Offset-tracking is an essential method for deriving glacier flow rates using optical imagery.Sentinel-2(S2)and Landsat-8/9(L8/9)are popular optical satellites or constellations for polar studies,offering high spatial ...Offset-tracking is an essential method for deriving glacier flow rates using optical imagery.Sentinel-2(S2)and Landsat-8/9(L8/9)are popular optical satellites or constellations for polar studies,offering high spatial resolution with relatively short revisit time,wide swath width,and free accessibility.To evaluate and compare the precision of offset-tracking results yielded with these two kinds of data,in this study S2 and L8/9 imagery observed in Petermann Glacier in Greenland,Karakoram in High-Mountains Asia,and Amery Ice Shelf in the Antarctic are analyzed.Outliers and various systematic error sources in the offset-tracking results including orbital and strip errors were analyzed and eliminated at the pre-process stage.Precision at the off-glacier(bare rock)region was evaluated by presuming that no deformation occurred;then for both glacierized and the off-glacier regions,precision of velocity time series was evaluated based on error propagation theory.The least squares method based on connected components was used to solve flow rates time series based on multi-pair images offset-tracking.The results indicated that S2 achieved slightly higher precision than L8/9 in terms of both single-pair derived displacements and least square solved daily flow rates time series.Generally,the RMSE of daily velocity is 26%lower for S2 than L8/9.Moreover,S2 provided higher temporal resolution for monitoring glacier flow rates.展开更多
Urumqi Glacier No. 1 is a representative glacier in the inland areas of Central Asia and is the only Chinese reference glacier in the World Glacier Monitoring Service. In this study, we explored multi-decadal variatio...Urumqi Glacier No. 1 is a representative glacier in the inland areas of Central Asia and is the only Chinese reference glacier in the World Glacier Monitoring Service. In this study, we explored multi-decadal variations in the flow velocity of the glacier and the influencing factors based on continuous field observations and path coefficient analysis. Results show that the glacier flow velocity decreased from 5.5 m/a in 1980/1981 to 3.3 m/a in 2010/2011. The annual variation in the direction of glacier flow velocity in the western branch and eastern branch was less than 1°–3°, and the change of glacier flow velocity in the western branch was more dramatic than that in the eastern branch. Glacier flow velocity was influenced by glacier morphology(including glacier area, glacier length, and ice thickness), glacier mass balance and local climate conditions(air temperature and precipitation), the glacier morphology being the leading factor. The long-term flow velocity data set of Urumqi Glacier No. 1 contributes to a better understanding of glacier dynamics within the context of climatic warming.展开更多
Mountain glaciers are sensitive to environment. It is important to acquire ice flow velocities over time for glacier research and hazard forecast. For this paper, cross-correlating of optical images is used to monitor...Mountain glaciers are sensitive to environment. It is important to acquire ice flow velocities over time for glacier research and hazard forecast. For this paper, cross-correlating of optical images is used to monitor ice flow velocities, and an improvement, which is called "moving grid," is made to this method. For this research, two remote-sensing images in a certain glacier area, dur-ing different times are selected. The first image is divided into grids, and we calculated the correlation coefficient of each window in the grid with the window on the second image. The window with the highest correlation coefficient is considered the counter-part one on the first image. The displacement of the two corresponding windows is the movement of the glacier, and it is used to calculate glacier surface velocity. Compared to the traditional way of dividing an image with ascertain grid, this method uses small steps to move the grid from one location to another adjacent location until the whole glacier area is covered in the image, thus in-creasing corresponding point density. We selected a glacier in the Tianshan Mountains for this experiment and used two re-mote-sensing images with a 10-year interval to determine this method.展开更多
The glaciers Austre Lovenbreen and Pedersenbreen are located at Ny-(?)lesund. Svalbard.The surface mass balance and ice flow velocity of both glaciers have been determined from the first year of observations(2005/...The glaciers Austre Lovenbreen and Pedersenbreen are located at Ny-(?)lesund. Svalbard.The surface mass balance and ice flow velocity of both glaciers have been determined from the first year of observations(2005/2006).while the front edge of Austre Lovenbreen was also surveyed.The results are as follows: (1) The net mass balances of Austre Lovenbreen and Pedersenbreen are—0.44 and—0.20 m w.e.,the annual ablation is—0.99 and—0.91 m w.e.. and the corresponding equilibrium line altitudes are 178.10 and 494.87 m.respectively. (2) Austre Lovenbreen and Pedersenbreen are characterized as ice flow models of surge-type glaciers in Svalbard.The horizontal vectors of the ice flow velocities are parallel or converge to the central lines of both glaciers,with lower velocities in the lower ablation areas and higher velocities in the middle and upper reaches of the glaciers.The vertical vectors of ice flow velocities show that there is a mass loss in the ablation areas,which reduces with increasing altitude, while there is a mass gain near the equilibrium line of Austre Lovenbreen.(3) The front edge of Austre Lovenbreen receded at an average rate of 21.83 m·a^(-1),with remarkable variability-a maximum rate of 77.30 m·a^(-1) and a minimum rate of 2.76 m·a^(-1).展开更多
