With the aid of a class of nonlinear ordinary differential equation (ODE) and its various positive solutions, four types of exact solutions of the generalized derivative nonlinear Sehrodinger equation (GDNLSE) hav...With the aid of a class of nonlinear ordinary differential equation (ODE) and its various positive solutions, four types of exact solutions of the generalized derivative nonlinear Sehrodinger equation (GDNLSE) have been found out, which are the bell-type solitary wave solution, the algebraic solitary wave solution, the kink-type solitary wave solution and the sinusoidal traveling wave solution, provided that the coefficients of GDNLSE satisfy certain constraint conditions. For more general GDNLSE, the similar results are also given.展开更多
In this work,we present a unified transformation method directly by using the inverse scattering method for a generalized derivative nonlinear Schrödinger(DNLS)equation.By establishing a matrix Riemann-Hilbert pr...In this work,we present a unified transformation method directly by using the inverse scattering method for a generalized derivative nonlinear Schrödinger(DNLS)equation.By establishing a matrix Riemann-Hilbert problem and reconstructing potential function q(x,t)from eigenfunctions{Gj(x,t,η)}3/1 in the inverse problem,the initial-boundary value problems for the generalized DNLS equation on the half-line are discussed.Moreover,we also obtain that the spectral functions f(η),s(η),F(η),S(η)are not independent of each other,but meet an important global relation.As applications,the generalized DNLS equation can be reduced to the Kaup-Newell equation and Chen-Lee-Liu equation on the half-line.展开更多
In this paper,we propose a numerical method to estimate the unknown order of a Riemann-Liouville fractional derivative for a fractional Stokes' first problem for a heated generalized second grade fluid.The implicit n...In this paper,we propose a numerical method to estimate the unknown order of a Riemann-Liouville fractional derivative for a fractional Stokes' first problem for a heated generalized second grade fluid.The implicit numerical method is employed to solve the direct problem.For the inverse problem,we first obtain the fractional sensitivity equation by means of the digamma function,and then we propose an efficient numerical method,that is,the Levenberg-Marquardt algorithm based on a fractional derivative,to estimate the unknown order of a Riemann-Liouville fractional derivative.In order to demonstrate the effectiveness of the proposed numerical method,two cases in which the measurement values contain random measurement error or not are considered.The computational results demonstrate that the proposed numerical method could efficiently obtain the optimal estimation of the unknown order of a RiemannLiouville fractional derivative for a fractional Stokes' first problem for a heated generalized second grade fluid.展开更多
A class of normal-like derivatives for functions with low regularity defined on Lipschitz domains are introduced and studied.It is shown that the new normal-like derivatives,which are called the generalized normal der...A class of normal-like derivatives for functions with low regularity defined on Lipschitz domains are introduced and studied.It is shown that the new normal-like derivatives,which are called the generalized normal derivatives,preserve the major prop- erties of the existing standard normal derivatives.The generalized normal derivatives are then applied to analyze the convergence of domain decomposition methods (DDMs) with nonmatching grids and discontinuous Galerkin (DG) methods for second-order el- liptic problems.The approximate solutions generated by these methods still possess the optimal energy-norm error estimates,even if the exact solutions to the underlying elliptic problems admit very low regularities.展开更多
In this paper, δ-function is used to construct the generalized biharmonicoperators, the corresponding quadratic function is presented, and the latter is appliedto the bending of elastic thin plates, The result shows ...In this paper, δ-function is used to construct the generalized biharmonicoperators, the corresponding quadratic function is presented, and the latter is appliedto the bending of elastic thin plates, The result shows that when the arguments in the variational functional are generalized functions, discontinuity to sone degreeis allowed, and the modified variational principle by using the Lagrange multipliers is merely a special form of the result mentioned above.展开更多
