期刊文献+
共找到3,428篇文章
< 1 2 172 >
每页显示 20 50 100
Research on Instantaneous Angular Speed Signal Separation Method for Planetary Gear Fault Diagnosis
1
作者 Xinkai Song Yibao Zhang Shuo Zhang 《Modern Mechanical Engineering》 2024年第2期39-50,共12页
Planetary gear train is a critical transmission component in large equipment such as helicopters and wind turbines. Conducting damage perception of planetary gear trains is of great significance for the safe operation... Planetary gear train is a critical transmission component in large equipment such as helicopters and wind turbines. Conducting damage perception of planetary gear trains is of great significance for the safe operation of equipment. Existing methods for damage perception of planetary gear trains mainly rely on linear vibration analysis. However, these methods based on linear vibration signal analysis face challenges such as rich vibration sources, complex signal coupling and modulation mechanisms, significant influence of transmission paths, and difficulties in separating damage information. This paper proposes a method for separating instantaneous angular speed (IAS) signals for planetary gear fault diagnosis. Firstly, this method obtains encoder pulse signals through a built-in encoder. Based on this, it calculates the IAS signals using the Hilbert transform, and obtains the time-domain synchronous average signal of the IAS of the planetary gear through time-domain synchronous averaging technology, thus realizing the fault diagnosis of the planetary gear train. Experimental results validate the effectiveness of the calculated IAS signals, demonstrating that the time-domain synchronous averaging technology can highlight impact characteristics, effectively separate and extract fault impacts, greatly reduce the testing cost of experiments, and provide an effective tool for the fault diagnosis of planetary gear trains. 展开更多
关键词 Planetary Gear Train Encoder signal Instantaneous Angular Speed signal Time-Domain Synchronous Averaging fault Diagnosis
在线阅读 下载PDF
Acoustic fault signal extraction via the line-defect phononic crystals
2
作者 Tinggui CHEN Bo WU Dejie YU 《Frontiers of Mechanical Engineering》 SCIE CSCD 2022年第1期148-158,共11页
Rotating machine fault signal extraction becomes increasingly important in practical engineering applications.However,fault signals with low signal-to-noise ratios(SNRs)are difficult to extract,especially at the early... Rotating machine fault signal extraction becomes increasingly important in practical engineering applications.However,fault signals with low signal-to-noise ratios(SNRs)are difficult to extract,especially at the early stage of fault diagnosis.In this paper,2D line-defect phononic crystals(PCs)consisting of periodic acrylic tubes with slit