期刊文献+
共找到2,374篇文章
< 1 2 119 >
每页显示 20 50 100
Gear Fault Diagnosis Based on Rough Set and Support Vector Machine 被引量:3
1
作者 TIAN Huifang SUN Shanxia School of Mechanical and Electrical Engineering,Wuhan University of Technology,Wuhan 430070,China, 《武汉理工大学学报》 CAS CSCD 北大核心 2006年第S3期1046-1051,共6页
By introducing Rough Set Theory and the principle of Support vector machine,a gear fault diagnosis method based on them is proposed.Firstly,diagnostic decision-making is reduced based on rough set theory,and the noise... By introducing Rough Set Theory and the principle of Support vector machine,a gear fault diagnosis method based on them is proposed.Firstly,diagnostic decision-making is reduced based on rough set theory,and the noise and redundancy in the sample are removed,then,according to the chosen reduction,a support vector machine multi-classifier is designed for gear fault diagnosis.Therefore,SVM’training data can be reduced and running speed can quicken.Test shows its accuracy and effi- ciency of gear fault diagnosis. 展开更多
关键词 ROUGH set support VECTOR machine fault diagnosis multi-classifier
在线阅读 下载PDF
Ellipsoidal bounding set-membership identification approach for robust fault diagnosis with application to mobile robots 被引量:7
2
作者 Bo Zhou Kun Qian +1 位作者 Xudong Ma Xianzhong Dai 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2017年第5期986-995,共10页
A robust fault diagnosis approach is developed by incorporating a set-membership identification (SMI) method. A class of systems with linear models in the form of fault related parameters is investigated, with model u... A robust fault diagnosis approach is developed by incorporating a set-membership identification (SMI) method. A class of systems with linear models in the form of fault related parameters is investigated, with model uncertainties and parameter variations taken into account explicitly and treated as bounded errors. An ellipsoid bounding set-membership identification algorithm is proposed to propagate bounded uncertainties rigorously and the guaranteed feasible set of faults parameters enveloping true parameter values is given. Faults arised from abrupt parameter variations can be detected and isolated on-line by consistency check between predicted and observed parameter sets obtained in the identification procedure. The proposed approach provides the improved robustness with its ability to distinguish real faults from model uncertainties, which comes with the inherent guaranteed robustness of the set-membership framework. Efforts are also made in this work to balance between conservativeness and computation complexity of the overall algorithm. Simulation results for the mobile robot with several slipping faults scenarios demonstrate the correctness of the proposed approach for faults detection and isolation (FDI). 展开更多
关键词 set-membership identification fault diagnosis fault detection and isolation (FDI) bounded error mobile robot
在线阅读 下载PDF
Fault Diagnosis of a Rotary Machine Based on Information Entropy and Rough Set 被引量:3
3
作者 LI Jian-lan HUANG Shu-hong 《International Journal of Plant Engineering and Management》 2007年第4期199-206,共8页
There exists some discord or contradiction of information during the process of fault diagnosis for rotary machine. But the traditional methods used in fault diagnosis can not dispose of the information. A model of fa... There exists some discord or contradiction of information during the process of fault diagnosis for rotary machine. But the traditional methods used in fault diagnosis can not dispose of the information. A model of fault diagnosis for a rotary machine based on information entropy theory and rough set theory is presented in this paper. The model has clear mathematical definition and can dispose both complete unification information and complete inconsistent information of vibration faults. By using the model, decision rules of six typical vibration faults of a steam turbine and electric generating set are deduced from experiment samples. Finally, the decision rules are validated by selected samples and good identification results are acquired. 展开更多
关键词 fault diagnosis rough set information entropy decision rule SAMPLE rotary machine
在线阅读 下载PDF
FAULT DIAGNOSIS BASED ON INTEGRATION OF CLUSTER ANALYSIS, ROUGH SET METHOD AND FUZZY NEURAL NETWORK 被引量:3
4
作者 FengZhipeng SongXigeng ChuFulei 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2004年第3期349-352,共4页
