Since 1968, geothermal energy utilization in Turkey has increased rapidly due to the country’s significant geological potential. This study aims to evaluate the geothermal potential of the Eldivan region, focusing on...Since 1968, geothermal energy utilization in Turkey has increased rapidly due to the country’s significant geological potential. This study aims to evaluate the geothermal potential of the Eldivan region, focusing on subsurface characteristics. Initial analyses indicated a high geothermal gradient at a depth of 900 meters. However, further investigations revealed the presence of previously unmapped and stratigraphically unpositioned saline units, which are identified as the primary cause of low resistivity anomalies observed in Vertical Electrical Sounding (VES) data. Hydrogeochemical analysis of water samples collected from the Gözdöken Spring confirmed the presence of high sodium (1071 mg/L) and chloride (585 mg/L) concentrations, supporting the existence of these saline units. Using the Fournier & Rowe (1966) quartz geothermometer, a reservoir temperature of 61.88˚C was estimated, indicating a low- to medium-enthalpy geothermal system. These findings underscore the necessity for more detailed and integrated approaches to accurately assess the geothermal energy potential of the region.展开更多
The comparative study of electrical and hydrogeological soundings is being carried out on the site of the Jean Lorougnon Guédé University in Daloa, in central-western Côte d’Ivoire. The aim of this stu...The comparative study of electrical and hydrogeological soundings is being carried out on the site of the Jean Lorougnon Guédé University in Daloa, in central-western Côte d’Ivoire. The aim of this study is to determine the similarities in the weathering profile obtained by the hydrogeological surveys and the electrical surveys. The methodology is based on a comparative study of the characteristics of the weathering profile (number of layers, thickness of weathering and number of water inlets). The results show that the electrical sounding curves are of the KH type, giving 4 geological layers. The first layer corresponds to topsoil with a thickness of less than 1 m. The second corresponds to a thicker lateritic clay formation (20 m on average). The third layer is granitic arena, locally up to 30 m thick. Below this is the fractured granitic basement. The results also show that most of the results from the electrical boreholes are consistent with those from the boreholes. Differences exist and are essentially due to the shape of certain electrical sounding curves and to the driller’s assessment of the interfaces between the geological formations.展开更多
No earthquake of magnitude six or greater has been recorded historically in the southern segment of the Red River Fault(RRF).This absence constitutes a significant seismic gap, suggesting a risk of future strong earth...No earthquake of magnitude six or greater has been recorded historically in the southern segment of the Red River Fault(RRF).This absence constitutes a significant seismic gap, suggesting a risk of future strong earthquakes. The China Earthquake Science Experimental Site intends to conduct drilling exploration in this area, which necessitates improved knowledge of the fault zone's geometric distribution characteristics and deep structure. We obtained and analyzed audio and broadband magnetotelluric(MT) data collected at one of the alternative drilling stations(in the Dazhai Village of Honghe County). We have used these data to obtain a highresolution 3-D electrical model of this study area's subsurface to a depth of 5 km. We report that the electrical structure from the surface to 0.5 km is relatively complex, characterized by alternating high and low resistivity;below 0.5 km, the electrical structure becomes more simplified. The RRF extends northwest-southeast orientation along the high and low resistivity boundary, dipping northeastward. The electrical structure of the Red River Valley, which the fault zone traverses, reveals low resistivity characteristics with a lateral width of up to2 km. This study offers critical electromagnetic constraints that enhance our understanding of the tectonic characteristics of the RRF. The findings will inform and aid in the design of drilling plans for the southern segment of the RRF region.展开更多
Clays have considerable influence on the electrical properties of hydrate-bearing sediments.It is desirable to understand the electrical properties of hydrate-bearing clayey sediments and to build hydrate saturation(S...Clays have considerable influence on the electrical properties of hydrate-bearing sediments.It is desirable to understand the electrical properties of hydrate-bearing clayey sediments and to build hydrate saturation(S_(h))models for reservoir evaluation and monitoring.The electrical properties of tetrahydrofuran-hydrate-bearing sediments with montmorillonite are characterized by complex conductivity at frequencies from 0.01 Hz to 1 kHz.The effects of clay and Sh on the complex conductivity were analyzed.A decrease and increase in electrical conductance result from the clay-swelling-induced blockage and ion migration in the electrical double layer(EDL),respectively.The quadrature conductivity increases with the clay content up to 10%because of