We propose a fractional-order improved Fitz Hugh–Nagumo(FHN)neuron model in terms of a generalized Caputo fractional derivative.Following the existence of a unique solution for the proposed model,we derive the numeri...We propose a fractional-order improved Fitz Hugh–Nagumo(FHN)neuron model in terms of a generalized Caputo fractional derivative.Following the existence of a unique solution for the proposed model,we derive the numerical solution using a recently proposed L1 predictor–corrector method.The given method is based on the L1-type discretization algorithm and the spline interpolation scheme.We perform the error and stability analyses for the given method.We perform graphical simulations demonstrating that the proposed FHN neuron model generates rich electrical activities of periodic spiking patterns,chaotic patterns,and quasi-periodic patterns.The motivation behind proposing a fractional-order improved FHN neuron model is that such a system can provide a more nuanced description of the process with better understanding and simulation of the neuronal responses by incorporating memory effects and non-local dynamics,which are inherent to many biological systems.展开更多
This paper extends the classical covariant deriva tive to the generalized covariant derivative on curved sur faces. The basement for the extension is similar to the pre vious paper, i.e., the axiom of the covariant fo...This paper extends the classical covariant deriva tive to the generalized covariant derivative on curved sur faces. The basement for the extension is similar to the pre vious paper, i.e., the axiom of the covariant form invariabil ity. Based on the generalized covariant derivative, a covari ant differential transformation group with orthogonal duality is set up. Through such orthogonal duality, tensor analy sis on curved surfaces is simplified intensively. Under the covariant differential transformation group, the differential invariabilities and integral invariabilities are constructed on curved surfaces.展开更多
This paper extends the covariant derivative un der curved coordinate systems in 3D Euclid space. Based on the axiom of the covariant form invariability, the classical covariant derivative that can only act on componen...This paper extends the covariant derivative un der curved coordinate systems in 3D Euclid space. Based on the axiom of the covariant form invariability, the classical covariant derivative that can only act on components is ex tended to the generalized covariant derivative that can act on any geometric quantity including base vectors, vectors and tensors. Under the axiom, the algebra structure of the gen eralized covariant derivative is proved to be covariant dif ferential ring. Based on the powerful operation capabilities and simple analytical properties of the generalized covariant derivative, the tensor analysis in curved coordinate systems is simplified to a large extent.展开更多
This paper further extends the generalized covari ant derivative from the first covariant derivative to the sec ond one on curved surfaces. Through the linear transforma tion between the first generalized covariant de...This paper further extends the generalized covari ant derivative from the first covariant derivative to the sec ond one on curved surfaces. Through the linear transforma tion between the first generalized covariant derivative and the second one, the second covariant differential transformation group is set up. Under this transformation group, the sec ond class of differential invariants and integral invariants on curved surfaces is made clear. Besides, the symmetric struc ture of the tensor analysis on curved surfaces are revealed.展开更多
In this article, we introduce the notion of generalized derivations on Hilbert C*-modules. We use a fixed-point method to prove the generalized Hyers-Ulam-Rassias stability associated to the Pexiderized Cauchy-Jensen...In this article, we introduce the notion of generalized derivations on Hilbert C*-modules. We use a fixed-point method to prove the generalized Hyers-Ulam-Rassias stability associated to the Pexiderized Cauchy-Jensen type functional equationrf(x+y/r)+sg(x-y/s)=2h(x)for r, s ∈ R / {0} on Hilbert C*-modules, where f, g, and h are mappings from a Hilbert C*-module M to M.展开更多
Let P be a parabolic subalgebra of a general linear Lie algebra gl(n,F) over a field F, where n ≥ 3, F contains at least n different elements, and char(F) ≠ 2. In this article, we prove that generalized derivati...Let P be a parabolic subalgebra of a general linear Lie algebra gl(n,F) over a field F, where n ≥ 3, F contains at least n different elements, and char(F) ≠ 2. In this article, we prove that generalized derivations, quasiderivations, and product zero derivations of P coincide, and any generalized derivation of P is a sum of an inner derivation, a central quasiderivation, and a scalar multiplication map of P. We also show that any commuting automorphism of P is a central automorphism, and any commuting derivation of P is a central derivation.展开更多
This article gives characterizations of generalized derivations with skew nilpotent values on noncommutative Lie ideals of a prime ring. The results simultaneously generalize the ones of Herstein, Lee and Carini et al.