are proposed for weak signal detection.The defect band,namely,the formed resonance band of line-defect PCs enables the incident acoustic wave at the resonance frequency to be trapped and enhanced at the resonance cavity.The noise can be filtered by the band gap.As a result,fault signals with high SNRs can be obtained for fault feature extraction.The effectiveness of weak harmonic and periodic impulse signal detection via line-defect PCs are investigated in numerical and experimental studies.All the numerical and experimental results indicate that line-defect PCs can be well used for extracting weak harmonic and periodic impulse signals.This work will provide potential for extracting weak signals in many practical engineering applications. 展开更多
关键词 phononic crystals line-defect fault signal extraction acoustic enhancement
原文传递
Analysis and Simulation for Planetary Gear Fault of Helicopter Based on Vibration Signal 被引量:3
3
作者 刘鑫 贾云献 +2 位作者 范智滕 周杰 邹效 《Journal of Donghua University(English Edition)》 EI CAS 2015年第1期148-150,共3页
Fault diagnosis for helicopter's main gearbox based on vibration signals by experiments always requires high costs. To solve this problem,a helicopter's planetary gear system is taken as an example. Firstly,a ... Fault diagnosis for helicopter's main gearbox based on vibration signals by experiments always requires high costs. To solve this problem,a helicopter's planetary gear system is taken as an example. Firstly,a simulation model is established by McFadden,and analyzed under ideal condition. Then this model is developed and improved as the delay-time model of the vibration signal which determines the phase-change of sidebands when the system is running. The cause and change-rules of planetary gear system's vibration signal are analyzed to establish the fault diagnosis model.At the same time,the vibration signal of fault condition is simulated and analyzed. This simulation method can provide a reference for fault monitoring and diagnosis for planetary gear system. 展开更多
关键词 planetary gear the phase of sideband vibration signal fault diagnosis
在线阅读 下载PDF
Measuring the Qatar-Kazeron Fault Dip Using Random Finite Fault Simulation of September 27, 2010 Kazeron Earthquake and Analytical Signal Map of Satellite Magnetic Data 被引量:1
4
作者 Soraya Dana Mahmood Almasian +2 位作者 Abdolmajid Asadi Mohsen Pourkermani Manouchehr Goreshi 《Open Journal of Geology》 2015年第2期73-82,共10页