the increased surface site density of counterions in EDL.Both the in-phase conductivity and quadrature conductivity decrease consistently with increasing Sh from 0.50 to 0.90.Three sets of models for Sh evaluation were developed.The model based on the Simandoux equation outperforms Archie’s formula,with a root-mean-square error(E_(RMS))of 1.8%and 3.9%,respectively,highlighting the clay effects on the in-phase conductivity.The fre-quency effect correlations based on in-phase and quadrature conductivities exhibit inferior performance(E_(RMS)=11.6%and 13.2%,re-spectively)due to the challenge of choosing an appropriate pair of frequencies and intrinsic uncertainties from two measurements.The second-order Cole-Cole formula can be used to fit the complex-conductivity spectra.One pair of inverted Cole-Cole parameters,i.e.,characteristic time and chargeability,is employed to predict S_(h) with an E_(RMS) of 5.05%and 9.05%,respectively.展开更多
With the rapid development of 5G information technology,thermal conductivity/dissipation problems of highly integrated electronic devices and electrical equipment are becoming prominent.In this work,“high-temperature...With the rapid development of 5G information technology,thermal conductivity/dissipation problems of highly integrated electronic devices and electrical equipment are becoming prominent.In this work,“high-temperature solid-phase&diazonium salt decomposition”method is carried out to prepare benzidine-functionalized boron nitride(m-BN).Subsequently,m-BN/poly(pphenylene benzobisoxazole)nanofiber(PNF)nanocomposite paper with nacremimetic layered structures is prepared via sol–gel film transformation approach.The obtained m-BN/PNF nanocomposite paper with 50 wt%m-BN presents excellent thermal conductivity,incredible electrical insulation,outstanding mechanical properties and thermal stability,due to the construction of extensive hydrogen bonds andπ–πinteractions between m-BN and PNF,and stable nacre-mimetic layered structures.Itsλ∥andλ_(⊥)are 9.68 and 0.84 W m^(-1)K^(-1),and the volume resistivity and breakdown strength are as high as 2.3×10^(15)Ωcm and 324.2 kV mm^(-1),respectively.Besides,it also presents extremely high tensile strength of 193.6 MPa and thermal decomposition temperature of 640°C,showing a broad application prospect in high-end thermal management fields such as electronic devices and electrical equipment.展开更多
BACKGROUND Lack of mobilization and prolonged stay in the intensive care unit(ICU)are major factors resulting in the development of ICU-acquired muscle weakness(ICUAW).ICUAW is a type of skeletal muscle dysfunction an...BACKGROUND Lack of mobilization and prolonged stay in the intensive care unit(ICU)are major factors resulting in the development of ICU-acquired muscle weakness(ICUAW).ICUAW is a type of skeletal muscle dysfunction and a common complication of patients after cardiac surgery,and may be a risk factor for prolonged duration of mechanical ventilation,associated with a higher risk of readmission and higher mortality.Early mobilization in the ICU after cardiac surgery has been found to be low with a significant trend to increase over ICU stay and is also associated with a reduced duration of mechanical ventilation and ICU length of stay.Neuromuscular electrical stimulation(NMES)is an alternative modality of exercise in patients with muscle weakness.A major advantage of NMES is that it can be applied even in sedated patients in the ICU,a fact that might enhance early mobilization in these patients.AIM To evaluate safety,feasibility and effectiveness of NMES on functional capacity and muscle strength in patients before and after cardiac surgery.METHODS We performed a search on Pubmed,Physiotherapy Evidence Database(PEDro),Embase and CINAHL databases,selecting papers published between December 2012 and April 2023 and identified published randomized controlled trials(RCTs)that included implementation of NMES in patients before after cardiac surgery.RCTs were assessed for methodological rigor and risk of bias via the PEDro.The primary outcomes were safety and functional capacity and the secondary outcomes were muscle strength and function.RESULTS Ten studies were included in our systematic review,resulting in 703 participants.Almost half of them performed NMES and the other half were included in the control group,treated with usual care.Nine studies investigated patients after cardiac surgery and 1 study before cardiac surgery.Functional capacity was assessed in 8 studies via 6MWT or other indices,and improved only in 1 study before and in 1 after cardiac surgery.Nine studies explored the effects of NMES on muscle strength and function and,most of them,found increase of muscle strength and improvement in muscle function after NMES.NMES was safe in all studies without any significant complication.CONCLUSION NMES is safe,feasible and has beneficial effects on muscle strength and function in patients after cardiac surgery,but has no significant effect on functional capacity.展开更多
