Point defect engineering endows catalysts with novel physical and chemical properties,elevating their electrocatalytic efficiency.The introduction of defects emerges as a promising strategy,effectively modifying the e...Point defect engineering endows catalysts with novel physical and chemical properties,elevating their electrocatalytic efficiency.The introduction of defects emerges as a promising strategy,effectively modifying the electronic structure of active sites.This optimization influences the adsorption energy of intermediates,thereby mitigating reaction energy barriers,altering paths,enhancing selectivity,and ultimately improving the catalytic efficiency of electrocatalysts.To elucidate the impact of defects on the electrocatalytic process,we comprehensively outline the roles of various point defects,their synthetic methodologies,and characterization techniques.Importantly,we consolidate insights into the relationship between point defects and catalytic activity for hydrogen/oxygen evolution and CO_(2)/O_(2)/N_(2) reduction reactions by integrating mechanisms from diverse reactions.This underscores the pivotal role of point defects in enhancing catalytic performance.At last,the principal challenges and prospects associated with point defects in current electrocatalysts are proposed,emphasizing their role in advancing the efficiency of electrochemical energy storage and conversion materials.展开更多
Zinc oxide(ZnO)serves as a crucial functional semiconductor with a wide direct bandgap of approximately 3.37 eV.Solvothermal reaction is commonly used in the synthesis of ZnO micro/nanostructures,given its low cost,si...Zinc oxide(ZnO)serves as a crucial functional semiconductor with a wide direct bandgap of approximately 3.37 eV.Solvothermal reaction is commonly used in the synthesis of ZnO micro/nanostructures,given its low cost,simplicity,and easy implementation.Moreover,ZnO morphology engineering has become desirable through the alteration of minor conditions in the reaction process,particularly at room temperature.In this work,ZnO micro/nanostructures were synthesized in a solution by varying the amounts of the ammonia added at low temperatures(including room temperature).The formation of Zn^(2+)complexes by ammonia in the precursor regulated the reaction rate of the morphology engineering of ZnO,which resulted in various structures,such as nanoparticles,nanosheets,microflowers,and single crystals.Finally,the obtained ZnO was used in the optoelectronic application of ultraviolet detectors.展开更多
High temperature piezoelectric energy harvester(HTPEH)is an important solution to replace chemical battery to achieve independent power supply of HT wireless sensors.However,simultaneously excellent performances,inclu...High temperature piezoelectric energy harvester(HTPEH)is an important solution to replace chemical battery to achieve independent power supply of HT wireless sensors.However,simultaneously excellent performances,including high figure of merit(FOM),insulation resistivity(ρ)and depolarization temperature(Td)are indispensable but hard to achieve in lead-free piezoceramics,especially operating at 250°C has not been reported before.Herein,well-balanced performances are achieved in BiFeO3–BaTiO3 ceramics via innovative defect engineering with respect to delicate manganese doping.Due to the synergistic effect of enhancing electrostrictive coefficient by polarization configuration optimization,regulating iron ion oxidation state by high valence manganese ion and stabilizing domain orientation by defect dipole,comprehensive excellent electrical performances(Td=340°C,ρ250°C>10^(7)Ωcm and FOM_(250°C)=4905×10^(–15)m^(2)N^(−1))are realized at the solid solubility limit of manganese ions.The HT-PEHs assembled using the rationally designed piezoceramic can allow for fast charging of commercial electrolytic capacitor at 250°C with high energy conversion efficiency(η=11.43%).These characteristics demonstrate that defect engineering tailored BF-BT can satisfy high-end HT-PEHs requirements,paving a new way in developing selfpowered wireless sensors working in HT environments.展开更多
Rechargeable magnesium batteries(RMBs)have been considered a promising“post lithium-ion battery”system to meet the rapidly increasing demand of the emerging electric vehicle and grid energy storage market.However,th...Rechargeable magnesium batteries(RMBs)have been considered a promising“post lithium-ion battery”system to meet the rapidly increasing demand of the emerging electric vehicle and grid energy storage market.However,the sluggish diffusion kinetics of bivalent Mg^(2+)in the host material,related to the strong Coulomb effect between Mg^(2+)and host anion lattices,hinders their further development toward practical applications.Defect engineering,regarded as an effective strategy to break through the slow migration puzzle,has been validated in various cathode materials for RMBs.In this review,we first thoroughly understand the intrinsic mechanism of Mg^(2+)diffusion in cathode materials,from which the key factors affecting ion diffusion are further presented.Then,the positive effects of purposely introduced defects,including vacancy and doping,and the corresponding strategies for introducing various defects are discussed.The applications of defect engineering in cathode materials for RMBs with advanced electrochemical properties are also summarized.Finally,the existing challenges and future perspectives of defect engineering in cathode materials for the overall high-performance RMBs are described.展开更多
The Knowledge Economic City (KEC) of Al Madinah Al Munawwarah is one of the major projects and represents the cornerstone for the new development activities for Al Madinah. The study area contains different geological...The Knowledge Economic City (KEC) of Al Madinah Al Munawwarah is one of the major projects and represents the cornerstone for the new development activities for Al Madinah. The study area contains different geological units dominated by basalt and overlain by surface deposits. The surface soils vary in thickness and can be classified into well-graded SAND with silt and gravel (SW-SM), silty SAND with gravel (SM), silty GRAVEL with sand (GM), and sandy SILTY clay (CL-ML). The subsurface soil obtained from the drilled boreholes can be classified into poorly graded GRAVEL (GP), well-graded GRAVEL with sand (GW), poorly graded GRAVEL with silt (GP-GM), silty CLAYEY gravel with sand (GC-GM), silty SAND with gravel (SM), silt with SAND (ML), and silty CLAY with sand (CL-ML), sandy lean CLAY (CL), and lean CLAY (CL). The relative density of the deposit and the different gravel sizes intercalated with the soil influenced the Standard Penetration Test (SPT) values. The SPT N values are high and approach refusal even at shallow depths. The shallow refusal depth (0.10 to 0.90 m) of the Dynamic Cone Penetration Test (DCPT) was observed. Generally, the soil can be described as inactive with low plasticity and dense to very dense consistency. The basalt of the KEC site is characterized by slightly (W2) to highly (W4) weathering, their strength ranges from moderate (S4) to very strong (S2), and the Rock Quality Designation (RQD) ranges from very poor (R5) to excellent (R1). The engineering geological map of the KEC characterized the geoengineering properties of the soil and rock materials and classified them into many zones. The high sulphate (SO42−) and chloride (Cl−) contents in groundwater call for protective measures for foundation concrete. The current study revealed that geohazard(s) mitigation measures concerning floods, volcanic eruptions, and earthquakes should be considered.展开更多