In this research the fault parameters causing the September 27, 2010 Kazeron Earthquake with a magnitude of MW = 5.8 (BHRC) were determined using the random finite fault method. The parameters were recorded by 27 acce... In this research the fault parameters causing the September 27, 2010 Kazeron Earthquake with a magnitude of MW = 5.8 (BHRC) were determined using the random finite fault method. The parameters were recorded by 27 accelerometer stations. Simulation of strong ground motion is very useful for areas about which little information and data are available. Considering the distribution of earthquake records and the existing relationships, for the fault plane causing the September 27, 2010 Kazeron Earthquake the length of the fault along the strike direction and the width of the fault along the dip direction were determined to be 10 km and 7 km, respectively. Moreover, 10 elements were assumed along the length and 7 were assumed along the width of the plane. Research results indicated that the epicenter of the earthquake had a geographic coordination of 29.88N - 51.77E, which complied with the results reported by the Institute of Geophysics Tehran University (IGTU). In addition, the strike and dip measured for the fault causing the Kazeron Earthquake were 27 and 50 degrees, respectively. Therefore, the causing fault was almost parallel to and coincident with the fault. There are magnetic discontinuities on the analytical signal map with a north-south strike followed by a northwest-southeast strike. The discontinuities are consistent with the trend of Kazeron fault but are several kilometers away from it. Therefore, they show the fault depth at a distance of 12 km from the fault surface. 展开更多
关键词 Kazeron EARTHQUAKE ANALYTICAL signal MAP RANDOM Finite fault Method EARTHQUAKE Simulation
在线阅读 下载PDF
Assessment of the Relationship between ESR Signal Intensity and Grain Size Distribution in Shear Zones within the Atotsugawa Fault System, Central Japan
5
作者 Emilia B. Fantong Akira Takeuchi +1 位作者 Toshio Kamishima Ryosuke Doke 《International Journal of Geosciences》 2014年第11期1282-1299,共18页
For the first time, a relationship between ESR signal intensity and grain size distribution (sieve technique) in shear zones within the Atotsugawa fault system have been investigated using fault core rocks. The grain ... For the first time, a relationship between ESR signal intensity and grain size distribution (sieve technique) in shear zones within the Atotsugawa fault system have been investigated using fault core rocks. The grain size distributions were estimated using the sieve technique and microscopic observations. Stacks of sieves with openings that decrease consecutively in the order of 4.75 mm, 1.18 mm, 600 μm, 300 μm, 150 μm and 75 μm were chosen for this study. Grain size distributions analysis revealed that samples further from the slip plane have larger d50 (average gain size) (0.45 mm at a distance of 30 - 50 mm from the slip plane) while those close to the slip plane have smaller d50 values (0.19 mm at a distance of 0 - 10 mm from the slip plane). This is due to