Retinitis pigmentosa is a hereditary retinal disease that affects rod and cone photoreceptors,leading to progressive photoreceptor loss.Previous research supports the beneficial effect of electrical stimulation on pho...Retinitis pigmentosa is a hereditary retinal disease that affects rod and cone photoreceptors,leading to progressive photoreceptor loss.Previous research supports the beneficial effect of electrical stimulation on photoreceptor survival.This study aims to identify the most effective electrical stimulation parameters and functional advantages of transcorneal electrical stimulation(tcES)in mice affected by inherited retinal degeneration.Additionally,the study seeked to analyze the electric field that reaches the retina in both eyes in mice and post-mortem humans.In this study,we recorded waveforms and voltages directed to the retina during transcorneal electrical stimulation in C57BL/6J mice using an intraocular needle probe with rectangular,sine,and ramp waveforms.To investigate the functional effects of electrical stimulation on photoreceptors,we used human retinal explant cultures and rhodopsin knockout(Rho^(-/-))mice,demonstrating progressive photoreceptor degeneration with age.Human retinal explants isolated from the donors’eyes were then subjected to electrical stimulation and cultured for 48 hours to simulate the neurodegenerative environment in vitro.Photoreceptor density was evaluated by rhodopsin immunolabeling.In vivo Rho^(-/-)mice were subjected to two 5-day series of daily transcorneal electrical stimulation using rectangular and ramp waveforms.Retinal function and visual perception of mice were evaluated by electroretinography and optomotor response(OMR),respectively.Immunolabeling was used to assess the morphological and biochemical changes of the photoreceptor and bipolar cells in mouse retinas.Oscilloscope recordings indicated effective delivery of rectangular,sine,and ramp waveforms to the retina by transcorneal electrical stimulation,of which the ramp waveform required the lowest voltage.Evaluation of the total conductive resistance of the post-mortem human compared to the mouse eyes indicated higher cornea-to-retina resistance in human eyes.The temperature recordings during and after electrical stimulation indicated no significant temperature change in vivo and only a subtle temperature increase in vitro(~0.5-1.5°C).Electrical stimulation increased photoreceptor survival in human retinal explant cultures,particularly at the ramp waveform.Transcorneal electrical stimulation(rectangular+ramp)waveforms significantly improved the survival and function of S and M-cones and enhanced visual acuity based on the optomotor response results.Histology and immunolabeling demonstrated increased photoreceptor survival,improved outer nuclear layer thickness,and increased bipolar cell sprouting in Rho^(-/-)mice.These results indicate that transcorneal electrical stimulation effectively delivers the electrical field to the retina,improves photoreceptor survival in both human and mouse retinas,and increases visual function in Rho^(-/-)mice.Combined rectangular and ramp waveform stimulation can promote photoreceptor survival in a minimally invasive fashion.展开更多
We investigate coupled electron and phonon transport in NbX_(2) with X=Ge,Si,where experimental evidence of strong electron-phonon coupling and hydrodynamic transport has been reported.Based on first-principles densit...We investigate coupled electron and phonon transport in NbX_(2) with X=Ge,Si,where experimental evidence of strong electron-phonon coupling and hydrodynamic transport has been reported.Based on first-principles density functional theory calculations,we measured the thermal and electrical transport properties of the compounds.We found that phonon-electron scattering strongly affects phonon thermal conductivity(κph)and leads to a weak temperature dependence ofκph instead of a normal inverse temperature dependence when anharmonic three-phonon scattering dominates.In addition,κph contributes to a quarter of the total thermal conductivity,which differs from typical metals in which the total thermal conductivity is predominantly derived from electrons.In contrast to previous numerical research,our electrical resistivity results agree well with the experimental measurements.The anisotropic properties of the transport coefficients are attributed to the electron-phonon dispersion relation.In addition,we found a negligible effect of electron-phonon drag on the transport properties,contrary to the expectation from a strongly coupled electron-phonon fluid.展开更多
Atrial fibrillation (AF) is the most common arrhythmia in the world, and its management relies on restoring sinus rhythm through external electrical shock and controlling the heart rate. This procedure should be perfo...Atrial fibrillation (AF) is the most common arrhythmia in the world, and its management relies on restoring sinus rhythm through external electrical shock and controlling the heart rate. This procedure should be performed under sedation with strict monitoring of blood pressure and saturation after the elimination of thrombus in the left atrium. Objective: The aim of this article is to provide an overview of the impact of anticoagulation and imaging in the periprocedural period, the modalities, and the complications associated with electrical cardioversion (ECV). Research Method: A review of recent literature was conducted using medical databases such as PubMed and Scopus. Searches were performed on articles published between 2003 and 2024, focusing on the new ESC guidelines for 2024. The keywords used included “electrical cardioversion”, “atrial fibrillation”, “orthogonal cardioversion” and “anticoagulation”. Inclusion criteria encompassed clinical trials, meta-analyses, and literature reviews, while studies addressing other treatment forms for AF or lacking information on ECV were excluded. Relevant data were extracted and synthesized to provide an overview of the modalities and complications related to ECV in the context of AF. Results and Conclusion: The use of high-energy biphasic shocks significantly improves rhythm control success and also reduces the incidence of ventricular fibrillation. Furthermore, orthogonal electrical cardioversion (OECV) has proven effective for cases of AF refractory to standard protocols, allowing for a lower defibrillation threshold and promoting better current distribution. However, complications must be considered, particularly thromboembolic events in non-anticoagulated patients. Other complications, such as bradycardia and recurrence of AF, may arise post-procedure. It is therefore crucial to ensure adequate anticoagulation before and after ECV, as well as continuous monitoring, to minimize these risks and optimize clinical outcomes.展开更多
The Central Asian Orogenic Belt(CAOB)is a giant orogenic belt located between the Siberian Plate,the Tarim Plate,and the North China Plate,which records the longterm and complex geologic evolution of the Paleo-Asian O...The Central Asian Orogenic Belt(CAOB)is a giant orogenic belt located between the Siberian Plate,the Tarim Plate,and the North China Plate,which records the longterm and complex geologic evolution of the Paleo-Asian Ocean from the Early Neoproterozoic(ca.1000 Ma)to the Late Paleoproterozoic(ca.250 Ma)process.The Beishan Block is located in the middle and southern edge of the Central Asian orogenic belt,at the intersection of the Tarim plate,the Siberian Plate and the Kazakhstan Plate.展开更多
The development of nanoelectronics and nanotechnologies has been boosted significantly by the emergence of 2D materials because of their atomic thickness and peculiar properties,and developing a universal,precise patte...The development of nanoelectronics and nanotechnologies has been boosted significantly by the emergence of 2D materials because of their atomic thickness and peculiar properties,and developing a universal,precise patterning technology for single-layer 2D materials is critical for assembling nanodevices.Demonstrated here is a nanomachining technique using electrical breakdown by an AFM tip to fabricate nanopores,nanostrips,and other nanostructures on demand.This can be achieved by voltage scanning or applying a constant voltage while moving the tip.By measuring the electrical current,the formation process on single-layer materials was shown quantitatively.The present results provide evidence of successful pattern fabrication on single-layer MoS2,boron nitride,and graphene,although further confirmation is still needed.The proposed method holds promise as a general nanomachining technology for the future.展开更多
Introduction: Located in the central-western part of Côte d’Ivoire, the subsoil of the Gagnoa region is made up of sedimentary volcano formations and granitoids with developed fracturing. This complex Precambria...Introduction: Located in the central-western part of Côte d’Ivoire, the subsoil of the Gagnoa region is made up of sedimentary volcano formations and granitoids with developed fracturing. This complex Precambrian basement contains most of the region’s water resources. This is at the origin of the high failure rate during the various hydrogeological prospecting campaigns. Methodology: The database consists of resistivities from 42 holes and 51 trails drilled as part of the implementation of high-throughput drilling in the study area. The objective of this study is to deepen the knowledge of the fissured basement by interpreting profile curves and electrical soundings. It will be a question of classifying the different types of anomalies obtained on the profiles and their shapes. The orientation of the lineaments observed on the profiles was determined. Results: The interpretation of the geophysical data revealed various anomalies, the main ones being of the CC (Conductor Compartment) and CEDP (Contact between two bearings) types. These types of anomalies are mainly expressed in various forms: the “V”, “W” and “U” shapes. From these anomalies and the appearance of the electrical profiles, lineaments and their orientations were identified with N90-100, N130-140, N170-180 as major orientations. Conclusion: These results could contribute to a better understanding of the fractured environment of the Gagnoa region.展开更多
Cement and resin were designed as mixed cementitious materials to study the smart aggregate(SA)of smart concrete.Carbon fiber(CF)and surfactant were taken into consideration to adjust the mechanical and electrical pro...Cement and resin were designed as mixed cementitious materials to study the smart aggregate(SA)of smart concrete.Carbon fiber(CF)and surfactant were taken into consideration to adjust the mechanical and electrical properties of smart aggregate(SA)in this issue.The experimental results indicate that the flexibility and mechanical properties of SA can be improved by using such mixed cementitious materials.It is shows that,although the compressive strength and flexural strength can be enhanced effectively by using resin and CF,the electrical conductivity decreases significantly,which is because the water molecules are difficult to penetrate through the mixture materials so the hydration reaction of cement can not fully carry out.However,the electrical conductivity can be improved by adding the surfactant,and the strength and mechanical electrical properties can be adjusted effectively by the surfactant.展开更多