In order to increase the efficiency and decrease the cost of machinerydiagnosis, a hybrid system of computational intelligence methods is presented. Firstly, thecontinuous attributes in diagnosis decision system are d... In order to increase the efficiency and decrease the cost of machinerydiagnosis, a hybrid system of computational intelligence methods is presented. Firstly, thecontinuous attributes in diagnosis decision system are discretized with the self-organizing map(SOM) neural network. Then, dynamic reducts are computed based on rough set method, and the keyconditions for diagnosis are found according to the maximum cluster ratio. Lastly, according to theoptimal reduct, the adaptive neuro-fuzzy inference system (ANFIS) is designed for faultidentification. The diagnosis of a diesel verifies the feasibility of engineering applications. 展开更多
关键词 fault diagnosis Self-erganizing map Rough sets Adaptive neuro-fuzzyinference system
在线阅读 下载PDF
Power transformer fault diagnosis model based on rough set theory with fuzzy representation 被引量:1
5
作者 李明华 董明 严璋 《Journal of Pharmaceutical Analysis》 SCIE CAS 2007年第1期9-13,55,共6页
Objective Due to the incompleteness and complexity of fault diagnosis for power transformers,a comprehensive rough-fuzzy scheme for solving fault diagnosis problems is presented.Fuzzy set theory is used both for repre... Objective Due to the incompleteness and complexity of fault diagnosis for power transformers,a comprehensive rough-fuzzy scheme for solving fault diagnosis problems is presented.Fuzzy set theory is used both for representation of incipient faults' indications and producing a fuzzy granulation of the feature space.Rough set theory is used to obtain dependency rules that model indicative regions in the granulated feature space.The fuzzy membership functions corresponding to the indicative regions,modelled by rules,are stored as cases.Results Diagnostic conclusions are made using a similarity measure based on these membership functions.Each case involves only a reduced number of relevant features making this scheme suitable for fault diagnosis.Conclusion Superiority of this method in terms of classification accuracy and case generation is demonstrated. 展开更多
关键词 rough set decision table fuzzy logic fault diagnosis
在线阅读 下载PDF
A Simple Method to Derive Minimal Cut Sets for a Non-coherent Fault Tree 被引量:2
6
作者 Takehisa Kohda 《International Journal of Automation and computing》 EI 2006年第2期151-156,共6页
Minimal cut sets (or prime implicants: minimal combinations of basic event conditions leading to system failure) are important information for reliability/safety analysis and design. To obtain minimal cut sets for ... Minimal cut sets (or prime implicants: minimal combinations of basic event conditions leading to system failure) are important information for reliability/safety analysis and design. To obtain minimal cut sets for general non-coherent fault trees, including negative basic events or multi-valued basic events, a special procedure such as the consensus rule must be applied to the results obtained by logical operations for coherent fault trees, which will require more steps and time. This paper proposes a simple method for a non-coherent fault tree, whose top event is represented as an AND combination of monotonic sub-trees. A "monotonic" sub-tree means that it does not have both positive and negative representations for each basic event. It is proven that minimal cut sets can be obtained by a conventional method for coherent fault trees. An illustrative example of a simple event tree analysis shows the detail and characteristics of the proposed method. 展开更多
关键词 Non-coherent fault trees monotonic sub-trees minimal cut sets.
在线阅读 下载PDF
Gravity-based heuristic for set covering problems and its application in fault diagnosis 被引量:2
7
作者 Yun Li Zhiming Cai 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第3期391-398,共8页
A novel algorithm named randomized binary gravita- tional search (RBGS) algorithm is proposed for the set covering problem (SCP). It differs from previous SCP approaches because it does not work directly on the SC... A novel algorithm named randomized binary gravita- tional search (RBGS) algorithm is proposed for the set covering problem (SCP). It differs from previous SCP approaches because it does not work directly on the SCP matrix. In the proposed algo- rithm, the solution of SCP is viewed as multi-dimension position of objects in the binary search space. All objects in the space attract each other by the gravity force, and this force causes a global movement of all objects towards the objects with heavier masses which correspond to good solutions. Computation results show that the proposed algorithm is very competitive. In addition, the proposed aigodthm is extended for SCP to solve the fault diagno- sis problem in graph-based systems. 展开更多
关键词 set covering problem (SCP) gravity force binary search space fault diagnosis.