Let R be a prime ring with center Z and S包含 R. Two mappings D and G of R into itself are called cocentralizing on S if D(x)x - xG(x) ∈ Z for all x ∈S. The main purpose of this paper is to describe the structur...Let R be a prime ring with center Z and S包含 R. Two mappings D and G of R into itself are called cocentralizing on S if D(x)x - xG(x) ∈ Z for all x ∈S. The main purpose of this paper is to describe the structure of generalized derivations which are cocentralizing on ideals, left ideals and Lie ideals of a prime ring, respectively. The semiprime ease is also considered.展开更多
Let R be a ring, a ,b ∈ R, ( D , α ) and (G , β ) be two generalized derivations of R . It is proved that if aD ( x ) = G ( x )b for all x ∈ R, then one of the following possibilities holds: (i) If either a or b i...Let R be a ring, a ,b ∈ R, ( D , α ) and (G , β ) be two generalized derivations of R . It is proved that if aD ( x ) = G ( x )b for all x ∈ R, then one of the following possibilities holds: (i) If either a or b is contained in C , then α = β= 0 and there exist p , q ∈ Qr ( RC) such that D ( x )= px and G ( x )= qx for all x ∈ R;(ii) If both a and b are contained in C , then either a = b= 0 or D and G are C-linearly dependent;(iii) If neither a nor b is contained in C , then there exist p , q ∈ Qr ( RC) and w ∈ Qr ( R) such that α ( x ) = [ q ,x] and β ( x ) = [ x ,p] for all x ∈ R, whence D ( x )= wx-xq and G ( x )= xp + avx with v ∈ C and aw-pb= 0.展开更多
In this paper, it is proved that under certain conditions, each Jordan left derivation on a generalized matrix algebra is zero and each generalized Jordan left derivation is a generalized left derivation.
Let R be a prime ring with a non-central Lie ideal L. In the present paper we show that if the composition DG of two generalized derivations D and G is zero on L, then DG must be zero on R. And we get all the possibil...Let R be a prime ring with a non-central Lie ideal L. In the present paper we show that if the composition DG of two generalized derivations D and G is zero on L, then DG must be zero on R. And we get all the possibilities for the composition of a couple of generalized derivations to be zero on a non-central Lie ideal of a prime ring.展开更多
In our previous work, we study fuzzy Itôintegrals driven by a fuzzy Brownian motion. In this article, we continue this study. The purpose of this paper is to study the weak uniqueness of fuzzy stochastic diff...In our previous work, we study fuzzy Itôintegrals driven by a fuzzy Brownian motion. In this article, we continue this study. The purpose of this paper is to study the weak uniqueness of fuzzy stochastic differential equations taking into account fuzzy Brownian motion. For instance, we construct the fuzzy stochastic differential equation driven by a fuzzy Brownian motion. To define and prove our results, we use the fuzzification, the alpha cut method and the Hausdorff distance between two fuzzy quantities. Some results are to our credit in this article like the instance, we construct the fuzzy stochastic differrential equation driven by fuzzy Brownian motion. Furthermore, we develop fuzzy Itôcalculus driven by a fuzzy Brownian motion. Our result complement existing ones in that the fuzzy version of Brownian motion is taken into account.展开更多
This paper reports a new derivative in the Eulerian description in flat space-the generalized covariant derivative with respect to time. The following contents are included:(a) the restricted covariant derivative with...This paper reports a new derivative in the Eulerian description in flat space-the generalized covariant derivative with respect to time. The following contents are included:(a) the restricted covariant derivative with respect to time for Eulerian component is defined;(b) the postulate of the covariant form invariability in time field is set up;(c) the generalized covariant derivative with respect to time for generalized Eulerian component is defined;(d) the algebraic structure of the generalized covariant derivative with respect to time is made clear;(e) the covariant differential transformation group in time filed is derived. These progresses reveal the covariant form invariability of Eulerian space and time.展开更多
The previous paper reported a new derivative in the Eulerian description in flat space—the generalized covariant derivative of generalized Eulerian component with respect to time. This paper extends the thought from ...The previous paper reported a new derivative in the Eulerian description in flat space—the generalized covariant derivative of generalized Eulerian component with respect to time. This paper extends the thought from the Eulerian description to the Lagrangian description:on the basis of the postulate of covariant form invariability in time field, we define a new derivative in the Lagrangian description in flat space—the generalized covariant derivative of generalized Lagrangian component with respect to time. Besides, the covariant differential transformation group is set up. The covariant form invariability of Lagrangian space-time is ascertained.展开更多
The causes of the nonlinearity of self-excited aerodynamic force of bridge are interpreted from such two aspects as amplitude and wind velocity.The concept of"generalized flutter derivative"is proposed,and i...The causes of the nonlinearity of self-excited aerodynamic force of bridge are interpreted from such two aspects as amplitude and wind velocity.The concept of"generalized flutter derivative"is proposed,and its physical meaning is illustrated.The graphs of the general-ized flutter derivatives of plate and Sutong Bridge section model are plotted.The characteristics of all generalized flutter derivatives are compared and analyzed,and their superiorities are verified.The results indicate that the physical meaning of generalized flutter derivatives are more explicit compared to the traditional ones.It is more convenient to understand the nonlinearity properties of self-excited aerodynamic force of bridge according to the generalized flutter derivatives graphs with the wind velocity as the horizontal coordinate.展开更多
基金the Natural Science Foundation of Education Department of Henan Province of China under Grant No.2007110010the Science Foundation of Henan University of Science and Technology under Grant Nos.2006ZY-001 and 2006ZY-011
文摘With the aid of a class of nonlinear ordinary differential equation (ODE) and its various positive solutions, four types of exact solutions of the generalized derivative nonlinear Sehrodinger equation (GDNLSE) have been found out, which are the bell-type solitary wave solution, the algebraic solitary wave solution, the kink-type solitary wave solution and the sinusoidal traveling wave solution, provided that the coefficients of GDNLSE satisfy certain constraint conditions. For more general GDNLSE, the similar results are also given.