The combination of electrospinning and hot pressing,namely the electrospinning-hot pressing technique(EHPT),is an efficient and convenient method for preparing nanofibrous composite materials with good energy storage ...The combination of electrospinning and hot pressing,namely the electrospinning-hot pressing technique(EHPT),is an efficient and convenient method for preparing nanofibrous composite materials with good energy storage performance.The emerging composite membrane prepared by EHPT,which exhibits the advantages of large surface area,controllable morphology,and compact structure,has attracted immense attention.In this paper,the conduction mechanism of composite membranes in thermal and electrical energy storage and the performance enhancement method based on the fabrication process of EHPT are systematically discussed.Moreover,the state-of-the-art applications of composite membranes in these two fields are introduced.In particular,in the field of thermal energy storage,EHPT-prepared membranes have longitudinal and transverse nanofibers,which generate unique thermal conductivity pathways;also,these nanofibers offer enough space for the filling of functional materials.Moreover,EHPT-prepared membranes are beneficial in thermal management systems,building energy conservation,and electrical energy storage,e.g.,improving the electrochemical properties of the separators as well as their mechanical and thermal stability.The application of electrospinning-hot pressing membranes on capacitors,lithium-ion batteries(LIBs),fuel cells,sodium-ion batteries(SIBs),and hydrogen bromine flow batteries(HBFBs)still requires examination.In the future,EHPT is expected to make the field more exciting through its own technological breakthroughs or be combined with other technologies to produce intelligent materials.展开更多
We study the global unique solutions to the 2-D inhomogeneous incompressible MHD equations,with the initial data(u0,B0)being located in the critical Besov space■and the initial densityρ0 being close to a positive co...We study the global unique solutions to the 2-D inhomogeneous incompressible MHD equations,with the initial data(u0,B0)being located in the critical Besov space■and the initial densityρ0 being close to a positive constant.By using weighted global estimates,maximal regularity estimates in the Lorentz space for the Stokes system,and the Lagrangian approach,we show that the 2-D MHD equations have a unique global solution.展开更多
We investigated the electric controllable spin-filtering effect in a zigzag phosphorene nanoribbon(ZPNR) based normal–antiferromagnet–normal junction. Two ferromagnets are closely coupled to the edges of the nanorib...We investigated the electric controllable spin-filtering effect in a zigzag phosphorene nanoribbon(ZPNR) based normal–antiferromagnet–normal junction. Two ferromagnets are closely coupled to the edges of the nanoribbon and form the edge-to-edge antiferromagnetism. Under an in-plane electric field, the two degenerate edge bands of the edge-to-edge antiferromagnet split into four spin-polarized sub-bands and a 100% spin-polarized current can be easily induced with the maximal conductance 2e~2/h. The spin polarization changes with the strength of the electric field and the exchange field,and changes sign at opposite electric fields. The spin-polarized current switches from one edge to the other by reversing the direction of the electric field. The edge current can also be controlled spatially by changing the electric potential of the scattering region. The manipulation of edge current is useful in spin-transfer-torque magnetic random-access memory and provides a practical way to develop controllable spintronic devices.展开更多
Objective:To analyze the effect of combining transcutaneous electrical acupoint stimulation(TEAS)with rehabilitation training in patients with upper limb dysfunction after stroke(ULDAS).Methods:A total of 130 ULDAS pa...Objective:To analyze the effect of combining transcutaneous electrical acupoint stimulation(TEAS)with rehabilitation training in patients with upper limb dysfunction after stroke(ULDAS).Methods:A total of 130 ULDAS patients who were hospitalized and rehabilitated in Wuxi Xinwu District Rehabilitation Hospital from May 2021 to May 2023 were selected and randomly divided into Group A(65 cases,rehabilitation training)and Group B(65 cases,rehabilitation training+TEAS).The effects of the two groups were compared.Results:After treatment,the upper limb functional indexes of Group B were better than those of Group A(P<0.05).The rate of muscle tone grades 0-4 in Group B was higher than those of Group A(P<0.05).Conclusion:The function of upper limbs and muscle strength of ULDAS patients improved by combining TEAS with rehabilitation training.展开更多