在线阅读 下载PDF
Rough Set Theory Based Approach for Fault Diagnosis Rule Extraction of Distribution System 被引量:3
8
作者 ZHOU Yong-yong ZHOU Quan +4 位作者 LIU Jia-bin LIU Yu-ming REN Hai-jun SUN Cai-xin LIU Xu 《高电压技术》 EI CAS CSCD 北大核心 2008年第12期2713-2718,共6页
As the first step of service restoration of distribution system,rapid fault diagnosis is a significant task for reducing power outage time,decreasing outage loss,and subsequently improving service reliability and safe... As the first step of service restoration of distribution system,rapid fault diagnosis is a significant task for reducing power outage time,decreasing outage loss,and subsequently improving service reliability and safety.This paper analyzes a fault diagnosis approach by using rough set theory in which how to reduce decision table of data set is a main calculation intensive task.Aiming at this reduction problem,a heuristic reduction algorithm based on attribution length and frequency is proposed.At the same time,the corresponding value reduction method is proposed in order to fulfill the reduction and diagnosis rules extraction.Meanwhile,a Euclid matching method is introduced to solve confliction problems among the extracted rules when some information is lacking.Principal of the whole algorithm is clear and diagnostic rules distilled from the reduction are concise.Moreover,it needs less calculation towards specific discernibility matrix,and thus avoids the corresponding NP hard problem.The whole process is realized by MATLAB programming.A simulation example shows that the method has a fast calculation speed,and the extracted rules can reflect the characteristic of fault with a concise form.The rule database,formed by different reduction of decision table,can diagnose single fault and multi-faults efficiently,and give satisfied results even when the existed information is incomplete.The proposed method has good error-tolerate capability and the potential for on-line fault diagnosis. 展开更多
关键词 粗糙集理论 配电网 故障诊断 提取方法 规则匹配
在线阅读 下载PDF