The advent of large language models(LLMs)has made knowledge acquisition and content creation increasingly easier and cheaper,which in turn redefines learning and urges transformation in software engineering education....The advent of large language models(LLMs)has made knowledge acquisition and content creation increasingly easier and cheaper,which in turn redefines learning and urges transformation in software engineering education.To do so,there is a need to understand the impact of LLMs on software engineering education.In this paper,we conducted a preliminary case study on three software requirements engineering classes where students are allowed to use LLMs to assist in their projects.Based on the students’experience,performance,and feedback from a survey conducted at the end of the courses,we characterized the challenges and benefits of applying LLMs in software engineering education.This research contributes to the ongoing discourse on the integration of LLMs in education,emphasizing both their prominent potential and the need for balanced,mindful usage.展开更多
With the rapid advancement of information technology,the quality assurance and evaluation of software engineering education have become pivotal concerns for higher education institutions.In this paper,we focus on a co...With the rapid advancement of information technology,the quality assurance and evaluation of software engineering education have become pivotal concerns for higher education institutions.In this paper,we focus on a comparative study of software engineering education in China and Europe,aiming to explore the theoretical frameworks and practical pathways employed in both regions.Initially,we introduce and contrast the engineering education accreditation systems of China and Europe,including the Chinese engineering education accreditation framework and the European EUR-ACE(European Accreditation of Engineering Programmes)standards,highlighting their core principles and evaluation methodologies.Subsequently,we provide case studies of several universities in China and Europe,such as Sun Yat-sen University,Tsinghua University,Technical University of Munich,and Imperial College London.Finally,we offer recommendations to foster mutual learning and collaboration between Chinese and European institutions,aiming to enhance the overall quality of software engineering education globally.This work provides valuable insights for educational administrators,faculty members,and policymakers,contributing to the ongoing improvement and innovative development of software engineering education in China and Europe.展开更多
Throughout the contemporary Chinese history of geography,geographical engineering has consistently played a pivotal role as a fundamental scientific activity.It possesses its distinct ontological basis and value orien...Throughout the contemporary Chinese history of geography,geographical engineering has consistently played a pivotal role as a fundamental scientific activity.It possesses its distinct ontological basis and value orientation,rendering it inseparable from being merely a derivative of geographical science or technology.This paper defines geographical engineering and introduces its development history through the lens of Chinese geographical engineering praxises.Furthermore,it is highlighted the logical and functional consistency between the theory of human-earth system and the praxis of geographical engineering.Six modern cases of geographical engineering projects are presented in detail to demonstrate the points and characteristics of different types of modern geographical engineering.Geographical engineering serves as an engine for promoting integrated geography research,and in response to the challenge posed by fragmented geographies,this paper advocates for an urgent revitalization of geographical engineering.The feasibility of revitalizing geographical engineering is guaranteed because it aligns with China’s national strategies.展开更多
In response to meeting the needs of cultivating applied talents in the construction of new engineering disciplines,based on the concept of Outcome-Based Education(OBE),this study analyzes the problems existing in the ...In response to meeting the needs of cultivating applied talents in the construction of new engineering disciplines,based on the concept of Outcome-Based Education(OBE),this study analyzes the problems existing in the teaching of the course Environmental Engineering Microbiology,and put forward some corresponding curriculum reform schemes.According to the target points of professional graduation requirements,the scheme proposes revising the syllabus of Environmental Engineering Microbiology,clarifying the curriculum objectives,updating the teaching content,and reforming the teaching methods.Through these measures,it is intended to achieve the unity of teachers way of"teaching"and students way of"learning",construct a new teaching mode,fully stimulate students subjective initiative,and enhance students innovative consciousness and practical ability.Besides,in this study,a"whole process-diversification"evaluation system is established to comprehensively evaluate students performance in theoretical knowledge learning and practical application,comprehensively evaluate students learning situation,and analyze the teaching effect in real time,so as to achieve continuous improvement,and ultimately achieve the goal of improving classroom quality.展开更多
To address the severe challenges posed by the international situation and meet the needs of the national major development strategies,the traditional software engineering talent cultivation model lacks interdisciplina...To address the severe challenges posed by the international situation and meet the needs of the national major development strategies,the traditional software engineering talent cultivation model lacks interdisciplinary education focused on specific fields,making it difficult to cultivate engineering leaders with multidisciplinary backgrounds who are capable of solving complex real-world problems.To solve this problem,based on the decade-long interdisciplinary talent cultivation achievements of the College of Software Engineering at Sichuan University,this article proposes the“Software Engineering+”innovative talent cultivation paradigm.It provides an analysis through professional construction of interdisciplinary talents,the design of talent cultivation frameworks,the formulation of cultivation plans,the establishment of interdisciplinary curriculum systems,the reform of teaching modes,and the improvement of institutional systems.Scientific solutions are proposed,and five project models implemented and operated by the College of Software Engineering at Sichuan University are listed as practical examples,offering significant reference value.展开更多