In order to clarify the fatigue damage evolution of concrete exposed to flexural fatigue loads,ultrasonic pulse velocity(UPV),impact-echo technology and surface electrical resistance(SR) method were used.Damage variab...In order to clarify the fatigue damage evolution of concrete exposed to flexural fatigue loads,ultrasonic pulse velocity(UPV),impact-echo technology and surface electrical resistance(SR) method were used.Damage variable based on the change of velocity of ultrasonic pulse(Du) and impact elastic wave(Di)were defined according to the classical damage theory.The influences of stress level,loading frequency and concrete strength on damage variable were measured.The experimental results show that Du and Di both present a three-stages trend for concrete exposed to fatigue loads.Since impact elastic wave is more sensitive to the microstructure damage in stage Ⅲ,the critical damage variable,i e,the damage variable before the final fracture of concrete of Di is slightly higher than that of Du.Meanwhile,the evolution of SR of concrete exposed to fatigue loads were analyzed and the relationship between SR and Du,SR and Di of concrete exposed to fatigue loads were established.It is found that the SR of concrete was decreased with the increasing fatigue cycles,indicating that surface electrical resistance method can also be applied to describe the damage of ballastless track concrete exposed to fatigue loads.展开更多
文摘Since 1968, geothermal energy utilization in Turkey has increased rapidly due to the country’s significant geological potential. This study aims to evaluate the geothermal potential of the Eldivan region, focusing on subsurface characteristics. Initial analyses indicated a high geothermal gradient at a depth of 900 meters. However, further investigations revealed the presence of previously unmapped and stratigraphically unpositioned saline units, which are identified as the primary cause of low resistivity anomalies observed in Vertical Electrical Sounding (VES) data. Hydrogeochemical analysis of water samples collected from the Gözdöken Spring confirmed the presence of high sodium (1071 mg/L) and chloride (585 mg/L) concentrations, supporting the existence of these saline units. Using the Fournier & Rowe (1966) quartz geothermometer, a reservoir temperature of 61.88˚C was estimated, indicating a low- to medium-enthalpy geothermal system. These findings underscore the necessity for more detailed and integrated approaches to accurately assess the geothermal energy potential of the region.
文摘The comparative study of electrical and hydrogeological soundings is being carried out on the site of the Jean Lorougnon Guédé University in Daloa, in central-western Côte d’Ivoire. The aim of this study is to determine the similarities in the weathering profile obtained by the hydrogeological surveys and the electrical surveys. The methodology is based on a comparative study of the characteristics of the weathering profile (number of layers, thickness of weathering and number of water inlets). The results show that the electrical sounding curves are of the KH type, giving 4 geological layers. The first layer corresponds to topsoil with a thickness of less than 1 m. The second corresponds to a thicker lateritic clay formation (20 m on average). The third layer is granitic arena, locally up to 30 m thick. Below this is the fractured granitic basement. The results also show that most of the results from the electrical boreholes are consistent with those from the boreholes. Differences exist and are essentially due to the shape of certain electrical sounding curves and to the driller’s assessment of the interfaces between the geological formations.
基金supported by research grants from the National Institute of Natural Hazards, MEMC (ZDJ2020-13)the Innovation Team Project from National Institute of Natural Hazards, MEMC (2023-JBKY-59)the National Natural Science Foundation of China (42174093)。
文摘No earthquake of magnitude six or greater has been recorded historically in the southern segment of the Red River Fault(RRF).This absence constitutes a significant seismic gap, suggesting a risk of future strong earthquakes. The China Earthquake Science Experimental Site intends to conduct drilling exploration in this area, which necessitates improved knowledge of the fault zone's geometric distribution characteristics and deep structure. We obtained and analyzed audio and broadband magnetotelluric(MT) data collected at one of the alternative drilling stations(in the Dazhai Village of Honghe County). We have used these data to obtain a highresolution 3-D electrical model of this study area's subsurface to a depth of 5 km. We report that the electrical structure from the surface to 0.5 km is relatively complex, characterized by alternating high and low resistivity;below 0.5 km, the electrical structure becomes more simplified. The RRF extends northwest-southeast orientation along the high and low resistivity boundary, dipping northeastward. The electrical structure of the Red River Valley, which the fault zone traverses, reveals low resistivity characteristics with a lateral width of up to2 km. This study offers critical electromagnetic constraints that enhance our understanding of the tectonic characteristics of the RRF. The findings will inform and aid in the design of drilling plans for the southern segment of the RRF region.