intensive crushing that is always associated with large displacement during fault activities. However, this pattern was not respected in all shear zones in that, larger d50 values were instead observed in samples close to the slip plane due to admixture of fault rocks from different fault activities. Results from ESR analysis revealed that the relatively finer samples close to the slip plane have low ESR signals intensity while those further away (coarser) have relatively higher signal intensity. This tendency however, is not consistence in some of the shear zones due to a complex network of anatomizing faults. The variation in grain size distribution within some of the shear zones implies that, a series of fault events have taken place in the past thus underscoring the need for further investigation of the possibility of reoccurrence of faults. 展开更多
关键词 Active fault SHEAR ZONES ESR signal Intensity GRAIN Size Distribution Atotsugawa fault System
在线阅读 下载PDF
Gearbox Fault Diagnosis using Adaptive Zero Phase Time-varying Filter Based on Multi-scale Chirplet Sparse Signal Decomposition 被引量:16
6
作者 WU Chunyan LIU Jian +2 位作者 PENG Fuqiang YU Dejie LI Rong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第4期831-838,共8页
When used for separating multi-component non-stationary signals, the adaptive time-varying filter(ATF) based on multi-scale chirplet sparse signal decomposition(MCSSD) generates phase shift and signal distortion. To o... When used for separating multi-component non-stationary signals, the adaptive time-varying filter(ATF) based on multi-scale chirplet sparse signal decomposition(MCSSD) generates phase shift and signal distortion. To overcome this drawback, the zero phase filter is introduced to the mentioned filter, and a fault diagnosis method for speed-changing gearbox is proposed. Firstly, the gear meshing frequency of each gearbox is estimated by chirplet path pursuit. Then, according to the estimated gear meshing frequencies, an adaptive zero phase time-varying filter(AZPTF) is designed to filter the original signal. Finally, the basis for fault diagnosis is acquired by the envelope order analysis to the filtered signal. The signal consisting of two time-varying amplitude modulation and frequency modulation(AM-FM) signals is respectively analyzed by ATF and AZPTF based on MCSSD. The simulation results show the variances between the original signals and the filtered signals yielded by AZPTF based on MCSSD are 13.67 and 41.14, which are far less than variances (323.45 and 482.86) between the original signals and the filtered signals obtained by ATF based on MCSSD. The experiment results on the vibration signals of gearboxes indicate that the vibration signals of the two speed-changing gearboxes installed on one foundation bed can be separated by AZPTF effectively. Based on the demodulation information of the vibration signal of each gearbox, the fault diagnosis can be implemented. Both simulation and experiment examples prove that the proposed filter can extract a mono-component time-varying AM-FM signal from the multi-component time-varying AM-FM signal without distortion. 展开更多