STUDY ON MODULAR FAULT TREE ANALYSIS TECHNIQUE WITH CUT SETS MATRIX METHOD
9
作者 Chen, Jinshui Zhang, Li +1 位作者 Cai, Huiming Zhang, Chengpu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 1998年第2期2-9,共8页
A new fault tree analysis (FTA) computation method is put forth by using modularization technique in FTA with cut sets matrix, and can reduce NP (Nondeterministic polynomial) difficulty effectively. This software can ... A new fault tree analysis (FTA) computation method is put forth by using modularization technique in FTA with cut sets matrix, and can reduce NP (Nondeterministic polynomial) difficulty effectively. This software can run in IBM PC and DOS 3.0 and up. The method provides theoretical basis and computation tool for application of FTA technique in the common engineering system 展开更多
关键词 Cut set matrix MODULARIZATION fault tree analysis
全文增补中
CNN-DLSTM结合迁移学习的小样本轴承故障诊断方法
10
作者 仇芝 徐泽瑜 +2 位作者 陈涛 石明江 韦明辉 《机械科学与技术》 北大核心 2025年第2期288-297,共10页
针对轴承故障数据样本少、未知故障难以分类等问题,提出了一种将一维卷积神经网络(1D convolutional neural network, 1D-CNN)连接深层长短时记忆循环神经网络(Deep long-short-term memory neural network, DLSTM)的模型结合迁移学习... 针对轴承故障数据样本少、未知故障难以分类等问题,提出了一种将一维卷积神经网络(1D convolutional neural network, 1D-CNN)连接深层长短时记忆循环神经网络(Deep long-short-term memory neural network, DLSTM)的模型结合迁移学习的故障诊断方法。该诊断方法基于电机振动数据,利用CNN提取故障特征;将特征作为DLSTM的输入,进一步学习、编码从CNN中学习的特征序列信息,捕获高级特征用于故障分类;首先用充足的西储轴承数据对该故障诊断模型进行预训练,再利用迁移学习放松训练数据和测试数据可不必独立同分布的能力,使用自制实验平台的小样本数据微调预训练模型。最后用迁移学习后的模型,对跨工况、跨型号、跨故障的故障轴承数据进行模拟实验。结果表明,所提出的方法与其他方法相比鲁棒性强,训练速度更快,能够更精确的诊断故障,平均诊断精度达到99%以上。 展开更多
关键词 小样本数据集故障诊断 卷积神经网络 长短期记忆网络 迁移学习
在线阅读 下载PDF
箱型图与特征融合模型在轮对轴承标签混淆数据分类中的应用
11
作者 张雄 李嘉禄 +3 位作者 董帆 武文博 万书亭 顾晓辉 《振动工程学报》 北大核心 2025年第1期88-95,共8页
深度学习方法在列车轮对轴承故障诊断领域表现出了巨大的潜力,但其可以有效实现的前提是各类数据与类别标签之间能够正确匹配,对于含有少量标签错误样本的数据,传统深度学习方法难以实现预期的诊断效果。针对此问题,提出了一种箱型图法... 深度学习方法在列车轮对轴承故障诊断领域表现出了巨大的潜力,但其可以有效实现的前提是各类数据与类别标签之间能够正确匹配,对于含有少量标签错误样本的数据,传统深度学习方法难以实现预期的诊断效果。针对此问题,提出了一种箱型图法与特征融合模型相结合的故障诊断方法。利用列车轮对轴承实验数据对所提方法进行验证,结果表明,相比于直接利用传统神经网络模型进行故障诊断,本文所提方法的诊断准确率更高,说明本文方法对于含有少量标签错误样本的轴承数据具有更好的处理效果。 展开更多