With the rapid development of software engineering,traditional teaching methods are confronted with the challenges of short knowledge update cycles and the rapid emergence of new technologies.By analyzing the current ...With the rapid development of software engineering,traditional teaching methods are confronted with the challenges of short knowledge update cycles and the rapid emergence of new technologies.By analyzing the current situation of the mismatch between educational practices and industrial change,this study proposes an innovative teaching model—“Micro-practices”.This model integrates new knowledge and new technologies into the teaching process quickly and flexibly through practical teaching projects with“short class time,small capacity,and cloud environment”to meet the different educational needs of students,teachers,and enterprises.The aim is to train innovative software engineering talents who can meet the challenges of the future.展开更多
Based on the study of the Mechanical Design and Automation major and its relevance to teaching reform in higher education engineering programs,a project-based teaching model was introduced.This approach integrates tea...Based on the study of the Mechanical Design and Automation major and its relevance to teaching reform in higher education engineering programs,a project-based teaching model was introduced.This approach integrates teaching design,scheme argumentation,and the implementation of teaching activities with the project serving as the central framework.Course knowledge points are derived from the project topics,forming the foundation for a structured knowledge framework.The course content is modularized in alignment with the project design,enabling students to engage with professional courses on a module-by-module basis,guided by the project.Each course utilizes the project topic as a practical case,facilitating project-led teaching.A teaching system tailored to the research project is proposed,establishing a professional course structure closely linked to the project objectives.展开更多
Building a collaborative education mechanism,improving students’engineering practice and innovation abilities,and cultivating software engineering innovation talents that meet industry needs are of great significance...Building a collaborative education mechanism,improving students’engineering practice and innovation abilities,and cultivating software engineering innovation talents that meet industry needs are of great significance for fully implementing the“Excellent Engineer Education and Training Program”of the Ministry of Education and achieving the goal of building a strong engineering education country.The School of Information and Software Engineering of the University of Electronic Science and Technology of China(UESTC)has been thoroughly studying and implementing XI Jinping’s thought on socialism with Chinese characteristics and the spirit of the 20th CPC National Congress.The school has steadfastly promoted the Project of Nurturing the Soul of the New Era.The school has taken moral education as its core,deeply explored the resources of“all staff,throughout the process,in all aspects”,and constructed and implemented the collaborative education mechanism.These efforts have laid a solid foundation for cultivating excellent talents in software engineering in the new era.展开更多
This paper presents a case study of the collaborative integration between the School of Information and Software Engineering at the University of Electronic Science and Technology of China(UESTC)and SI-TECH,highlighti...This paper presents a case study of the collaborative integration between the School of Information and Software Engineering at the University of Electronic Science and Technology of China(UESTC)and SI-TECH,highlighting the complementary advantages of both the University and the enterprise.By jointly establishing research institutes and engaging in diversified collaborative initiatives,the University and the enterprise have embarked on a pathway of School-enterprise Integration.Through a virtuous cycle of cooperation and continuous advancement,they have explored a comprehensive talent cultivation model in“5G”software engineering innovation practices based on this integration.Furthermore,this endeavor aims to facilitate the transformation of technological achievements and provides valuable insights for fostering innovative talents in the field of electronic information through enhanced integration between the University and the enterprise.展开更多
With the rapid development of China’s economy,the demand for high-end talents in the field of engineering technology is becoming increasingly prominent.Engineering doctors,as an important force in this field,have a d...With the rapid development of China’s economy,the demand for high-end talents in the field of engineering technology is becoming increasingly prominent.Engineering doctors,as an important force in this field,have a direct impact on the progress of national technological innovation and the upgrading of industrial structure.Currently,there are still some issues in the university-enterprise collaboration for engineering doctor training in China,such as unclear cooperation mechanisms and responsibility divisions,insufficient corporate participation and enthusiasm,and imperfect evaluation and feedback mechanisms.This paper aims to explore the university-enterprise collaborative training path of engineering doctors from the perspective of deep integration,analyzing multiple dimensions including training objectives,curriculum design,practical sessions,mentor teams,and evaluation systems,in order to provide reference for the reform and practice of engineering doctor training in China.展开更多
Solution-processed Cu(In,Ga)Se_(2)(CIGS) solar cells suffer from serious carrier recombination and power conversion efficiency(PCE) loss because of the poor film properties and easy formation of defects.Herein, we pro...Solution-processed Cu(In,Ga)Se_(2)(CIGS) solar cells suffer from serious carrier recombination and power conversion efficiency(PCE) loss because of the poor film properties and easy formation of defects.Herein, we propose Ag&Se co-selenization strategy to enhance the crystallization and passivate harmful defects of the CIGS films. The formation of Ag-Se phase during the selenization process enables the formation of large grains and suppresses the deep level defects. It is found that Ag doping can enlarge the depletion region width, lower the Urbach energy and prolong the carrier lifetime. As a result, a champion solution-processed CIGS solar cell presents a high efficiency of 16.48% with the highly improved opencircuit voltage(VOC) of 662 m V and fill factor(FF) of 75.8%. This work provides an efficient strategy to prepare high quality solution-processed CIGS films for high-performance CIGS solar cells.展开更多
