)in nearly 40 days of continuous operation.Moreover,this hydrogel enables noninvasive and self-powered monitoring of leaf relative water content,providing critical data on evaluating plant health,previously obtainable only through invasive or high-power consumption methods.Its potential extends to acting as other self-powered environmental sensors.This multifunctional hydrogel enables self-sustainable outdoor systems with scalable and low-cost production,paving the way for future agriculture. 展开更多
关键词 Self-powered sensor HYDROGEL Energy harvester Outdoor farming Self-sustainable IoT
在线阅读 下载PDF
Recent progress on elemental tellurium and its devices
11
作者 Jiachi Liao Zhengxun Lai +1 位作者 You Meng Johnny C.Ho 《Journal of Semiconductors》 2025年第1期91-106,共16页
The rapid advancement of information technology has heightened interest in complementary devices and circuits.Conventional p-type semiconductors often lack sufficient electrical performance,thus prompting the search f... The rapid advancement of information technology has heightened interest in complementary devices and circuits.Conventional p-type semiconductors often lack sufficient electrical performance,thus prompting the search for new materials with high hole mobility and long-term stability.Elemental tellurium(Te),featuring a one-dimensional chiral atomic structure,has emerged as a promising candidate due to its narrow bandgap,high hole mobility,and versatility in industrial applications,particularly in electronics and renewable energy.This review highlights recent progress in Te nanostructures and related devices,focusing on synthesis methods,including vapor deposition and hydrothermal synthesis,which produce Te nanowires,nanorods,and other nanostructures.Critical applications in photodetectors,gas sensors,and energy harvesting devices are discussed,with a special emphasis on their role within the internet of things(IoT)framework,a rapidly growing field that is reshaping our technological landscape.The prospects and potential applications of Te-based technologies are also highlighted. 展开更多
关键词 elemental tellurium PHOTODETECTOR field-effect transistor gas sensor energy harvesting device
在线阅读 下载PDF
Identifying suitable areas for plenter forest management
12
作者 Mathias Leiter Christoph Pucher +4 位作者 Michael Kessler Ferdinand Honigsberger Manfred J.Lexer Harald Vacik Hubert Hasenauer 《Forest Ecosystems》 2025年第1期83-92,共10页
Plenter forests,also known as uneven-aged or continuous cover forests enhance forest resilience and resistance against disturbances compared to even-aged forests.They are considered as an adaptation option to mitigate... Plenter forests,also known as uneven-aged or continuous cover forests enhance forest resilience and resistance against disturbances compared to even-aged forests.They are considered as an adaptation option to mitigate climate change effects.In this study,we present a conceptual approach to determine the potentially suitable area for plenter forest management within central European mixed species forests and apply our approach to the case study area in Styria,the south-eastern Province of Austria.The concept is based on ecological and technicaleconomic constraints and considers expected future climate conditions and its impact on plenter forest management.For each 1 ha forest pixel,we assess the ecological conditions for plenter forest management according to the autecological growth conditions of silver fir,and at least one additional shade tolerant tree species.The technical-economic constraints are defined by slope(≤30%)and distance to the next forest road(≤100 m)to ensure cost-efficient harvesting.The results show that under current climate conditions 28.1%or 305,349 ha of the forests in Styria are potentially suitable for plenter forest management.For the years 2071–2100 and under the climate change scenario RCP 4.5,the potential area decreases to 286,098 ha(26.3%of the total forest area)and for the scenario RCP 8.5 to 208,421 ha(19.1%of the total forest area).The main reason for these changes is the unfavourable growing conditions for silver fir in the lowlands,while in the higher elevations silver fir is likely to expand.Our results may serve forest managers to identify areas suitable for plenter forests and assist in the transformation of even-aged pure forests to uneven-aged forests to increase resistance,resilience,and biodiversity under climate change. 展开更多
关键词 Plenter forest Uneven-aged forest management Tree species suitability Tree harvesting Transformation