基金supported by the Fundamental Research Funds for the Central Universities(No.20CX05005A)the Major Scientific and Technological Projects of CNPC(No.ZD2019-184-001)+2 种基金the PetroChina Innovation Foundation(No.2018D-5007-0214)the Shandong Provincial Natural Science Foundation(No.ZR2019MEE095)the National Natural Science Foundation of China(No.42174141).
文摘Clays have considerable influence on the electrical properties of hydrate-bearing sediments.It is desirable to understand the electrical properties of hydrate-bearing clayey sediments and to build hydrate saturation(S_(h))models for reservoir evaluation and monitoring.The electrical properties of tetrahydrofuran-hydrate-bearing sediments with montmorillonite are characterized by complex conductivity at frequencies from 0.01 Hz to 1 kHz.The effects of clay and Sh on the complex conductivity were analyzed.A decrease and increase in electrical conductance result from the clay-swelling-induced blockage and ion migration in the electrical double layer(EDL),respectively.The quadrature conductivity increases with the clay content up to 10%because of the increased surface site density of counterions in EDL.Both the in-phase conductivity and quadrature conductivity decrease consistently with increasing Sh from 0.50 to 0.90.Three sets of models for Sh evaluation were developed.The model based on the Simandoux equation outperforms Archie’s formula,with a root-mean-square error(E_(RMS))of 1.8%and 3.9%,respectively,highlighting the clay effects on the in-phase conductivity.The fre-quency effect correlations based on in-phase and quadrature conductivities exhibit inferior performance(E_(RMS)=11.6%and 13.2%,re-spectively)due to the challenge of choosing an appropriate pair of frequencies and intrinsic uncertainties from two measurements.The second-order Cole-Cole formula can be used to fit the complex-conductivity spectra.One pair of inverted Cole-Cole parameters,i.e.,characteristic time and chargeability,is employed to predict S_(h) with an E_(RMS) of 5.05%and 9.05%,respectively.
基金The authors are grateful for the support and funding from the Foundation of National Natural Science Foundation of China(52373089 and 51973173)Startup Foundation of Chongqing Normal University(23XLB011),Science and Technology Research Program of Chongqing Municipal Education Commission(KJQN202300561)Fundamental Research Funds for the Central Universities。
文摘With the rapid development of 5G information technology,thermal conductivity/dissipation problems of highly integrated electronic devices and electrical equipment are becoming prominent.In this work,“high-temperature solid-phase&diazonium salt decomposition”method is carried out to prepare benzidine-functionalized boron nitride(m-BN).Subsequently,m-BN/poly(pphenylene benzobisoxazole)nanofiber(PNF)nanocomposite paper with nacremimetic layered structures is prepared via sol–gel film transformation approach.The obtained m-BN/PNF nanocomposite paper with 50 wt%m-BN presents excellent thermal conductivity,incredible electrical insulation,outstanding mechanical properties and thermal stability,due to the construction of extensive hydrogen bonds andπ–πinteractions between m-BN and PNF,and stable nacre-mimetic layered structures.Itsλ∥andλ_(⊥)are 9.68 and 0.84 W m^(-1)K^(-1),and the volume resistivity and breakdown strength are as high as 2.3×10^(15)Ωcm and 324.2 kV mm^(-1),respectively.Besides,it also presents extremely high tensile strength of 193.6 MPa and thermal decomposition temperature of 640°C,showing a broad application prospect in high-end thermal management fields such as electronic devices and electrical equipment.