关键词 zero phase time-varying filter MULTI-SCALE CHIRPLET sparse signal decomposition speed-changing gearbox fault diagnosis
在线阅读 下载PDF
Analogue and Mixed-Signal Production Test Speed-Up by Means of Fault List Compression
7
作者 Nuno Guerreiro Marcelino Santos Paulo Teixeira 《Circuits and Systems》 2013年第5期407-421,共15页
Accurate test effectiveness estimation for analogue and mixed-signal Systems on a Chip (SoCs) is currently prohibitive in the design environment. One of the factors that sky rockets fault simulation costs is the numbe... Accurate test effectiveness estimation for analogue and mixed-signal Systems on a Chip (SoCs) is currently prohibitive in the design environment. One of the factors that sky rockets fault simulation costs is the number of structural faults which need to be simulated at circuit-level. The purpose of this paper is to propose a novel fault list compression technique by defining a stratified fault list, build with a set of “representative” faults, one per stratum. Criteria to partition the fault list in strata, and to identify representative faults are presented and discussed. A fault representativeness metric is proposed, based on an error probability. The proposed methodology allows different tradeoffs between fault list compression and fault representation accuracy. These tradeoffs may be optimized for each test preparation phase. The fault representativeness vs. fault list compression tradeoff is evaluated with an industrial case study—a DC-DC (switched buck converter). Although the methodology is presented in this paper using a very simple fault model, it may be easily extended to be used with more elaborate fault models. The proposed technique is a significant contribution to make mixed-signal fault simulation cost-effective as part of the production test preparation. 展开更多
关键词 TEST fault Model fault Clustering fault Simulation fault REPRESENTATIVENESS Analog MIXED-signal TEST
在线阅读 下载PDF
声信号下基于双通道特征融合网络的电抗器故障诊断方法
8
作者 孙抗 张浩 +2 位作者 杨林 常亮 杨明 《电力系统保护与控制》 北大核心 2025年第1期104-113,共10页
目前,干式电抗器故障诊断方法主要围绕在基于振动信号的机械故障展开,故障类型单一,并且存在传感器安装困难等问题。为此,搭建了基于声信号下的干式电抗器故障试验平台,设置了多种故障类型。为了提升小样本下故障识别的准确率,提出一种... 目前,干式电抗器故障诊断方法主要围绕在基于振动信号的机械故障展开,故障类型单一,并且存在传感器安装困难等问题。为此,搭建了基于声信号下的干式电抗器故障试验平台,设置了多种故障类型。为了提升小样本下故障识别的准确率,提出一种基于双通道特征融合网络的干式电抗器故障诊断方法。首先,采用格拉姆角场(Gramian angle field,GAF)进行编码,将一维时序转化为二维图像。其次,采用双通道并行的CNN-ResNet网络结构,引入高效通道注意力机制(efficient channel attention,ECA)来获取二维关键信息,将二维图像特征与一维时序特征进行深度提取与融合。最后,基于有限元仿真来获取源域数据,采用迁移学习方法来获取目标域最优网络参数。试验对比表明:所提方法相比其他方法有着较强的特征提取能力,能够将故障特征显著分离,在小样本下的故障识别准确率最高可达99.5%,同时具有良好的泛化性和收敛速度。 展开更多