在线阅读 下载PDF
Design and testing of a liftable chassis for rice harvester
13
作者 YANG Ke LI Ju +3 位作者 CHEN Yu LI Hao AO Yu LEI Xiaolong 《智能化农业装备学报(中英文)》 2025年第1期59-70,共12页
During the operation of the rice combine harvester,the fuselage tilts due to the tilt and unevenness of the ground affect its maneuverability and operational reliability.Aiming at the problem of leveling due to the ti... During the operation of the rice combine harvester,the fuselage tilts due to the tilt and unevenness of the ground affect its maneuverability and operational reliability.Aiming at the problem of leveling due to the tilt of the field surface,this research developed an innovative dual-parallelogram chassis lifting mechanism for rice harvesters designed a hydraulic system to adjust the chassis height by extending the cylinder.Using Adams simulation software,a detailed model of the lifting chassis was constructed to analyze its performance,revealing a direct correlation between the hydraulic cylinder extension and chassis elevation.Notably,the mechanism could achieve leveling on slopes with inclination angles of up to 7.5°.Comprehensive evaluations of the liftable chassis system were conducted under both static and dynamic conditions.In the static tests,the system exhibited the capacity for comprehensive or unilateral auto-leveling contingent upon the tilt,with leveling times and angular variations confined to 3.6 s and±0.4°,respectively.In dynamic tests conducted on sloped fields and paddy soils,the system reduced post-leveling mean tilt angles and standard deviations remained below 1.2°and 0.6°,respectively.These results demonstrated a substantial improvement in the stability and reliability of the chassis during operations.This research provides valuable insights into the design and optimization of automatic leveling mechanisms and structural innovations for harvester chassis. 展开更多
关键词 rice combine harvester chassis lifting mechanism hydraulic leveling leveling time
在线阅读 下载PDF
Providing Robust and Low-Cost Edge Computing in Smart Grid:An Energy Harvesting Based Task Scheduling and Resource Management Framework
14
作者 Xie Zhigang Song Xin +1 位作者 Xu Siyang Cao Jing 《China Communications》 2025年第2期226-240,共15页
Recently,one of the main challenges facing the smart grid is insufficient computing resources and intermittent energy supply for various distributed components(such as monitoring systems for renewable energy power sta... Recently,one of the main challenges facing the smart grid is insufficient computing resources and intermittent energy supply for various distributed components(such as monitoring systems for renewable energy power stations).To solve the problem,we propose an energy harvesting based task scheduling and resource management framework to provide robust and low-cost edge computing services for smart grid.First,we formulate an energy consumption minimization problem with regard to task offloading,time switching,and resource allocation for mobile devices,which can be decoupled and transformed into a typical knapsack problem.Then,solutions are derived by two different algorithms.Furthermore,we deploy renewable energy and energy storage units at edge servers to tackle intermittency and instability problems.Finally,we design an energy management algorithm based on sampling average approximation for edge computing servers to derive the optimal charging/discharging strategies,number of energy storage units,and renewable energy utilization.The simulation results show the efficiency and superiority of our proposed framework. 展开更多
关键词 edge computing energy harvesting energy storage unit renewable energy sampling average approximation task scheduling
在线阅读 下载PDF
Biomimetic Micro-Nanostructured Evaporator with Dual-Transition-Metal MXene for Efficient Solar Steam Generation and Multifunctional Salt Harvesting
15
作者 Ruiqi Xu Hongzhi Cui +3 位作者 Na Wei Yang Yu Lin Dai Xiaohua Chen 《Nano-Micro Letters》 2025年第5期16-36,共21页