基金This work is supported by the Natural Science Foundation of China(Nos.11601055,11805114 and 11975145)the Natural Science Research Projects of Anhui Province(No.KJ2019A0637)University Excellent Talent Fund of Anhui Province(No.gxyq2019096).
文摘In this work,we present a unified transformation method directly by using the inverse scattering method for a generalized derivative nonlinear Schrödinger(DNLS)equation.By establishing a matrix Riemann-Hilbert problem and reconstructing potential function q(x,t)from eigenfunctions{Gj(x,t,η)}3/1 in the inverse problem,the initial-boundary value problems for the generalized DNLS equation on the half-line are discussed.Moreover,we also obtain that the spectral functions f(η),s(η),F(η),S(η)are not independent of each other,but meet an important global relation.As applications,the generalized DNLS equation can be reduced to the Kaup-Newell equation and Chen-Lee-Liu equation on the half-line.
基金supported by the National Natural Science Foundation of China(Grants 11472161,11102102,and 91130017)the Independent Innovation Foundation of Shandong University(Grant 2013ZRYQ002)the Natural Science Foundation of Shandong Province(Grant ZR2014AQ015)
文摘In this paper,we propose a numerical method to estimate the unknown order of a Riemann-Liouville fractional derivative for a fractional Stokes' first problem for a heated generalized second grade fluid.The implicit numerical method is employed to solve the direct problem.For the inverse problem,we first obtain the fractional sensitivity equation by means of the digamma function,and then we propose an efficient numerical method,that is,the Levenberg-Marquardt algorithm based on a fractional derivative,to estimate the unknown order of a Riemann-Liouville fractional derivative.In order to demonstrate the effectiveness of the proposed numerical method,two cases in which the measurement values contain random measurement error or not are considered.The computational results demonstrate that the proposed numerical method could efficiently obtain the optimal estimation of the unknown order of a RiemannLiouville fractional derivative for a fractional Stokes' first problem for a heated generalized second grade fluid.
基金supported by The Key Project of Natural Science Foundation of China G10531080National Basic Research Program of China No.2005CB321702Natural Science Foundation of China G10771178.
文摘A class of normal-like derivatives for functions with low regularity defined on Lipschitz domains are introduced and studied.It is shown that the new normal-like derivatives,which are called the generalized normal derivatives,preserve the major prop- erties of the existing standard normal derivatives.The generalized normal derivatives are then applied to analyze the convergence of domain decomposition methods (DDMs) with nonmatching grids and discontinuous Galerkin (DG) methods for second-order el- liptic problems.The approximate solutions generated by these methods still possess the optimal energy-norm error estimates,even if the exact solutions to the underlying elliptic problems admit very low regularities.
文摘In this paper, δ-function is used to construct the generalized biharmonicoperators, the corresponding quadratic function is presented, and the latter is appliedto the bending of elastic thin plates, The result shows that when the arguments in the variational functional are generalized functions, discontinuity to sone degreeis allowed, and the modified variational principle by using the Lagrange multipliers is merely a special form of the result mentioned above.