关键词 故障诊断 轮对轴承 标签错误 特征融合 箱型图
在线阅读 下载PDF
基于Roughset知识获取的故障数据表聚类离散化方法研究 被引量:5
12
作者 赵荣珍 张优云 《机械工程学报》 EI CAS CSCD 北大核心 2005年第1期145-150,共6页
为了从故障诊断实例的数据资源中知识获取,对具有连续属性值的故障实例数据表转化为Rough set(RS)理论离散数据类型的决策表的正确映射进行了研究。将改进的k-means聚类算法用于故障实例数据表的离散映射方案设计。在设置故障实例的导... 为了从故障诊断实例的数据资源中知识获取,对具有连续属性值的故障实例数据表转化为Rough set(RS)理论离散数据类型的决策表的正确映射进行了研究。将改进的k-means聚类算法用于故障实例数据表的离散映射方案设计。在设置故障实例的导师决策类别数为聚类数k对论域划分的基础上,提出了根据均值聚类中心排序序号构造离散映射符号集、相对均值聚类中心由相似测度确定连续属性值映射编码的离散化方案。实例表明,该方法反映了转子振动故障特征的一般规律,断点设置具有动态自适应和抗干扰特性。获得的决策规则可用于构造和扩充故障诊断知识库。 展开更多
关键词 故障诊断 ROUGH set 聚类分析 属性离散化 知识获取
在线阅读 下载PDF
基于Rough Set的油液故障诊断系统的知识发现 被引量:3
13
作者 王金涛 吕晓军 谢友柏 《摩擦学学报》 EI CAS CSCD 北大核心 2003年第6期529-532,共4页
结合RoughSet理论和摩擦学系统的特点,讨论了油液故障诊断系统的不协调性.在包含度方法的基础上,将普通二元关系进行推广,提出了一种不协调油液故障诊断系统知识发现模型,给出具体的运算方法,并通过试验实例验证了该模型的有效性.结果表... 结合RoughSet理论和摩擦学系统的特点,讨论了油液故障诊断系统的不协调性.在包含度方法的基础上,将普通二元关系进行推广,提出了一种不协调油液故障诊断系统知识发现模型,给出具体的运算方法,并通过试验实例验证了该模型的有效性.结果表明,该模型在最大分布约简的基础上进行油液诊断知识获取,能够很好地完成不确定性问题的推理,并且可以推导出具有最大可信度的油液诊断知识规则. 展开更多
关键词 油液分析 故障诊断 Rough set理论 知识发现
在线阅读 下载PDF
基于Rough Set理论的摩擦学诊断知识获取系统 被引量:4
14
作者 王金涛 景敏卿 谢友柏 《润滑与密封》 CAS CSCD 北大核心 2002年第5期80-83,共4页
摩擦学系统诊断知识的获取本质上是一个模式分类和识别的问题。本文结合摩擦学系统和RoughSet理论的特点 ,提出了一种基于RoughSet理论的摩擦学诊断知识获取方法。这种方法能够用于模糊和不确定知识的获取和处理。并给出了具体的示例 。
关键词 ROUGH set理论 摩擦学 知识获取 故障诊断
在线阅读 下载PDF
基于Rough Set理论的典型振动故障诊断 被引量:2
15
作者 李建兰 黄树红 张燕平 《动力工程》 EI CAS CSCD 北大核心 2008年第1期76-79,共4页
在分析旋转机械振动特点和Rough Set理论的基础上,针对传统的频谱分析方法对质量不平衡、动静碰摩、支座松动等3种典型故障识别效率低的缺点,提出了一个基于Rough Set的振动故障诊断模型.该模型根据故障和能量的映射关系,分别在时域、... 在分析旋转机械振动特点和Rough Set理论的基础上,针对传统的频谱分析方法对质量不平衡、动静碰摩、支座松动等3种典型故障识别效率低的缺点,提出了一个基于Rough Set的振动故障诊断模型.该模型根据故障和能量的映射关系,分别在时域、频域、时-频域中定义4种信息熵作为条件属性,推导了3种典型振动的决策规则,实现了对振动信号中不一致信息的处理.通过汽轮发电机组振动实验对上述方法进行了验证.结果表明,该模型能够很好地识别这3种典型故障. 展开更多
关键词 能源与动力工程 汽轮发电机组 振动 故障诊断 ROUGH set理论 信息熵
在线阅读 下载PDF
基于Rough set理论的无线传感器网络节点故障诊断 被引量:23
16
作者 雷霖 代传龙 王厚军 《北京邮电大学学报》 EI CAS CSCD 北大核心 2007年第4期69-73,共5页
提出了一种无线传感器网络(WSN)节点故障诊断的新方法,首先基于粗糙集理论中改进的可辨识矩阵算法得到故障诊断决策的属性约简;然后通过属性匹配的故障分类算法,建立一套WSN节点故障诊断方法,对WSN节点的各个模块分别进行具体的故障诊... 提出了一种无线传感器网络(WSN)节点故障诊断的新方法,首先基于粗糙集理论中改进的可辨识矩阵算法得到故障诊断决策的属性约简;然后通过属性匹配的故障分类算法,建立一套WSN节点故障诊断方法,对WSN节点的各个模块分别进行具体的故障诊断和定位.仿真实验表明,该方法在WSN节点故障诊断时通信代价小、能量消耗低、诊断准确率高,因而具有在能量有限的WSN节点中应用的可能性. 展开更多