关键词 电抗器 声信号 故障 特征
在线阅读 下载PDF
谐波微弱信号特征的方差曲线周期识别法
9
作者 薛强 田瑞兰 +1 位作者 李海萍 关淮桐 《振动.测试与诊断》 北大核心 2025年第1期51-56,199,共7页
针对随机因素和微弱信号初相位影响的问题,构造了强噪声背景下检测谐波微弱信号频率、相位的方差曲线周期识别法。首先,基于随机Melnikov函数和系统关于相位分岔图的周期特性,初步提出周期识别法;其次,论证分岔图和方差曲线具有一致性,... 针对随机因素和微弱信号初相位影响的问题,构造了强噪声背景下检测谐波微弱信号频率、相位的方差曲线周期识别法。首先,基于随机Melnikov函数和系统关于相位分岔图的周期特性,初步提出周期识别法;其次,论证分岔图和方差曲线具有一致性,进一步将周期识别法优化为方差曲线周期识别法;然后,基于频谱泄露最小原则,设计自适应离散傅里叶变换数据处理方法来解决由方差曲线不光滑而引起的结果不准确问题;最后,采用二次检测来解决检测系统中策动力信号与被测信号存在频差而导致动力学转迁的不明显问题。仿真结果表明,该方法不受被测信号初相位影响,可识别淹没在强噪声中的微弱信号,被识别信号的信噪比可低达-74.96 dB。列车轴箱轴承故障实验中获得的方差曲线周期现象清晰,也表明了该方法的工程实用性。 展开更多
关键词 轴承 故障诊断 信号处理 DUFFING系统 方差曲线周期法 自适应离散傅里叶变换
在线阅读 下载PDF
基于改进RCMDE与优化随机森林的掘进机截割头故障诊断
10
作者 马天兵 杨婷 +3 位作者 李长鹏 杜菲 史瑞 于平平 《科学技术与工程》 北大核心 2025年第9期3629-3636,共8页
针对掘进机截割振动信号故障特征不易提取和识别困难等问题,提出了一种精细复合多尺度模糊散布熵(refined composite multiscale fuzzy dispersion entropy,RCMFDE)与河马优化随机森林(hippo optimized random forest,HORF)的掘进机截... 针对掘进机截割振动信号故障特征不易提取和识别困难等问题,提出了一种精细复合多尺度模糊散布熵(refined composite multiscale fuzzy dispersion entropy,RCMFDE)与河马优化随机森林(hippo optimized random forest,HORF)的掘进机截割头故障诊断新方法。首先,利用RCMFDE全面表征掘进机截割头故障特征信息,构建故障特征数据集;其次,采用HORF对故障类型进行训练和测试,实现掘进机截割头的故障模式识别;最后,将所提方法运用在掘进机截割头实验数据分析中,并将其与现有的多尺度模糊熵、精细复合多尺度散布熵故障特征提取方法做比较。实验结果显示:RCMFDE在挖掘故障特征信息方面优于其他两种熵方法,而河马随机森林在故障分类方面优于极限学习机和支持向量机等分类器,所提故障识别模型可以更加精确地识别掘进机截割头的故障类型,且识别准确率达到100%。 展开更多
关键词 掘进机 截割振动信号 特征提取 故障诊断 精细复合多尺度模糊散布熵
在线阅读 下载PDF
考虑键相丢失的二重逐点Vold-Kalman滤波涡轮泵故障诊断
11
作者 王帅 孙若斌 +2 位作者 翟智 马猛 陈雪峰 《振动与冲击》 北大核心 2025年第3期210-220,229,共12页
液体火箭发动机涡轮泵在高转速、高温度梯度、高压的非平稳工况下极易发生故障。Vold-Kalman滤波方法能够从复杂时变振动信号中检测出涡轮泵转子故障,但由于涡轮泵振动传递路径复杂,该方法依赖于所采集振动信号的载波的高采样率高精度... 液体火箭发动机涡轮泵在高转速、高温度梯度、高压的非平稳工况下极易发生故障。Vold-Kalman滤波方法能够从复杂时变振动信号中检测出涡轮泵转子故障,但由于涡轮泵振动传递路径复杂,该方法依赖于所采集振动信号的载波的高采样率高精度的相位信息,在键相信号丢失和采样频率低(一圈一个脉冲)的实际应用场景下存在故障检测精度偏低的问题;且Vold-Kalman滤波使用批量式优化的方法,求解缓慢,无法在箭载计算机上实现在线检测故障。针对上述两个问题,为实现毫秒级的涡轮泵故障实时诊断,提出了一种滤波诊断方法——二重逐点Vold-Kalman滤波器(double point-wise Vold-Kalman filter,DPVKF)。DPVKF首先建立各阶次分量状态转移和状态观测的时变线性高斯模型;然后,从低精度的转速脉冲和振动信号中准确重构相应载波的高精度瞬变相位;随后,在重构相位的指导下,得到各阶次复包络的最优线性无偏估计;最终,在复杂激励干扰下提取到涡轮泵转子的故障特征。故障模拟试验和某型号涡轮泵低温轴承运转试验表明,提出的方法可实现高实时性、高可靠性的涡轮泵转子故障诊断。 展开更多
关键词 二重逐点Vold-Kalman滤波(DPVKF) 键相信号丢失 涡轮泵 故障诊断
在线阅读 下载PDF
采用特征频率电流相位相似度的配电网接地故障选线方法
12
作者 李江涵 张钧益 +5 位作者 熊庆 庄毅 唐逸杰 张其旺 王致文 汲胜昌 《西安交通大学学报》 北大核心 2025年第4期81-92,共12页
针对小电流接地系统单相接地故障选线存在特征微弱、选线效果易受接地过渡电阻影响等难题,提出了一种采用特征频率电流相位相似度的配电网接地故障选线方法。首先,采用信号注入法,对小电流接地系统发生单相接地故障后的零序电流分布和... 针对小电流接地系统单相接地故障选线存在特征微弱、选线效果易受接地过渡电阻影响等难题,提出了一种采用特征频率电流相位相似度的配电网接地故障选线方法。首先,采用信号注入法,对小电流接地系统发生单相接地故障后的零序电流分布和注入特征电流信号分布展开分析,获得了故障特征电流分布规律;其次,分析不同特征频率、线路长度和线路拓扑结构对注入电流信号传播特性的影响,选择220 Hz作为注入电流的特征频率。采用PSCAD/EMTDC平台,搭建了配电网仿真模型,当故障发生后注入特征频率电流,分析每条线路特征频率信号的幅值和相位特征,利用特征频率电流的相位,提出了采用特征频率电流相位相似度的选线方法,构建了单相接地故障选线判据。对单相接地故障的不同接地过渡电阻工况进行仿真实例验证,并利用所提方法进行选线,结果表明:在高阻接地工况下,所提方法能够准确识别故障线路,具备较高的灵敏度和准确性;与传统选线方法相比,所提方法的复杂度更低,且可将接地过渡电阻提升至10 kΩ。所提方法可为小电流接地系统单相接地故障选线的理论研究提供一种新思路。 展开更多