文摘We propose a fractional-order improved Fitz Hugh–Nagumo(FHN)neuron model in terms of a generalized Caputo fractional derivative.Following the existence of a unique solution for the proposed model,we derive the numerical solution using a recently proposed L1 predictor–corrector method.The given method is based on the L1-type discretization algorithm and the spline interpolation scheme.We perform the error and stability analyses for the given method.We perform graphical simulations demonstrating that the proposed FHN neuron model generates rich electrical activities of periodic spiking patterns,chaotic patterns,and quasi-periodic patterns.The motivation behind proposing a fractional-order improved FHN neuron model is that such a system can provide a more nuanced description of the process with better understanding and simulation of the neuronal responses by incorporating memory effects and non-local dynamics,which are inherent to many biological systems.
基金supported by the NSFC(11072125 and 11272175)the NSF of Jiangsu Province(SBK201140044)the Specialized Research Fund for Doctoral Program of Higher Education(20130002110044)
文摘This paper extends the classical covariant deriva tive to the generalized covariant derivative on curved sur faces. The basement for the extension is similar to the pre vious paper, i.e., the axiom of the covariant form invariabil ity. Based on the generalized covariant derivative, a covari ant differential transformation group with orthogonal duality is set up. Through such orthogonal duality, tensor analy sis on curved surfaces is simplified intensively. Under the covariant differential transformation group, the differential invariabilities and integral invariabilities are constructed on curved surfaces.
基金supported by the NSFC(11072125 and 11272175)the NSF of Jiangsu Province(SBK201140044)the Specialized Research Fund for Doctoral Program of Higher Education(20130002110044)
文摘This paper extends the covariant derivative un der curved coordinate systems in 3D Euclid space. Based on the axiom of the covariant form invariability, the classical covariant derivative that can only act on components is ex tended to the generalized covariant derivative that can act on any geometric quantity including base vectors, vectors and tensors. Under the axiom, the algebra structure of the gen eralized covariant derivative is proved to be covariant dif ferential ring. Based on the powerful operation capabilities and simple analytical properties of the generalized covariant derivative, the tensor analysis in curved coordinate systems is simplified to a large extent.
基金supported by the NSFC(11072125 and 11272175)the NSF of Jiangsu Province(SBK201140044)the Specialized Research Fund for Doctoral Program of Higher Education(20130002110044)
文摘This paper further extends the generalized covari ant derivative from the first covariant derivative to the sec ond one on curved surfaces. Through the linear transforma tion between the first generalized covariant derivative and the second one, the second covariant differential transformation group is set up. Under this transformation group, the sec ond class of differential invariants and integral invariants on curved surfaces is made clear. Besides, the symmetric struc ture of the tensor analysis on curved surfaces are revealed.
文摘In this article, we introduce the notion of generalized derivations on Hilbert C*-modules. We use a fixed-point method to prove the generalized Hyers-Ulam-Rassias stability associated to the Pexiderized Cauchy-Jensen type functional equationrf(x+y/r)+sg(x-y/s)=2h(x)for r, s ∈ R / {0} on Hilbert C*-modules, where f, g, and h are mappings from a Hilbert C*-module M to M.
基金supported by the National Natural Science Foundation of China(11101084,11071040)the Fujian Province Nature Science Foundation of China(2013J01005)
文摘Let P be a parabolic subalgebra of a general linear Lie algebra gl(n,F) over a field F, where n ≥ 3, F contains at least n different elements, and char(F) ≠ 2. In this article, we prove that generalized derivations, quasiderivations, and product zero derivations of P coincide, and any generalized derivation of P is a sum of an inner derivation, a central quasiderivation, and a scalar multiplication map of P. We also show that any commuting automorphism of P is a central automorphism, and any commuting derivation of P is a central derivation.
文摘This article gives characterizations of generalized derivations with skew nilpotent values on noncommutative Lie ideals of a prime ring. The results simultaneously generalize the ones of Herstein, Lee and Carini et al.
文摘Let R be a prime ring with center Z and S包含 R. Two mappings D and G of R into itself are called cocentralizing on S if D(x)x - xG(x) ∈ Z for all x ∈S. The main purpose of this paper is to describe the structure of generalized derivations which are cocentralizing on ideals, left ideals and Lie ideals of a prime ring, respectively. The semiprime ease is also considered.