To ameliorate the difficulties of on-site dynamic disaster control in the end-mining stage of traditional mining engineering,this paper introduces the mathematical research and engineering application of the end-minin...To ameliorate the difficulties of on-site dynamic disaster control in the end-mining stage of traditional mining engineering,this paper introduces the mathematical research and engineering application of the end-mining technology system with non-pillar in mines(ETSNM)in recent years.The petal warning criterion for the stability of the surrounding rock of the roadway at the end-mining stage was obtained by studying the inverse problem of the petal theorem.A conformal mathematical model of the end-mining stage was established using the conformal mapping method,and the limit theorem of the peak point of mine pressure(LTPPMP)in the end-mining stage was demonstrated.Based on the cross-fusion of the above basic mathematical theory and the LTPPMP,a new ETSNM model was proposed,which includes no coal pillar,no dedicated retracement roadways,and fast retracement equipment(NNF).The mathematical principles of engineering technology for height control,speed limit,and roof cutting in the end-mining stage with non-pillar were revealed.The scientific and application values of the ETSNM were confirmed through engineering applications.Based on this,a new non-pillar control technology for dynamic disasters in the end-mining stage was proposed.The above research will play an active role in promoting the engineering application of ETSNM driven by mathematical theory.展开更多
Kinked rebar is a special type of steel material,which is installed in beam column nodes and frame beams.It effectively enhances the blast resilience,seismic collapse resistance,and progressive collapse resistance of ...Kinked rebar is a special type of steel material,which is installed in beam column nodes and frame beams.It effectively enhances the blast resilience,seismic collapse resistance,and progressive collapse resistance of reinforced concrete(RC)structures without imposing substantial cost burdens,thereby emerging as a focal point of recent research endeavors.On the basis of explaining the working principle of kinked rebars,this paper reviews the research status of kinked rebars at home and abroad from three core domains:the tensile mechanical properties of kinked rebars,beam column nodes with kinked rebars,and concrete frame structures with kinked rebars.The analysis underscores that the straightening process of kinked rebars does not compromise their ultimate strength but significantly bolsters structural ductility and enhances energy dissipation capabilities.In beam-column joints,the incorporation of kinked rebars facilitates the seamless transfer of plastic hinges,adhering to the design principle of“strong columns and weak beams.”In addition,kinked rebars can greatly improve the resistance of the beam;The seismic resistance,internal explosion resistance,and progressive collapse resistance of reinforced concrete frame structures with kinked rebar have significantly improved.Beyond its primary application,the principle of kinked rebar was extended to other applications of kinked materials such as corrugated steel plates and origami structures,and the stress characteristics of related components and structures were studied.Intriguingly,this paper also proposes the application of kinked rebars in bridge engineering,aiming to address the challenges of localized damage concentration and excessive residual displacement in RC bridge piers.The introduction of kinked rebars in piers is envisioned to mitigate these issues,with the paper outlining its advantages and feasibility,thereby offering valuable insights for future research on kinked reinforcement and seismic design strategies for bridges.展开更多
As one of the commonly used technologies in modern civil engineering,the construction technology is becoming more and more widely used with the continuous growth of building height.In the construction process of highr...As one of the commonly used technologies in modern civil engineering,the construction technology is becoming more and more widely used with the continuous growth of building height.In the construction process of highrise buildings,the deep foundation pit support provides the necessary stability for the foundation structure of the building project,and more effectively guarantees the quality of the project.Through the reasonable supporting structure,the deep foundation pit technology can effectively prevent the risk of soil collapse,foundation pit deformation and other risks,and improve the safety factor of the whole construction project.Especially in the high-rise buildings,the deep foundation pit support technology can consolidate the foundation for the long-term stability of the project,and significantly prolong the service life of the building.The continuous development of deep foundation pit construction technology is the inevitable demand of high-rise building construction,and also provides a powerful help for the development of civil engineering industry.Based on this,this paper focuses on the application of deep foundation pit construction technology in civil engineering construction.展开更多
In response to the current issues in the construction of software engineering(SE)degree granting program,such as insufficient resource integration,low level of internationalization,and inadequate quality control,we pr...In response to the current issues in the construction of software engineering(SE)degree granting program,such as insufficient resource integration,low level of internationalization,and inadequate quality control,we propose the Software Engineering Degree Granting Program Construction Practice Project at Harbin Institute of Technology(HIT).This project aims to explore new models for software talent cultivation,establish a superior SE degree granting program,and ultimately cultivate outstanding internationalized composite SE professionals to support the high-quality development of the national software industry.To this end,we design a distinctive overall construction idea and plan for the SE degree granting program,which are characterized by“3I3S:three highlights for specialized cultivation and strictness in three aspects to ensure quality control”.After years of practice and validation of the project at the School of Software at HIT,this project has proven effective in optimizing talent cultivation models,enhancing students’practical abilities,promoting international exchange and cooperation,advancing industry-education integration,and meeting industrial needs.展开更多
基金supported by the National Natural Science Foundation of China(U21A20281)the Special Fund for Young Teachers from Zhengzhou University(JC23557030,JC23257011)+1 种基金the Key Research Projects of Higher Education Institutions of Henan Province(24A530009)the Project of Zhongyuan Critical Metals Laboratory(GJJSGFYQ202336).