关键词 配电网 单相接地故障 信号注入 故障选线 电流相位相似度
在线阅读 下载PDF
基于二次CEEMDAN与CCJC的滚动轴承故障冲击特征提取
13
作者 张亢 曹振华 +2 位作者 刘鹏飞 陈向民 牛晓瑞 《噪声与振动控制》 北大核心 2025年第1期112-118,247,共8页
滚动轴承故障振动信号的成分复杂多样,且受噪声和传递路径的影响,导致从中提取表征故障的周期性冲击成分难度很大。对此,利用自适应噪声完全集合经验模态分解(Complete Ensemble Empirical Mode Decomposition with Adaptive Noise,CEEM... 滚动轴承故障振动信号的成分复杂多样,且受噪声和传递路径的影响,导致从中提取表征故障的周期性冲击成分难度很大。对此,利用自适应噪声完全集合经验模态分解(Complete Ensemble Empirical Mode Decomposition with Adaptive Noise,CEEMDAN)良好的非平稳非线性数据处理能力,首先将原始轴承振动信号中的各种成分予以分离,在此基础上,提出相关系数跳变准则(Correlation Coefficient Jump Criterion,CCJC)区别以故障周期性冲击成分为主的分量,以及以噪声和转频成分为主的分量,并通过二次分解二次重构的方式,最大限度去除噪声与转频相关成分,最终得到提纯的滚动轴承故障周期性冲击信号。通过对滚动轴承故障仿真信号和基准数据的分析,表明所提方法可以准确高效提取轴承故障周期性冲击成分;对滚动轴承实验振动信号进行分析,并与经典方法对比,验证所提方法的优势及其良好的工程应用前景。 展开更多
关键词 故障诊断 滚动轴承 振动信号 周期性冲击特征 自适应噪声完全集合经验模态分解 相关系数跳变准则
在线阅读 下载PDF
基于多任务学习的电机声信号域自适应故障诊断方法
14
作者 王永淇 肖登宇 +2 位作者 胡嫚 秦毅 吴飞 《电子测量技术》 北大核心 2025年第1期8-19,共12页
由于高质量的电机故障数据样本的采集和处理成本过高,新采集的数据样本存在无标注的情况,而域自适应可以借助现有数据对无标注的新数据进行处理识别,因而在故障诊断领域受到了广泛关注。在基于域自适应的电机故障诊断领域,存在两个问题... 由于高质量的电机故障数据样本的采集和处理成本过高,新采集的数据样本存在无标注的情况,而域自适应可以借助现有数据对无标注的新数据进行处理识别,因而在故障诊断领域受到了广泛关注。在基于域自适应的电机故障诊断领域,存在两个问题:常用域自适应框架下会出现多任务梯度冲突。同时,现有方法极少研究复杂运行状态之间的迁移任务。因此本文提出了AMDA电机故障诊断方法以解决上述问题。AMDA方法利用多层一维卷积层、批量归一化层和池化层构成的特征提取器,提取源域和目标域的高阶特征;之后结合使用基于对抗的方法和基于分布差异度量的方法,减小源域和目标域数据特征的分布差异;最后引入基于梯度对齐的多任务学习方法,对故障分类器、域判别器和分布差异度量三个任务进行平衡和优化,减小多任务梯度之间的冲突,最终得到基于多任务学习的电机声信号的域自适应故障诊断模型。使用所提出的AMDA方法在多个试验设置下进行跨运行状态故障诊断试验,试验结果表明,AMDA方法在基于声信号的跨运行状态电机故障诊断试验中,完成了稳定运行状态(Stable)、启动运行状态(Start)和循环运行状态(NEDC)之间的迁移任务,最高诊断正确率可达91.47%。同时,AMDA方法在两个对比试验中,性能均显著高于其他方法,具有一定的研究价值和工程应用价值。 展开更多
关键词 电动机 声信号 故障诊断 域自适应 多任务学习
在线阅读 下载PDF
基于双模态分解和RES-SA模型的VSC-STATCOM逆变器故障识别
15
作者 毕贵红 陈冬静 +3 位作者 赵四洪 孔凡文 张靖超 陈仕龙 《云南大学学报(自然科学版)》 北大核心 2025年第1期49-59,共11页
电压源型静止同步补偿器(voltage source static synchronous compensator,VSC-STATCOM)可以减少电压峰谷波动、有效控制谐波和补偿无功功率,从而改善电能质量.其中,VSC-STATCOM正常工作是逆变器稳定运行的前提,并网情况下逆变器绝缘栅... 电压源型静止同步补偿器(voltage source static synchronous compensator,VSC-STATCOM)可以减少电压峰谷波动、有效控制谐波和补偿无功功率,从而改善电能质量.其中,VSC-STATCOM正常工作是逆变器稳定运行的前提,并网情况下逆变器绝缘栅双极型晶体管(insulated gate bipolar transistor,IGBT)开路故障诊断需要考虑负载动态变化所导致故障信号复杂程度高、复杂系统各元件间相互作用以及高背景噪声的影响等因素,对故障信号特征提取和识别提出了更高的要求.论文以并网逆变器VSC-STATCOM不同类型开路故障为对象,提出一种融合双模态分解信号处理方法与残差注意力网络RES-SA模型的组合故障诊断方法.针对单模态多尺度信号分解方法对高背景噪声和复杂信号特征提取不充分的问题,提出利用完备经验模态分解和奇异谱分解两种分解方法对同一故障信号进行双模态多尺度分解,并将三相电流双模态多尺度分量整合为输入特征矩阵,为RES-SA深度学习组合模型提取隐藏特征提供基础.不同方案的仿真结果表明提出的方法特征提取能力强,且抗噪性能好,对并网型逆变器IGBT开路故障识别率准确高. 展开更多
关键词 电压源型静止同步补偿器 信号分解技术 残差网络 自注意力机制 故障诊断
在线阅读 下载PDF
多尺度迁移学习的轴承故障诊断
16
作者 尹洪申 刘文峰 +1 位作者 俞啸 丁恩杰 《机械设计与制造》 北大核心 2025年第1期10-14,共5页