Solar-driven interfacial evaporation is one of the most attractive approaches to addressing the global freshwater shortage.However,achieving an integrated high evaporation rate,salt harvesting,and multifunctionality i... Solar-driven interfacial evaporation is one of the most attractive approaches to addressing the global freshwater shortage.However,achieving an integrated high evaporation rate,salt harvesting,and multifunctionality in evaporator is still a crucial challenge.Here,a novel composite membrane with biomimetic micronanostructured superhydrophobic surface is designed via ultrafast laser etching technology.Attractively,the double-transition-metal(V_(1/2)Mo_(1/2))_(2)CT_(x)MXene nanomaterials as a photothermal layer,exhibiting the enhanced photothermal conversion performance due to elevated joint densities of states,which enables high populations of photoexcited carrier relaxation and heat release,provides a new insight into the photothermal conversion mechanism for multiple principal element MXene.Hence,the(V_(1/2)Mo_(1/2))_(2)CT_(x)MXene-200 composite membrane can achieve a high evaporation rate of 2.23 kg m^(−2)h^(−1)under one sun,owing to the enhanced“light trap”effect,photothermal conversion,and high-throughput water transfer.Synergetically,the membrane can induce the directed precipitation of salt at the membrane edge,thus enabling salt harvesting for recycling and zero-emission of brine water.Moreover,the composite membrane is endowed with excellent multifunctionality of anti-/de-icing,anti-fouling,and antibacterial,overcoming the disadvantage that versatility is difficult to be compatible.Therefore,the evaporator and the promising strategy hold great potential for the practical application of solar evaporation. 展开更多
关键词 Double‐transition‐metal MXene Micro-nanostructures Solar steam generation Salt harvesting Multifunctionality
在线阅读 下载PDF
Constructing high-performance and versatile liquid-solid triboelectric nanogenerator with inflatable columnar units
16
作者 Lin Luo Chao Liu +10 位作者 Rui Gu Mingxia Chen Yifei Wang Nuo Xu Yao Xiong Jiahong Yang Ziwei Huo Yang Liu Liang Wei Zhong Lin Wang Qijun Sun 《International Journal of Extreme Manufacturing》 2025年第1期580-593,共14页
The use of water resources for energy generation has become increasingly prevalent,encompassing the conversion of kinetic energy from streams,tides,and waves into renewable electrical power.Water energy sources offer ... The use of water resources for energy generation has become increasingly prevalent,encompassing the conversion of kinetic energy from streams,tides,and waves into renewable electrical power.Water energy sources offer numerous benefits,including widespread availability,stability,and the absence of carbon dioxide and other greenhouse gas emissions,making them a clean and environmentally friendly form of energy.In this work,we develop a droplet-based liquid-solid triboelectric nanogenerator(LS-TENG)using sophisticatedly designed inflatable columnar structures with inner and outer dual-electrodes.This device can be utilized to harvest both the internal droplet-rolling mechanical energy and the external droplet-falling mechanical energy,capable of being assembled into various structures for versatile applications.The design incorporates a combined structure of both internal and external TENG to optimize output performance via multiple energy harvesting strategies.The internal structure features a dual-electrode columnar-shaped LS-TENG,designed to harvest fluid kinetic energy from water droplets.By leveraging the back-and-forth motion of a small amount of water within the air column,mechanical energy can be readily collected,achieving a maximum mass power density of 9.02 W·Kg^(−1)and an energy conversion efficiency of 10.358%.The external component is a droplet-based LS-TENG,which utilizes a double-layer capacitor switch effect elucidated with an equivalent circuit model.Remarkably,without the need for pre-charging,a single droplet can generate over 140 V of high voltage,achieving a maximum power density of 7.35 W·m^(−2)and an energy conversion efficiency of 22.058%.The combined LS-TENG with a sophisticated inflatable columnar structure can simultaneously collect multiple types of energy with high efficacy,exhibiting great significance in potential applications such as TENG aeration rollers,inflatable lifejacket,wind energy harvesting,TENG tents,and green houses. 展开更多
关键词 solid-liquid triboelectrification inflatable columnar structure combined AC/DC TENG energy harvesting self-powered sensing
在线阅读 下载PDF
Industrial Untapped Rotational Kinetic Energy Assessment for Sustainable Energy Recycling
17
作者 See Wei Jing Md Tanjil Sarker +2 位作者 Gobbi Ramasamy Siva Priya Thiagarajah Fazlul Aman 《Energy Engineering》 2025年第3期905-927,共23页