文摘Let R be a ring, a ,b ∈ R, ( D , α ) and (G , β ) be two generalized derivations of R . It is proved that if aD ( x ) = G ( x )b for all x ∈ R, then one of the following possibilities holds: (i) If either a or b is contained in C , then α = β= 0 and there exist p , q ∈ Qr ( RC) such that D ( x )= px and G ( x )= qx for all x ∈ R;(ii) If both a and b are contained in C , then either a = b= 0 or D and G are C-linearly dependent;(iii) If neither a nor b is contained in C , then there exist p , q ∈ Qr ( RC) and w ∈ Qr ( R) such that α ( x ) = [ q ,x] and β ( x ) = [ x ,p] for all x ∈ R, whence D ( x )= wx-xq and G ( x )= xp + avx with v ∈ C and aw-pb= 0.
基金Fundamental Research Funds (N110423007) for the Central Universities
文摘In this paper, it is proved that under certain conditions, each Jordan left derivation on a generalized matrix algebra is zero and each generalized Jordan left derivation is a generalized left derivation.
基金The first author supported in part by NNSF(10726051)of ChinaGrant in-aid for Scientific Research from Department of Mathematics,Jilin UniversityThe second author supported by Grant in-aid for Scientific Research from Department of Mathematics,Jilin University.
文摘Let R be a prime ring with a non-central Lie ideal L. In the present paper we show that if the composition DG of two generalized derivations D and G is zero on L, then DG must be zero on R. And we get all the possibilities for the composition of a couple of generalized derivations to be zero on a non-central Lie ideal of a prime ring.
文摘In our previous work, we study fuzzy Itôintegrals driven by a fuzzy Brownian motion. In this article, we continue this study. The purpose of this paper is to study the weak uniqueness of fuzzy stochastic differential equations taking into account fuzzy Brownian motion. For instance, we construct the fuzzy stochastic differential equation driven by a fuzzy Brownian motion. To define and prove our results, we use the fuzzification, the alpha cut method and the Hausdorff distance between two fuzzy quantities. Some results are to our credit in this article like the instance, we construct the fuzzy stochastic differrential equation driven by fuzzy Brownian motion. Furthermore, we develop fuzzy Itôcalculus driven by a fuzzy Brownian motion. Our result complement existing ones in that the fuzzy version of Brownian motion is taken into account.
基金Project supported by the National Natural Sciences Foundation of China(No.11272175)the Specialized Research Found for Doctoral Program of Higher Education(No.20130002110044)
文摘This paper reports a new derivative in the Eulerian description in flat space-the generalized covariant derivative with respect to time. The following contents are included:(a) the restricted covariant derivative with respect to time for Eulerian component is defined;(b) the postulate of the covariant form invariability in time field is set up;(c) the generalized covariant derivative with respect to time for generalized Eulerian component is defined;(d) the algebraic structure of the generalized covariant derivative with respect to time is made clear;(e) the covariant differential transformation group in time filed is derived. These progresses reveal the covariant form invariability of Eulerian space and time.
基金Project supported by the National Natural Sciences Foundation of China(No.11272175)the Specialized Research Found for Doctoral Program of Higher Education(No.20130002110044)
文摘The previous paper reported a new derivative in the Eulerian description in flat space—the generalized covariant derivative of generalized Eulerian component with respect to time. This paper extends the thought from the Eulerian description to the Lagrangian description:on the basis of the postulate of covariant form invariability in time field, we define a new derivative in the Lagrangian description in flat space—the generalized covariant derivative of generalized Lagrangian component with respect to time. Besides, the covariant differential transformation group is set up. The covariant form invariability of Lagrangian space-time is ascertained.
基金The research was supported by the National Natural Science Foundation of China(Grant No.50708012)co-supported by the New Faculty Research Fund for the Doctoral Program of Higher Education by the Ministry of Education of China(No.20070141073).
文摘The causes of the nonlinearity of self-excited aerodynamic force of bridge are interpreted from such two aspects as amplitude and wind velocity.The concept of"generalized flutter derivative"is proposed,and its physical meaning is illustrated.The graphs of the general-ized flutter derivatives of plate and Sutong Bridge section model are plotted.The characteristics of all generalized flutter derivatives are compared and analyzed,and their superiorities are verified.The results indicate that the physical meaning of generalized flutter derivatives are more explicit compared to the traditional ones.It is more convenient to understand the nonlinearity properties of self-excited aerodynamic force of bridge according to the generalized flutter derivatives graphs with the wind velocity as the horizontal coordinate.