针对实际采煤机轴承故障诊断中存在变工况特征提取困难,故障训练样本不足等问题,结合当今流行的迁移学习的方法,提出了一种多尺度迁移学习的轴承诊断方法。首先通过经验模式分解(Empirical Mode Decomposition,EMD)从振动信号中分解成... 针对实际采煤机轴承故障诊断中存在变工况特征提取困难,故障训练样本不足等问题,结合当今流行的迁移学习的方法,提出了一种多尺度迁移学习的轴承诊断方法。首先通过经验模式分解(Empirical Mode Decomposition,EMD)从振动信号中分解成不同频率的本征模态函数(Intrinsic Mode Function,IMF);其次将得到的不同频率的IMF与卷积神经网络中不同尺寸卷积核提取到的丰富特征互补构建多尺度特征融合;采用联合最大平均差异(Joint Maximum Mean Discrep⁃ancy,JMMD)特征迁移的方法使源域与目标域联合分布差异最小化,然后通过多尺度融合模型进行分类识别;最后在凯斯西储大学轴承数据集和江南大学数据集对该方法进行了验证。实验结果证明该模型在两种不同工况和型号的轴承数据集中均取得较高的准确率,表现出模型良好的泛化能力。 展开更多
关键词 振动信号 故障诊断 多尺度特征融合 迁移学习 联合最大平均差异 特征迁移
在线阅读 下载PDF
基于混合调制模型的电力系统振荡下动态相量和频率估计
17
作者 林勇 李峰 《微型电脑应用》 2025年第1期217-220,共4页
为了提高电力系统振荡下动态相量和频率的估计精度,优化电力系统存在振荡情况下的信号模型,构建一种由幅值调制与相角调制参数构成的混合调制(HM)模型。对信号采用泰勒级数展开计算实现线性化转换过程,设计相应的实验来实现振荡信号与... 为了提高电力系统振荡下动态相量和频率的估计精度,优化电力系统存在振荡情况下的信号模型,构建一种由幅值调制与相角调制参数构成的混合调制(HM)模型。对信号采用泰勒级数展开计算实现线性化转换过程,设计相应的实验来实现振荡信号与频率线性变化条件下的算法性能验证。研究结果表明,提高幅值与相角调制系数时形成了更大的误差,TVE都在3×10^(-4)%以内,满足标准测试要求。设置噪声信号后形成了更明显的测试误差,TVE都在0.06%以内,比标准3%更小,同时频率变化率误差低于15 Hz/s。故障信号测试发现,采用所提算法经过1.2 s振荡后形成的幅值估计曲线未出现明显波动,表现为更光滑的特点。 展开更多
关键词 电力系统 振荡 混合调制模型 动态相量 频率 故障信号
在线阅读 下载PDF
基于声音信号的转辙机故障诊断研究
18
作者 梁续继 戴胜华 《铁道标准设计》 北大核心 2025年第2期183-190,共8页
铁路信号系统中转辙机的故障率较高,需要采用智能化解决方案对故障进行诊断。传统的解决方案基于电信号,未能充分利用机械电子设备的物理特征。针对这一问题,基于转辙机动作时的声音进行故障诊断。首先,根据转辙机的动作特性提出6种会... 铁路信号系统中转辙机的故障率较高,需要采用智能化解决方案对故障进行诊断。传统的解决方案基于电信号,未能充分利用机械电子设备的物理特征。针对这一问题,基于转辙机动作时的声音进行故障诊断。首先,根据转辙机的动作特性提出6种会影响声音信号的常见机械故障。然后,根据声音诊断在特征提取方面的不同路线,采用3种技术方案。端到端方案通过wav2vec2.0语音识别框架直接进行训练和识别;特征矩阵方案提取声音信号的梅尔倒谱系数(MFCC),通过主成分分析(PCA)得到固定尺寸的特征矩阵,由多分类支持向量机(SVM)进行故障分类;声音图像化方案生成声音信号的语谱图,同时建立卷积神经网络VGG16的轻量化改进模型,将语谱图输入至该模型中进行训练和识别。实验结果表明,3种技术方案均能有效地对包括正常工作和6种故障类型的7种工作状态实现诊断,准确率分别为99.8%、94.2%和96.6%。验证了基于声音进行转辙机故障诊断的3种技术方案的可行性,并体现了语音领域技术在转辙机故障诊断中的应用价值。 展开更多
关键词 转辙机 故障诊断 声音信号 特征提取 wav2vec2.0 MFCC 语谱图
在线阅读 下载PDF
基于电流信号的变速工况行星齿轮箱故障诊断
19
作者 乔宁宁 李峰 《现代制造工程》 北大核心 2025年第1期111-120,共10页
基于电流信号的故障诊断方法在信号采集和抗外界干扰方面存在一定的优势。由于工频信号的存在,导致齿轮故障特征提取困难;因此,去除电流信号中的工频成分是一项重要的工作,尤其是当齿轮箱处于变速工况时。目前,变速工况时基于电流信号... 基于电流信号的故障诊断方法在信号采集和抗外界干扰方面存在一定的优势。由于工频信号的存在,导致齿轮故障特征提取困难;因此,去除电流信号中的工频成分是一项重要的工作,尤其是当齿轮箱处于变速工况时。目前,变速工况时基于电流信号的行星齿轮箱故障诊断仍没有理想的方法。提出了一种基于无功功率、格拉姆角场和平均教师半监督模型的行星齿轮故障诊断方法。首先通过计算系统无功功率去除时变电流信号中的工频成分,然后利用格拉姆角场将一维的时序数据转化为特征信息更完善的二维数据,最后基于改进的半监督学习模型实现了行星齿轮的故障识别。试验结果表明,在使用20%的有标记数据的情况下故障诊断准确率可以达到92.31%。 展开更多
关键词 故障诊断 电流信号 行星齿轮箱 变速工况 半监督学习
在线阅读 下载PDF
滚珠丝杠副故障振动信号分析及智能诊断方法综述
20
作者 马会杰 黄志强 +2 位作者 邓四二 李开元 鞠飞 《计算机测量与控制》 2025年第1期1-8,28,共9页
滚珠丝杠副作为一种旋转运动与直线运动相互转化的高精度部件,被广泛应用在机床、汽车、航空航天等机械设备中,其健康状态对设备的性能和质量具有重大影响;针对滚珠丝杠副振动信号的特点,系统综述了滚珠丝杠副故障振动信号处理及智能诊... 滚珠丝杠副作为一种旋转运动与直线运动相互转化的高精度部件,被广泛应用在机床、汽车、航空航天等机械设备中,其健康状态对设备的性能和质量具有重大影响;针对滚珠丝杠副振动信号的特点,系统综述了滚珠丝杠副故障振动信号处理及智能诊断方法;介绍了滚珠丝杠副振动信号的特征分析方法,包括时域分析和基展开方法;讨论了滚珠丝杠副智能故障分类方法,包括支持向量机、反向传播神经网络和卷积神经网络等;对当前滚珠丝杠副振动信号处理方法及故障诊断的研究现状进行了总结,并对未来潜在的发展方向进行了展望。 展开更多
关键词 滚珠丝杠副 信号分析 故障诊断 人工智能 模式识别
在线阅读 下载PDF
上一页 1 2 172 下一页 到第
使用帮助 返回顶部