Electrical energy can be harvested from the rotational kinetic energy of moving bodies,consisting of both mechanical and kinetic energy as a potential power source through electromagnetic induction,similar to wind ene... Electrical energy can be harvested from the rotational kinetic energy of moving bodies,consisting of both mechanical and kinetic energy as a potential power source through electromagnetic induction,similar to wind energy applications.In industries,rotational bodies are commonly present in operations,yet this kinetic energy remains untapped.This research explores the energy generation characteristics of two rotational body types,disk-shaped and cylinder-shaped under specific experimental setups.The hardware setup included a direct current(DC)motor driver,power supply,DC generator,mechanical support,and load resistance,while the software setup involved automation testing tools and data logging.Electromagnetic induction was used to harvest energy,and experiments were conducted at room temperature(25℃)with controlled variables like speed and friction.Results showed the disk-shaped body exhibited higher energy efficiency than the cylinder-shaped body,largely due to lower mechanical losses.The disk required only two bearings,while the cylinder required four,resulting in lower bearing losses for the disk.Additionally,the disk experienced only air friction,whereas the cylinder encountered friction from a soft,uneven rubber material,increasing surface contact losses.Under a 40 W resistive load,the disk demonstrated a 17.1%energy loss due to mechanical friction,achieving up to 15.55 J of recycled energy.Conversely,the cylinder body experienced a 48.05%energy loss,delivering only 51.95%of energy to the load.These insights suggest significant potential for designing efficient energy recycling systems in industrial settings,particularly in manufacturing and processing industries where rotational machinery is prevalent.Despite its lower energy density,this system could be beneficially integrated with energy storage solutions,enhancing sustainability in industrial practices. 展开更多
关键词 Rotational kinetic energy electromagnetic induction energy harvesting disk-shaped body cylinder-shaped body energy efficiency mechanical loss industrial energy recycling sustainable energy solutions
在线阅读 下载PDF
The underlying mechanism of variety–water–nitrogen–stubble damage interactions on yield formation in ratoon rice with low stubble height under mechanized harvesting 被引量:2
18
作者 Jingnan Zou Ziqin Pang +11 位作者 Zhou Li Chunlin Guo Hongmei Lin Zheng Li Hongfei Chen Jinwen Huang Ting Chen Hailong Xu Bin Qin Puleng Letuma Weiwei Lin Wenxiong Lin 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第3期806-823,共18页
Agronomic measures are the key to promote the sustainable development of ratoon rice by reducing the damage from mechanical crushing to the residual stubble of the main crop, thereby mitigating the impact on axillary ... Agronomic measures are the key to promote the sustainable development of ratoon rice by reducing the damage from mechanical crushing to the residual stubble of the main crop, thereby mitigating the impact on axillary bud sprouting and yield formation in ratoon rice. This study used widely recommended conventional rice Jiafuzhan and hybrid rice Yongyou 2640 as the test materials to conduct a four-factor block design field experiment in a greenhouse of the experimental farm of Fujian Agricultural and Forestry University, China from 2018 to 2019.The treatments included fertilization and no fertilization, alternate wetting and drying irrigation and continuous water flooding irrigation, and plots with and without artificial crushing damage on the rice stubble. At the same time, a 13C stable isotope in-situ detection technology was used to fertilize the pot experiment. The results showed significant interactions among varieties, water management, nitrogen application and stubble status.Relative to the long-term water flooding treatment, the treatment with sequential application of nitrogen fertilizer coupled with moderate field drought for root-vigor and tiller promotion before and after harvesting of the main crop, significantly improved the effective tillers from low position nodes. This in turn increased the effective panicles per plant and grains per panicle by reducing the influence of artificial crushing damage on rice stubble and achieving a high yield of the regenerated rice. Furthermore, the partitioning of 13C assimilates to the residual stubble and its axillary buds were significantly improved at the mature stage of the main crop, while the translocation rate to roots and rhizosphere soil was reduced at the later growth stage of ratooning season rice. This was triggered by the metabolism of hormones and polyamines at the stem base regulated by the interaction of water and fertilizer at this time. We therefore suggest that to achieve a high yield of ratoon rice with low stubble height under mechanized harvesting, the timely application of nitrogen fertilizer is fundamental,coupled with moderate field drying for root-vigor preservation and tiller promotion before and after the mechanical harvesting of the main crop. 展开更多