文摘Point defect engineering endows catalysts with novel physical and chemical properties,elevating their electrocatalytic efficiency.The introduction of defects emerges as a promising strategy,effectively modifying the electronic structure of active sites.This optimization influences the adsorption energy of intermediates,thereby mitigating reaction energy barriers,altering paths,enhancing selectivity,and ultimately improving the catalytic efficiency of electrocatalysts.To elucidate the impact of defects on the electrocatalytic process,we comprehensively outline the roles of various point defects,their synthetic methodologies,and characterization techniques.Importantly,we consolidate insights into the relationship between point defects and catalytic activity for hydrogen/oxygen evolution and CO_(2)/O_(2)/N_(2) reduction reactions by integrating mechanisms from diverse reactions.This underscores the pivotal role of point defects in enhancing catalytic performance.At last,the principal challenges and prospects associated with point defects in current electrocatalysts are proposed,emphasizing their role in advancing the efficiency of electrochemical energy storage and conversion materials.
基金funded by the National Natural Science F oundation of China(No.52172205)。
文摘Zinc oxide(ZnO)serves as a crucial functional semiconductor with a wide direct bandgap of approximately 3.37 eV.Solvothermal reaction is commonly used in the synthesis of ZnO micro/nanostructures,given its low cost,simplicity,and easy implementation.Moreover,ZnO morphology engineering has become desirable through the alteration of minor conditions in the reaction process,particularly at room temperature.In this work,ZnO micro/nanostructures were synthesized in a solution by varying the amounts of the ammonia added at low temperatures(including room temperature).The formation of Zn^(2+)complexes by ammonia in the precursor regulated the reaction rate of the morphology engineering of ZnO,which resulted in various structures,such as nanoparticles,nanosheets,microflowers,and single crystals.Finally,the obtained ZnO was used in the optoelectronic application of ultraviolet detectors.
基金supported by the National Natural Science Foundation of China(Grant Nos.52272103 and 52072010)Beijing Natural Science Foundation(Grant Nos.2242029 and JL23004).
文摘High temperature piezoelectric energy harvester(HTPEH)is an important solution to replace chemical battery to achieve independent power supply of HT wireless sensors.However,simultaneously excellent performances,including high figure of merit(FOM),insulation resistivity(ρ)and depolarization temperature(Td)are indispensable but hard to achieve in lead-free piezoceramics,especially operating at 250°C has not been reported before.Herein,well-balanced performances are achieved in BiFeO3–BaTiO3 ceramics via innovative defect engineering with respect to delicate manganese doping.Due to the synergistic effect of enhancing electrostrictive coefficient by polarization configuration optimization,regulating iron ion oxidation state by high valence manganese ion and stabilizing domain orientation by defect dipole,comprehensive excellent electrical performances(Td=340°C,ρ250°C>10^(7)Ωcm and FOM_(250°C)=4905×10^(–15)m^(2)N^(−1))are realized at the solid solubility limit of manganese ions.The HT-PEHs assembled using the rationally designed piezoceramic can allow for fast charging of commercial electrolytic capacitor at 250°C with high energy conversion efficiency(η=11.43%).These characteristics demonstrate that defect engineering tailored BF-BT can satisfy high-end HT-PEHs requirements,paving a new way in developing selfpowered wireless sensors working in HT environments.
基金support of the National Natural Science Foundation of China(Grant No.22225801,22178217 and 22308216)supported by the Fundamental Research Funds for the Central Universities,conducted at Tongji University.
文摘Rechargeable magnesium batteries(RMBs)have been considered a promising“post lithium-ion battery”system to meet the rapidly increasing demand of the emerging electric vehicle and grid energy storage market.However,the sluggish diffusion kinetics of bivalent Mg^(2+)in the host material,related to the strong Coulomb effect between Mg^(2+)and host anion lattices,hinders their further development toward practical applications.Defect engineering,regarded as an effective strategy to break through the slow migration puzzle,has been validated in various cathode materials for RMBs.In this review,we first thoroughly understand the intrinsic mechanism of Mg^(2+)diffusion in cathode materials,from which the key factors affecting ion diffusion are further presented.Then,the positive effects of purposely introduced defects,including vacancy and doping,and the corresponding strategies for introducing various defects are discussed.The applications of defect engineering in cathode materials for RMBs with advanced electrochemical properties are also summarized.Finally,the existing challenges and future perspectives of defect engineering in cathode materials for the overall high-performance RMBs are described.