Glacier shape factors (area, length, and thickness), climatic factors (annual temperature and precipitation), mass balance, and other influence factors, of the Qiyi glacier velocity and their intensity were analyz...Glacier shape factors (area, length, and thickness), climatic factors (annual temperature and precipitation), mass balance, and other influence factors, of the Qiyi glacier velocity and their intensity were analyzed with the application of the path analysis method during 1958-2007. Results indicate that glacier velocity was mainly influenced by glacier shape, followed by mass balance and climatic conditions. Among the influence factors, glacier area and thickness are most significant, and direct and indirect path coef- ficients are respectively 6.56, 4.71, 19.29 and 13.57. This research provides information for further understanding glacier velocity and its influencing factors.展开更多
Glacier length is a key morphological element that has many glaciological applications; however, it is often difficult to determine, especially for glaciers that cover larger spatial areas or those that exhibit freque...Glacier length is a key morphological element that has many glaciological applications; however, it is often difficult to determine, especially for glaciers that cover larger spatial areas or those that exhibit frequent temporal change. In this paper, we describe a new Arc GIS-based method that can derive glacier flow lines for determining glacier length based on digital elevation model and glacier outlines. This method involves(1) extraction of the highest and lowest points on a glacier,(2) calculation of 10-m contour lines on the glacier from 10 m to 100 m height, and(3) connection of the midpoints of each contour line with the highest and the lowest points in order to create a flow line, which is subsequently smoothed. In order to assess the reliability of this method, we tested the algorithm's results against flow lines calculated using field measurements, analysing data from the Chinese Glacier Inventory, and manual interpretation. These data showed that the new automated method is effective in deriving glacier flow lines when contour lines are relatively large; in particular, when they are between 70 m and 100 m. Nonetheless, a key limitation of the algorithm is the requirement to automatically delete repeated and closed curves in the pre-treatment processes. In addition to calculating glacier flow lines for derivation of glacier length, this method also can be used to effectively determine glacier terminus change.展开更多
基金supported by the National Natural Science Foundation of China(Grant no.42371136)the Guangdong Basic and Applied Basic Research Foundation(Grant no.2021B1515020032)the Innovation Group Project of Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)(Grant no.311022003).
文摘Offset-tracking is an essential method for deriving glacier flow rates using optical imagery.Sentinel-2(S2)and Landsat-8/9(L8/9)are popular optical satellites or constellations for polar studies,offering high spatial resolution with relatively short revisit time,wide swath width,and free accessibility.To evaluate and compare the precision of offset-tracking results yielded with these two kinds of data,in this study S2 and L8/9 imagery observed in Petermann Glacier in Greenland,Karakoram in High-Mountains Asia,and Amery Ice Shelf in the Antarctic are analyzed.Outliers and various systematic error sources in the offset-tracking results including orbital and strip errors were analyzed and eliminated at the pre-process stage.Precision at the off-glacier(bare rock)region was evaluated by presuming that no deformation occurred;then for both glacierized and the off-glacier regions,precision of velocity time series was evaluated based on error propagation theory.The least squares method based on connected components was used to solve flow rates time series based on multi-pair images offset-tracking.The results indicated that S2 achieved slightly higher precision than L8/9 in terms of both single-pair derived displacements and least square solved daily flow rates time series.Generally,the RMSE of daily velocity is 26%lower for S2 than L8/9.Moreover,S2 provided higher temporal resolution for monitoring glacier flow rates.
基金funded the National Natural Science Foundation of China (41501010, 41401611)the Funds for Creative Research Groups of China (41121001)the Youth Innovation Promotion Association of Chinese Academy of Sciences
文摘Urumqi Glacier No. 1 is a representative glacier in the inland areas of Central Asia and is the only Chinese reference glacier in the World Glacier Monitoring Service. In this study, we explored multi-decadal variations in the flow velocity of the glacier and the influencing factors based on continuous field observations and path coefficient analysis. Results show that the glacier flow velocity decreased from 5.5 m/a in 1980/1981 to 3.3 m/a in 2010/2011. The annual variation in the direction of glacier flow velocity in the western branch and eastern branch was less than 1°–3°, and the change of glacier flow velocity in the western branch was more dramatic than that in the eastern branch. Glacier flow velocity was influenced by glacier morphology(including glacier area, glacier length, and ice thickness), glacier mass balance and local climate conditions(air temperature and precipitation), the glacier morphology being the leading factor. The long-term flow velocity data set of Urumqi Glacier No. 1 contributes to a better understanding of glacier dynamics within the context of climatic warming.