关键词 mechanized harvesting ratoon rice rice stubble yield attributes
在线阅读 下载PDF
Plasma‐oxidized 2D MXenes subnanochannel membrane for high‐performance osmotic energy conversion 被引量:2
19
作者 Zhengmao Ding Tiancheng Gu +5 位作者 Rui Zhang Shouyi Sun Kaiqiang Wang Hanli Zhang Jinjin Li Yunjun Luo 《Carbon Energy》 SCIE EI CAS CSCD 2024年第8期178-191,共14页
Nanofluidic channels inspired by electric eels open a new era of efficient harvesting of clean blue osmotic energy from salinity gradients.Limited by less charge and weak ion selectivity of the raw material itself,ene... Nanofluidic channels inspired by electric eels open a new era of efficient harvesting of clean blue osmotic energy from salinity gradients.Limited by less charge and weak ion selectivity of the raw material itself,energy conversion through nanofluidic channels is still facing considerable challenges.Here,a facile and efficient strategy to enhance osmotic energy harvesting based on drastically increasing surface charge density of MXenes subnanochannels via oxygen plasma is proposed.This plasma could break Ti–C bonds in the MXenes subnanochannels and effectively facilitate the formation of more Ti–O,C═O,O–OH,and rutile with a stronger negative charge and work function,which leads the surface potential of MXenes membrane to increase from 205 to 430 mV.This significant rise of surface charge endows the MXenes membrane with high cation selectivity,which could make the output power density of the MXenes membrane increase by 248.2%,reaching a high value of 5.92Wm^(−2) in the artificial sea‐river water system.Furthermore,with the assistance of low‐quality heat at 50℃,the osmotic power is enhanced to an ultrahigh value of 9.68Wm^(−2),which outperforms those of the state‐of‐the‐art two‐dimensional(2D)nanochannel membranes.This exciting breakthrough demonstrates the enormous potential of the facile plasma‐treated 2D membranes for osmotic energy harvesting. 展开更多
关键词 ion transport MXenes membranes osmotic energy harvesting PLASMA two‐dimensional nanochannels
在线阅读 下载PDF
Deployment optimization for target perpetual coverage in energy harvesting wireless sensor network 被引量:2
20
作者 Zhenkun Jin Yixuan Geng +4 位作者 Chenlu Zhu Yunzhi Xia Xianjun Deng Lingzhi Yi Xianlan Wang 《Digital Communications and Networks》 SCIE CSCD 2024年第2期498-508,共11页
Energy limitation of traditional Wireless Sensor Networks(WSNs)greatly confines the network lifetime due to generating and processing massive sensing data with a limited battery.The energy harvesting WSN is a novel ne... Energy limitation of traditional Wireless Sensor Networks(WSNs)greatly confines the network lifetime due to generating and processing massive sensing data with a limited battery.The energy harvesting WSN is a novel network architecture to address the limitation of traditional WSN.However,existing coverage and deployment schemes neglect the environmental correlation of sensor nodes and external energy with respect to physical space.Comprehensively considering the spatial correlation of the environment and the uneven distribution of energy in energy harvesting WSN,we investigate how to deploy a collection of sensor nodes to save the deployment cost while ensuring the target perpetual coverage.The Confident Information Coverage(CIC)model is adopted to formulate the CIC Minimum Deployment Cost Target Perpetual Coverage(CICMTP)problem to minimize the deployed sensor nodes.As the CICMTP is NP-hard,we devise two approximation algorithms named Local Greedy Threshold Algorithm based on CIC(LGTA-CIC)and Overall Greedy Search Algorithm based on CIC(OGSA-CIC).The LGTA-CIC has a low time complexity and the OGSA-CIC has a better approximation rate.Extensive simulation results demonstrate that the OGSA-CIC is able to achieve lower deployment cost and the performance of the proposed algorithms outperforms GRNP,TPNP and EENP algorithms. 展开更多
关键词 Energy harvesting WSN Deployment optimization Confident information coverage(CIC) Target perpetual coverage
在线阅读 下载PDF
上一页 1 2 68 下一页 到第
使用帮助 返回顶部