文摘The Knowledge Economic City (KEC) of Al Madinah Al Munawwarah is one of the major projects and represents the cornerstone for the new development activities for Al Madinah. The study area contains different geological units dominated by basalt and overlain by surface deposits. The surface soils vary in thickness and can be classified into well-graded SAND with silt and gravel (SW-SM), silty SAND with gravel (SM), silty GRAVEL with sand (GM), and sandy SILTY clay (CL-ML). The subsurface soil obtained from the drilled boreholes can be classified into poorly graded GRAVEL (GP), well-graded GRAVEL with sand (GW), poorly graded GRAVEL with silt (GP-GM), silty CLAYEY gravel with sand (GC-GM), silty SAND with gravel (SM), silt with SAND (ML), and silty CLAY with sand (CL-ML), sandy lean CLAY (CL), and lean CLAY (CL). The relative density of the deposit and the different gravel sizes intercalated with the soil influenced the Standard Penetration Test (SPT) values. The SPT N values are high and approach refusal even at shallow depths. The shallow refusal depth (0.10 to 0.90 m) of the Dynamic Cone Penetration Test (DCPT) was observed. Generally, the soil can be described as inactive with low plasticity and dense to very dense consistency. The basalt of the KEC site is characterized by slightly (W2) to highly (W4) weathering, their strength ranges from moderate (S4) to very strong (S2), and the Rock Quality Designation (RQD) ranges from very poor (R5) to excellent (R1). The engineering geological map of the KEC characterized the geoengineering properties of the soil and rock materials and classified them into many zones. The high sulphate (SO42−) and chloride (Cl−) contents in groundwater call for protective measures for foundation concrete. The current study revealed that geohazard(s) mitigation measures concerning floods, volcanic eruptions, and earthquakes should be considered.
基金supported in part by the Teaching Reform Project of Chongqing University of Posts and Telecommunications,China under Grant No.XJG23234Chongqing Municipal Higher Education Teaching Reform Research Project under Grant No.203399the Doctoral Direct Train Project of Chongqing Science and Technology Bureau under Grant No.CSTB2022BSXM-JSX0007。
文摘The advent of large language models(LLMs)has made knowledge acquisition and content creation increasingly easier and cheaper,which in turn redefines learning and urges transformation in software engineering education.To do so,there is a need to understand the impact of LLMs on software engineering education.In this paper,we conducted a preliminary case study on three software requirements engineering classes where students are allowed to use LLMs to assist in their projects.Based on the students’experience,performance,and feedback from a survey conducted at the end of the courses,we characterized the challenges and benefits of applying LLMs in software engineering education.This research contributes to the ongoing discourse on the integration of LLMs in education,emphasizing both their prominent potential and the need for balanced,mindful usage.
基金supported by the Guangdong Higher Education Association’s“14th Five Year Plan”2024 Higher Education Research Project(24GYB03)the Natural Science Foundation of Guangdong Province(2024A1515010255)。
文摘With the rapid advancement of information technology,the quality assurance and evaluation of software engineering education have become pivotal concerns for higher education institutions.In this paper,we focus on a comparative study of software engineering education in China and Europe,aiming to explore the theoretical frameworks and practical pathways employed in both regions.Initially,we introduce and contrast the engineering education accreditation systems of China and Europe,including the Chinese engineering education accreditation framework and the European EUR-ACE(European Accreditation of Engineering Programmes)standards,highlighting their core principles and evaluation methodologies.Subsequently,we provide case studies of several universities in China and Europe,such as Sun Yat-sen University,Tsinghua University,Technical University of Munich,and Imperial College London.Finally,we offer recommendations to foster mutual learning and collaboration between Chinese and European institutions,aiming to enhance the overall quality of software engineering education globally.This work provides valuable insights for educational administrators,faculty members,and policymakers,contributing to the ongoing improvement and innovative development of software engineering education in China and Europe.
基金Under the auspices of National Natural Science Foundation of China(No.42293270)。
文摘Throughout the contemporary Chinese history of geography,geographical engineering has consistently played a pivotal role as a fundamental scientific activity.It possesses its distinct ontological basis and value orientation,rendering it inseparable from being merely a derivative of geographical science or technology.This paper defines geographical engineering and introduces its development history through the lens of Chinese geographical engineering praxises.Furthermore,it is highlighted the logical and functional consistency between the theory of human-earth system and the praxis of geographical engineering.Six modern cases of geographical engineering projects are presented in detail to demonstrate the points and characteristics of different types of modern geographical engineering.Geographical engineering serves as an engine for promoting integrated geography research,and in response to the challenge posed by fragmented geographies,this paper advocates for an urgent revitalization of geographical engineering.The feasibility of revitalizing geographical engineering is guaranteed because it aligns with China’s national strategies.
基金Supported by Higher Education Teaching Reform Project of Zhaoqing University (zlgc2024058&zlgc202242)Curriculum Ideological and Political Reform Demonstration Project of Zhaoqing University.
文摘In response to meeting the needs of cultivating applied talents in the construction of new engineering disciplines,based on the concept of Outcome-Based Education(OBE),this study analyzes the problems existing in the teaching of the course Environmental Engineering Microbiology,and put forward some corresponding curriculum reform schemes.According to the target points of professional graduation requirements,the scheme proposes revising the syllabus of Environmental Engineering Microbiology,clarifying the curriculum objectives,updating the teaching content,and reforming the teaching methods.Through these measures,it is intended to achieve the unity of teachers way of"teaching"and students way of"learning",construct a new teaching mode,fully stimulate students subjective initiative,and enhance students innovative consciousness and practical ability.Besides,in this study,a"whole process-diversification"evaluation system is established to comprehensively evaluate students performance in theoretical knowledge learning and practical application,comprehensively evaluate students learning situation,and analyze the teaching effect in real time,so as to achieve continuous improvement,and ultimately achieve the goal of improving classroom quality.
