To investigate the fire endurance of wood beams exposed to three-side fire, we conducted bearing capacity tests of two wood beams and experiments of five wood beams exposed to three-side fire. The finite element softw...To investigate the fire endurance of wood beams exposed to three-side fire, we conducted bearing capacity tests of two wood beams and experiments of five wood beams exposed to three-side fire. The finite element software ANSYS was also used to predict the fire endurance of those beams with the indirect order coupling method. It was found that the fire endurance decreases as the load level increases, and the reduction ratio tends to decrease. In the case of a certain load level, the fire endurance is improved if the section size is increased or covered by the fire protection coating. The central deformation increases as the fire duration increases, and the ratio of increase tends to rise. On another note, an increase in the density of wood leads to a rise in the fire endurance of a given beam. From the finite element method (FEM) calculation results, the fire endurance decreases as the load level increases, and the reduction ratio tends to decrease. When the load level is greater than 0.5, the fire endurance is significantly reduced, and it does not change significantly when the load level changes. Lastly, for a load level magnitude below 0.5, the fire endurance and load level are proportional to one another.展开更多
As the influence of the ratio of the characteristic value of structural resistance to that of frequent combination effect, K, on the thickness of concrete cover of prestressed concrete (PC) beams and slabs for fire ...As the influence of the ratio of the characteristic value of structural resistance to that of frequent combination effect, K, on the thickness of concrete cover of prestressed concrete (PC) beams and slabs for fire resistance is not considered sufficiently in design criteria for concrete structures in China and other countries at present, numerical analyses were carried out by ANSYS software on unbonded prestressed concrete (UPC) oneway simply-supported and continuous slabs and beams, and bonded PC simply-supported and continuous beams subjected to fire in 186 cases. In the analysis, K, section dimensions and the thickness of concrete cover are regarded as independent variables and some calculation parameters determined by trial and error based on test resuits. Calculation formula for fire endurance of UPC simply-supported and continuous slabs was proposed, and the recommended thicknesses of cover of PC beams and slabs was presented in consideration of the influence of K and section dimensions as well as fire endurance requirements. Comparison analysis of relevant design criterions in China and other countries was performed to verify the rationale of the proposed values.展开更多
基金Project supported by the National Natural Science Foundation of China (No. 51178115)the Priority Academic Program Development of Jiangsu Higher Education Institutionsthe Shanghai Rising-Star Program (Nos. 11QH1402100 and 07QB14031), China
文摘To investigate the fire endurance of wood beams exposed to three-side fire, we conducted bearing capacity tests of two wood beams and experiments of five wood beams exposed to three-side fire. The finite element software ANSYS was also used to predict the fire endurance of those beams with the indirect order coupling method. It was found that the fire endurance decreases as the load level increases, and the reduction ratio tends to decrease. In the case of a certain load level, the fire endurance is improved if the section size is increased or covered by the fire protection coating. The central deformation increases as the fire duration increases, and the ratio of increase tends to rise. On another note, an increase in the density of wood leads to a rise in the fire endurance of a given beam. From the finite element method (FEM) calculation results, the fire endurance decreases as the load level increases, and the reduction ratio tends to decrease. When the load level is greater than 0.5, the fire endurance is significantly reduced, and it does not change significantly when the load level changes. Lastly, for a load level magnitude below 0.5, the fire endurance and load level are proportional to one another.
基金Sponsored by the National Natural Science Foundation of China(Grant No.50678050)the Outstanding Youth Science Foundation of Heilongjiang Province(Grant No.2001-8)
文摘As the influence of the ratio of the characteristic value of structural resistance to that of frequent combination effect, K, on the thickness of concrete cover of prestressed concrete (PC) beams and slabs for fire resistance is not considered sufficiently in design criteria for concrete structures in China and other countries at present, numerical analyses were carried out by ANSYS software on unbonded prestressed concrete (UPC) oneway simply-supported and continuous slabs and beams, and bonded PC simply-supported and continuous beams subjected to fire in 186 cases. In the analysis, K, section dimensions and the thickness of concrete cover are regarded as independent variables and some calculation parameters determined by trial and error based on test resuits. Calculation formula for fire endurance of UPC simply-supported and continuous slabs was proposed, and the recommended thicknesses of cover of PC beams and slabs was presented in consideration of the influence of K and section dimensions as well as fire endurance requirements. Comparison analysis of relevant design criterions in China and other countries was performed to verify the rationale of the proposed values.