关键词 故障诊断 无线传感器网络 粗糙集理论 可辨识矩阵 属性约简
在线阅读 下载PDF
撬棒保护投入下考虑多影响因素的双馈风机电流包络区间计算
17
作者 黄琛 沈毅 李银红 《电力系统自动化》 北大核心 2025年第3期93-102,共10页
与传统发电机不同,撬棒保护投入下的双馈风机(DFIG)输出电流中含有较大的与工频接近的转子频分量,而基于工频测量原理的保护算法无法将其滤除,这给新型电力系统中工频保护的定值整定带来了挑战。文中基于撬棒保护投入下DFIG电流的时域... 与传统发电机不同,撬棒保护投入下的双馈风机(DFIG)输出电流中含有较大的与工频接近的转子频分量,而基于工频测量原理的保护算法无法将其滤除,这给新型电力系统中工频保护的定值整定带来了挑战。文中基于撬棒保护投入下DFIG电流的时域表达式,全面分析了影响包络区间的不同因素,并对其进行分类归纳后探讨各因素在包络区间计算中的计及方法,得到了两层式的整体计算流程。在此基础上,提出了撬棒保护投入下考虑多影响因素的DFIG输出电流包络区间计算方法。该方法计及各种可能的故障工况,全面考虑了不同因素对转子频分量的影响,并通过设置离散步长、逐点求解,得到了较为精确的输出电流包络区间。在MATLAB/Simulink平台中进行了DFIG并入无穷大系统仿真。结果表明,文中方法的计算值与仿真值之间误差均较小,验证了所提计算方法的正确性。 展开更多
关键词 保护定值整定 故障工况 双馈风机(DFIG) 撬棒保护 工频测量 包络区间
在线阅读 下载PDF
基于Rough Sets-C4.5的故障征兆提取与判别 被引量:1
18
作者 王庆 巴德纯 孟祥志 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2006年第10期1138-1141,共4页
针对原始信息系统往往存在大量重复样本和冗余属性,从而影响实际故障诊断的精度和速度这一问题,介绍了一种基于粗糙集和决策树C4.5算法相融合的故障诊断模型,用于设备的精确和快速故障诊断.利用粗糙集具有较强的处理不确定和不完备信息... 针对原始信息系统往往存在大量重复样本和冗余属性,从而影响实际故障诊断的精度和速度这一问题,介绍了一种基于粗糙集和决策树C4.5算法相融合的故障诊断模型,用于设备的精确和快速故障诊断.利用粗糙集具有较强的处理不确定和不完备信息的能力,对原始样本集进行离散化及约简处理;同时,利用决策树C4.5算法对约简后的决策表进行快速学习并形成树状故障分类器.以实例介绍了利用该模型进行故障诊断的完整过程. 展开更多
关键词 粗糙集 属性 约简 决策树 故障诊断
在线阅读 下载PDF
获取知识的一种新方法——粗糙集(Rough Set) 被引量:8
19
作者 董彩凤 王天宇 《热能动力工程》 CAS CSCD 北大核心 2002年第4期402-404,共3页
旋转机械故障诊断的一个困难问题是诊断规则的获取。提出获取知识的一种方法———粗糙集 (RS) ,RS能自动地从旋转机械的大量信息中有效地获取诊断知识 ,并能减少误诊与漏诊现象。
关键词 故障诊断 旋转机械 粗糙集 故障诊断
在线阅读 下载PDF
基于Rough Set和禁忌神经网络的传感器节点故障诊断 被引量:3
20
作者 陈作聪 《计算机测量与控制》 北大核心 2013年第5期1143-1146,共4页
针对传感器节点通常位于无人看守甚至危险恶劣的环境中因而容易出现各类故障,提出了一种基于粗糙集(Rough set,RS)和禁忌神经网络的故障诊断方法;首先,采用自组织网对属性值进行离散化,然后采用粗糙集的可辨识矩阵对属性进行约简以降低... 针对传感器节点通常位于无人看守甚至危险恶劣的环境中因而容易出现各类故障,提出了一种基于粗糙集(Rough set,RS)和禁忌神经网络的故障诊断方法;首先,采用自组织网对属性值进行离散化,然后采用粗糙集的可辨识矩阵对属性进行约简以降低输入数据的维数,最后,通过禁忌算法对神经网络进行优化形成最终的故障诊断模型并将测试数据输入禁忌神经网络进行故障诊断;仿真实验表明,文中方法能较为精确地对传感器节点的各类故障进行诊断,具有较高的诊断精度,在迭代次数为300时,诊断误差值仅为0.01%,具有很强的可行性。 展开更多
关键词 传感器节点 粗糙集 禁忌算法 神经网络 故障诊断
在线阅读 下载PDF
上一页 1 2 119 下一页 到第
使用帮助 返回顶部