轨道交通客流量影响因素是轨道交通方面研究的一个关注点,不同站点客流量的时空非平稳性被认为与站域建成环境有关。通过构建时空地理加权(geographically and temporally weighted regression,GTWR)模型,揭示了土地多样性、密度、站点...轨道交通客流量影响因素是轨道交通方面研究的一个关注点,不同站点客流量的时空非平稳性被认为与站域建成环境有关。通过构建时空地理加权(geographically and temporally weighted regression,GTWR)模型,揭示了土地多样性、密度、站点属性3个方面因素在时间和空间维度上对天津市轨道交通客流量的影响。结果表明:相较于传统的地理加权(geographically weighted regression,GWR)模型和最小二乘法(ordinary least squares,OLS)模型,GTWR具有更好的拟合优度;公交站点密度对轨道交通客流产生促进作用,尤其在工作日的早晚高峰时段和中心城区位置;市中心的商业设施在工作日晚高峰吸引更多的地铁乘客,而在近郊区它们在早高峰吸引更多的地铁乘客;人口密度促进轨道交通的客流量;充足的停车场设施数量可以吸引更多的轨道交通乘客。展开更多
基于轨道交通自动售检票系统(Automatic Fare Collection,AFC)统计获得的集计型客流数据,依据行为分析理论,提出1种适用于路网结构变化条件下的城轨站间客流量分布预测模型。首先,基于随机效用最大化理论,构建乘客目的地选择模型,选取...基于轨道交通自动售检票系统(Automatic Fare Collection,AFC)统计获得的集计型客流数据,依据行为分析理论,提出1种适用于路网结构变化条件下的城轨站间客流量分布预测模型。首先,基于随机效用最大化理论,构建乘客目的地选择模型,选取终点站吸引客流量、列车运行时间、乘客在站换乘时间、乘客换乘次数、起终点站的线位关系和站点属性6个指标构建效用函数,以反映目的地吸引力、城轨服务水平、起终点站之间的线位匹配关系等对乘客目的地选择行为的影响,在此基础上,建立站间客流量分布预测模型;然后,利用代表个人法将AFC数据转化为非集计型数据,基于WESML(Weighted Exogenous Sampling Maximum Likelihood)估计方法,实现对目的地选择的非集计预测模型的参数标定。采用广州地铁6号线开通前后的AFC数据,对该预测模型的预测效果进行检验。结果表明:在新线接入导致地铁线网结构发生变化的条件下,全线网站间客流量分布预测的平均绝对误差仅为36人,因此该预测模型具有较高的预测精度。展开更多
文摘轨道交通客流量影响因素是轨道交通方面研究的一个关注点,不同站点客流量的时空非平稳性被认为与站域建成环境有关。通过构建时空地理加权(geographically and temporally weighted regression,GTWR)模型,揭示了土地多样性、密度、站点属性3个方面因素在时间和空间维度上对天津市轨道交通客流量的影响。结果表明:相较于传统的地理加权(geographically weighted regression,GWR)模型和最小二乘法(ordinary least squares,OLS)模型,GTWR具有更好的拟合优度;公交站点密度对轨道交通客流产生促进作用,尤其在工作日的早晚高峰时段和中心城区位置;市中心的商业设施在工作日晚高峰吸引更多的地铁乘客,而在近郊区它们在早高峰吸引更多的地铁乘客;人口密度促进轨道交通的客流量;充足的停车场设施数量可以吸引更多的轨道交通乘客。
文摘基于轨道交通自动售检票系统(Automatic Fare Collection,AFC)统计获得的集计型客流数据,依据行为分析理论,提出1种适用于路网结构变化条件下的城轨站间客流量分布预测模型。首先,基于随机效用最大化理论,构建乘客目的地选择模型,选取终点站吸引客流量、列车运行时间、乘客在站换乘时间、乘客换乘次数、起终点站的线位关系和站点属性6个指标构建效用函数,以反映目的地吸引力、城轨服务水平、起终点站之间的线位匹配关系等对乘客目的地选择行为的影响,在此基础上,建立站间客流量分布预测模型;然后,利用代表个人法将AFC数据转化为非集计型数据,基于WESML(Weighted Exogenous Sampling Maximum Likelihood)估计方法,实现对目的地选择的非集计预测模型的参数标定。采用广州地铁6号线开通前后的AFC数据,对该预测模型的预测效果进行检验。结果表明:在新线接入导致地铁线网结构发生变化的条件下,全线网站间客流量分布预测的平均绝对误差仅为36人,因此该预测模型具有较高的预测精度。