基金supported by the 2023 Sichuan Province Higher Education Talent Cultivation and Teaching Reform Major Project“Exploration and Practice of Interdisciplinary and Integrated Industrial Software Talent Cultivation Model”(JG2023-14)the Sichuan University Higher Education Teaching Reform Project(10th Phase)Research and Exploration of Practical Teaching Mode under the New Major Background of“Cross Disciplinary and Integration”(SCU10128)。
文摘To address the severe challenges posed by the international situation and meet the needs of the national major development strategies,the traditional software engineering talent cultivation model lacks interdisciplinary education focused on specific fields,making it difficult to cultivate engineering leaders with multidisciplinary backgrounds who are capable of solving complex real-world problems.To solve this problem,based on the decade-long interdisciplinary talent cultivation achievements of the College of Software Engineering at Sichuan University,this article proposes the“Software Engineering+”innovative talent cultivation paradigm.It provides an analysis through professional construction of interdisciplinary talents,the design of talent cultivation frameworks,the formulation of cultivation plans,the establishment of interdisciplinary curriculum systems,the reform of teaching modes,and the improvement of institutional systems.Scientific solutions are proposed,and five project models implemented and operated by the College of Software Engineering at Sichuan University are listed as practical examples,offering significant reference value.
基金funded by Universityindustry Collaborative Education Program(No.220605181024725)the Undergraduate Education and Teaching Reform Research Project of Northwestern Polytechnical University(No.22GZ13083)。
文摘With the rapid development of software engineering,traditional teaching methods are confronted with the challenges of short knowledge update cycles and the rapid emergence of new technologies.By analyzing the current situation of the mismatch between educational practices and industrial change,this study proposes an innovative teaching model—“Micro-practices”.This model integrates new knowledge and new technologies into the teaching process quickly and flexibly through practical teaching projects with“short class time,small capacity,and cloud environment”to meet the different educational needs of students,teachers,and enterprises.The aim is to train innovative software engineering talents who can meet the challenges of the future.
基金The 2023 Qingdao Institute of Technology Campus-Level Teaching and Research Project“Research on Project-Based Teaching Model for Engineering Majors in Colleges and Universities”(2023JY005)。
文摘Based on the study of the Mechanical Design and Automation major and its relevance to teaching reform in higher education engineering programs,a project-based teaching model was introduced.This approach integrates teaching design,scheme argumentation,and the implementation of teaching activities with the project serving as the central framework.Course knowledge points are derived from the project topics,forming the foundation for a structured knowledge framework.The course content is modularized in alignment with the project design,enabling students to engage with professional courses on a module-by-module basis,guided by the project.Each course utilizes the project topic as a practical case,facilitating project-led teaching.A teaching system tailored to the research project is proposed,establishing a professional course structure closely linked to the project objectives.
文摘Building a collaborative education mechanism,improving students’engineering practice and innovation abilities,and cultivating software engineering innovation talents that meet industry needs are of great significance for fully implementing the“Excellent Engineer Education and Training Program”of the Ministry of Education and achieving the goal of building a strong engineering education country.The School of Information and Software Engineering of the University of Electronic Science and Technology of China(UESTC)has been thoroughly studying and implementing XI Jinping’s thought on socialism with Chinese characteristics and the spirit of the 20th CPC National Congress.The school has steadfastly promoted the Project of Nurturing the Soul of the New Era.The school has taken moral education as its core,deeply explored the resources of“all staff,throughout the process,in all aspects”,and constructed and implemented the collaborative education mechanism.These efforts have laid a solid foundation for cultivating excellent talents in software engineering in the new era.
文摘This paper presents a case study of the collaborative integration between the School of Information and Software Engineering at the University of Electronic Science and Technology of China(UESTC)and SI-TECH,highlighting the complementary advantages of both the University and the enterprise.By jointly establishing research institutes and engaging in diversified collaborative initiatives,the University and the enterprise have embarked on a pathway of School-enterprise Integration.Through a virtuous cycle of cooperation and continuous advancement,they have explored a comprehensive talent cultivation model in“5G”software engineering innovation practices based on this integration.Furthermore,this endeavor aims to facilitate the transformation of technological achievements and provides valuable insights for fostering innovative talents in the field of electronic information through enhanced integration between the University and the enterprise.
基金supported in part by the 2023 College Student Innovation and Entrepreneurship Training 430 Program Project of China(Grant No.202310699159)2024 Graduate Education Comprehensive Reform,Development and Innovation Project of Northwestern Polytechnical University(Grant No.KCJG202432)2023 Northwestern Polytechnical University Degree and Postgraduate Education Research Funding(Grant No.2023YMs014)。
文摘With the rapid development of China’s economy,the demand for high-end talents in the field of engineering technology is becoming increasingly prominent.Engineering doctors,as an important force in this field,have a direct impact on the progress of national technological innovation and the upgrading of industrial structure.Currently,there are still some issues in the university-enterprise collaboration for engineering doctor training in China,such as unclear cooperation mechanisms and responsibility divisions,insufficient corporate participation and enthusiasm,and imperfect evaluation and feedback mechanisms.This paper aims to explore the university-enterprise collaborative training path of engineering doctors from the perspective of deep integration,analyzing multiple dimensions including training objectives,curriculum design,practical sessions,mentor teams,and evaluation systems,in order to provide reference for the reform and practice of engineering doctor training in China.