基金supported by the National Basic Research Program of China (Grant No. 2009CB723901)863 program (2009AA12Z145)the Chinese Academy of Sciences (kzcx2-yw-301)
文摘Mountain glaciers are sensitive to environment. It is important to acquire ice flow velocities over time for glacier research and hazard forecast. For this paper, cross-correlating of optical images is used to monitor ice flow velocities, and an improvement, which is called "moving grid," is made to this method. For this research, two remote-sensing images in a certain glacier area, dur-ing different times are selected. The first image is divided into grids, and we calculated the correlation coefficient of each window in the grid with the window on the second image. The window with the highest correlation coefficient is considered the counter-part one on the first image. The displacement of the two corresponding windows is the movement of the glacier, and it is used to calculate glacier surface velocity. Compared to the traditional way of dividing an image with ascertain grid, this method uses small steps to move the grid from one location to another adjacent location until the whole glacier area is covered in the image, thus in-creasing corresponding point density. We selected a glacier in the Tianshan Mountains for this experiment and used two re-mote-sensing images with a 10-year interval to determine this method.
文摘The glaciers Austre Lovenbreen and Pedersenbreen are located at Ny-(?)lesund. Svalbard.The surface mass balance and ice flow velocity of both glaciers have been determined from the first year of observations(2005/2006).while the front edge of Austre Lovenbreen was also surveyed.The results are as follows: (1) The net mass balances of Austre Lovenbreen and Pedersenbreen are—0.44 and—0.20 m w.e.,the annual ablation is—0.99 and—0.91 m w.e.. and the corresponding equilibrium line altitudes are 178.10 and 494.87 m.respectively. (2) Austre Lovenbreen and Pedersenbreen are characterized as ice flow models of surge-type glaciers in Svalbard.The horizontal vectors of the ice flow velocities are parallel or converge to the central lines of both glaciers,with lower velocities in the lower ablation areas and higher velocities in the middle and upper reaches of the glaciers.The vertical vectors of ice flow velocities show that there is a mass loss in the ablation areas,which reduces with increasing altitude, while there is a mass gain near the equilibrium line of Austre Lovenbreen.(3) The front edge of Austre Lovenbreen receded at an average rate of 21.83 m·a^(-1),with remarkable variability-a maximum rate of 77.30 m·a^(-1) and a minimum rate of 2.76 m·a^(-1).
基金supported by the Global Change Research Program of China (2010CB951404)The National Natura Science Foundation of China (41071043)
文摘Glacier shape factors (area, length, and thickness), climatic factors (annual temperature and precipitation), mass balance, and other influence factors, of the Qiyi glacier velocity and their intensity were analyzed with the application of the path analysis method during 1958-2007. Results indicate that glacier velocity was mainly influenced by glacier shape, followed by mass balance and climatic conditions. Among the influence factors, glacier area and thickness are most significant, and direct and indirect path coef- ficients are respectively 6.56, 4.71, 19.29 and 13.57. This research provides information for further understanding glacier velocity and its influencing factors.
基金supported by the National Science Foundation of China (grant Nos. 41271024, 41444430204, and J1210065)the Fundamental Research Funds for the Central Universities (Nos. lzujbky-2016-266 and lzujbky2016-270)
文摘Glacier length is a key morphological element that has many glaciological applications; however, it is often difficult to determine, especially for glaciers that cover larger spatial areas or those that exhibit frequent temporal change. In this paper, we describe a new Arc GIS-based method that can derive glacier flow lines for determining glacier length based on digital elevation model and glacier outlines. This method involves(1) extraction of the highest and lowest points on a glacier,(2) calculation of 10-m contour lines on the glacier from 10 m to 100 m height, and(3) connection of the midpoints of each contour line with the highest and the lowest points in order to create a flow line, which is subsequently smoothed. In order to assess the reliability of this method, we tested the algorithm's results against flow lines calculated using field measurements, analysing data from the Chinese Glacier Inventory, and manual interpretation. These data showed that the new automated method is effective in deriving glacier flow lines when contour lines are relatively large; in particular, when they are between 70 m and 100 m. Nonetheless, a key limitation of the algorithm is the requirement to automatically delete repeated and closed curves in the pre-treatment processes. In addition to calculating glacier flow lines for derivation of glacier length, this method also can be used to effectively determine glacier terminus change.