基金National Natural Science Foundation of China (62104061, 62074052, 61974173 and 52072327)。
文摘Solution-processed Cu(In,Ga)Se_(2)(CIGS) solar cells suffer from serious carrier recombination and power conversion efficiency(PCE) loss because of the poor film properties and easy formation of defects.Herein, we propose Ag&Se co-selenization strategy to enhance the crystallization and passivate harmful defects of the CIGS films. The formation of Ag-Se phase during the selenization process enables the formation of large grains and suppresses the deep level defects. It is found that Ag doping can enlarge the depletion region width, lower the Urbach energy and prolong the carrier lifetime. As a result, a champion solution-processed CIGS solar cell presents a high efficiency of 16.48% with the highly improved opencircuit voltage(VOC) of 662 m V and fill factor(FF) of 75.8%. This work provides an efficient strategy to prepare high quality solution-processed CIGS films for high-performance CIGS solar cells.
基金supported by the National Natural Science Foundation of China(No.12071047,51774289,52074291).
文摘To ameliorate the difficulties of on-site dynamic disaster control in the end-mining stage of traditional mining engineering,this paper introduces the mathematical research and engineering application of the end-mining technology system with non-pillar in mines(ETSNM)in recent years.The petal warning criterion for the stability of the surrounding rock of the roadway at the end-mining stage was obtained by studying the inverse problem of the petal theorem.A conformal mathematical model of the end-mining stage was established using the conformal mapping method,and the limit theorem of the peak point of mine pressure(LTPPMP)in the end-mining stage was demonstrated.Based on the cross-fusion of the above basic mathematical theory and the LTPPMP,a new ETSNM model was proposed,which includes no coal pillar,no dedicated retracement roadways,and fast retracement equipment(NNF).The mathematical principles of engineering technology for height control,speed limit,and roof cutting in the end-mining stage with non-pillar were revealed.The scientific and application values of the ETSNM were confirmed through engineering applications.Based on this,a new non-pillar control technology for dynamic disasters in the end-mining stage was proposed.The above research will play an active role in promoting the engineering application of ETSNM driven by mathematical theory.
基金supported by the Zhejiang Provincial Natural Science Foundation of China under Grant No.LTGG23E080001Zhejiang Engineering Research Center of Intelligent Urban Infrastructure under Grant No.IUI2022-ZD-01.
文摘Kinked rebar is a special type of steel material,which is installed in beam column nodes and frame beams.It effectively enhances the blast resilience,seismic collapse resistance,and progressive collapse resistance of reinforced concrete(RC)structures without imposing substantial cost burdens,thereby emerging as a focal point of recent research endeavors.On the basis of explaining the working principle of kinked rebars,this paper reviews the research status of kinked rebars at home and abroad from three core domains:the tensile mechanical properties of kinked rebars,beam column nodes with kinked rebars,and concrete frame structures with kinked rebars.The analysis underscores that the straightening process of kinked rebars does not compromise their ultimate strength but significantly bolsters structural ductility and enhances energy dissipation capabilities.In beam-column joints,the incorporation of kinked rebars facilitates the seamless transfer of plastic hinges,adhering to the design principle of“strong columns and weak beams.”In addition,kinked rebars can greatly improve the resistance of the beam;The seismic resistance,internal explosion resistance,and progressive collapse resistance of reinforced concrete frame structures with kinked rebar have significantly improved.Beyond its primary application,the principle of kinked rebar was extended to other applications of kinked materials such as corrugated steel plates and origami structures,and the stress characteristics of related components and structures were studied.Intriguingly,this paper also proposes the application of kinked rebars in bridge engineering,aiming to address the challenges of localized damage concentration and excessive residual displacement in RC bridge piers.The introduction of kinked rebars in piers is envisioned to mitigate these issues,with the paper outlining its advantages and feasibility,thereby offering valuable insights for future research on kinked reinforcement and seismic design strategies for bridges.
文摘As one of the commonly used technologies in modern civil engineering,the construction technology is becoming more and more widely used with the continuous growth of building height.In the construction process of highrise buildings,the deep foundation pit support provides the necessary stability for the foundation structure of the building project,and more effectively guarantees the quality of the project.Through the reasonable supporting structure,the deep foundation pit technology can effectively prevent the risk of soil collapse,foundation pit deformation and other risks,and improve the safety factor of the whole construction project.Especially in the high-rise buildings,the deep foundation pit support technology can consolidate the foundation for the long-term stability of the project,and significantly prolong the service life of the building.The continuous development of deep foundation pit construction technology is the inevitable demand of high-rise building construction,and also provides a powerful help for the development of civil engineering industry.Based on this,this paper focuses on the application of deep foundation pit construction technology in civil engineering construction.
基金supported in part by the Education Reform Key Projects of Heilongjiang Province under Grant Nos.SJGZ20220011,SJGZ20220012,and SJGZY2024008。
文摘In response to the current issues in the construction of software engineering(SE)degree granting program,such as insufficient resource integration,low level of internationalization,and inadequate quality control,we propose the Software Engineering Degree Granting Program Construction Practice Project at Harbin Institute of Technology(HIT).This project aims to explore new models for software talent cultivation,establish a superior SE degree granting program,and ultimately cultivate outstanding internationalized composite SE professionals to support the high-quality development of the national software industry.To this end,we design a distinctive overall construction idea and plan for the SE degree granting program,which are characterized by“3I3S:three highlights for specialized cultivation and strictness in three aspects to ensure quality control”.After years of practice and validation of the project at the School of Software at HIT,this project has proven effective in optimizing talent cultivation models,enhancing students’practical abilities,promoting international exchange and cooperation,advancing industry-education integration,and meeting industrial needs.