文摘BACKGROUND Lack of mobilization and prolonged stay in the intensive care unit(ICU)are major factors resulting in the development of ICU-acquired muscle weakness(ICUAW).ICUAW is a type of skeletal muscle dysfunction and a common complication of patients after cardiac surgery,and may be a risk factor for prolonged duration of mechanical ventilation,associated with a higher risk of readmission and higher mortality.Early mobilization in the ICU after cardiac surgery has been found to be low with a significant trend to increase over ICU stay and is also associated with a reduced duration of mechanical ventilation and ICU length of stay.Neuromuscular electrical stimulation(NMES)is an alternative modality of exercise in patients with muscle weakness.A major advantage of NMES is that it can be applied even in sedated patients in the ICU,a fact that might enhance early mobilization in these patients.AIM To evaluate safety,feasibility and effectiveness of NMES on functional capacity and muscle strength in patients before and after cardiac surgery.METHODS We performed a search on Pubmed,Physiotherapy Evidence Database(PEDro),Embase and CINAHL databases,selecting papers published between December 2012 and April 2023 and identified published randomized controlled trials(RCTs)that included implementation of NMES in patients before after cardiac surgery.RCTs were assessed for methodological rigor and risk of bias via the PEDro.The primary outcomes were safety and functional capacity and the secondary outcomes were muscle strength and function.RESULTS Ten studies were included in our systematic review,resulting in 703 participants.Almost half of them performed NMES and the other half were included in the control group,treated with usual care.Nine studies investigated patients after cardiac surgery and 1 study before cardiac surgery.Functional capacity was assessed in 8 studies via 6MWT or other indices,and improved only in 1 study before and in 1 after cardiac surgery.Nine studies explored the effects of NMES on muscle strength and function and,most of them,found increase of muscle strength and improvement in muscle function after NMES.NMES was safe in all studies without any significant complication.CONCLUSION NMES is safe,feasible and has beneficial effects on muscle strength and function in patients after cardiac surgery,but has no significant effect on functional capacity.
基金supported by The Norwegian Research CouncilDepartment of Ophthalmology,Oslo University Hospital,Oslo,Norway(to TPU)+10 种基金Department of Medical Biochemistry,Oslo University Hospital,Oslo,Norway(to TPU)The Norwegian Association for the Blind and Partially Sighted(to TPU)The Ministry of Science and Technology of Taiwan,China MOST 105-2917-I-002-031,MOST 109-2917-I-564-032(to KC)The Scientific and Technological Research Council of Turkiye-TUBITAK(to KG)BrightFocus Foundation(to KSC)the Massachusetts Lions Foundation(to KSC)National Eye Institute Grant EY031696(to DFC)Harvard NeuroDiscovery Center Grant(to DFC)Department of Defense(USA)HT9425-23-1-1045(to DFC and AL)Core Grant for Vision Research from NIH/NEI to the Schepens Eye Research Institute(P30EY003790)South-Eastern Norway Regional Health Authority and the Norwegian Society of the Blind(to TPU).
文摘Retinitis pigmentosa is a hereditary retinal disease that affects rod and cone photoreceptors,leading to progressive photoreceptor loss.Previous research supports the beneficial effect of electrical stimulation on photoreceptor survival.This study aims to identify the most effective electrical stimulation parameters and functional advantages of transcorneal electrical stimulation(tcES)in mice affected by inherited retinal degeneration.Additionally,the study seeked to analyze the electric field that reaches the retina in both eyes in mice and post-mortem humans.In this study,we recorded waveforms and voltages directed to the retina during transcorneal electrical stimulation in C57BL/6J mice using an intraocular needle probe with rectangular,sine,and ramp waveforms.To investigate the functional effects of electrical stimulation on photoreceptors,we used human retinal explant cultures and rhodopsin knockout(Rho^(-/-))mice,demonstrating progressive photoreceptor degeneration with age.Human retinal explants isolated from the donors’eyes were then subjected to electrical stimulation and cultured for 48 hours to simulate the neurodegenerative environment in vitro.Photoreceptor density was evaluated by rhodopsin immunolabeling.In vivo Rho^(-/-)mice were subjected to two 5-day series of daily transcorneal electrical stimulation using rectangular and ramp waveforms.Retinal function and visual perception of mice were evaluated by electroretinography and optomotor response(OMR),respectively.Immunolabeling was used to assess the morphological and biochemical changes of the photoreceptor and bipolar cells in mouse retinas.Oscilloscope recordings indicated effective delivery of rectangular,sine,and ramp waveforms to the retina by transcorneal electrical stimulation,of which the ramp waveform required the lowest voltage.Evaluation of the total conductive resistance of the post-mortem human compared to the mouse eyes indicated higher cornea-to-retina resistance in human eyes.The temperature recordings during and after electrical stimulation indicated no significant temperature change in vivo and only a subtle temperature increase in vitro(~0.5-1.5°C).Electrical stimulation increased photoreceptor survival in human retinal explant cultures,particularly at the ramp waveform.Transcorneal electrical stimulation(rectangular+ramp)waveforms significantly improved the survival and function of S and M-cones and enhanced visual acuity based on the optomotor response results.Histology and immunolabeling demonstrated increased photoreceptor survival,improved outer nuclear layer thickness,and increased bipolar cell sprouting in Rho^(-/-)mice.These results indicate that transcorneal electrical stimulation effectively delivers the electrical field to the retina,improves photoreceptor survival in both human and mouse retinas,and increases visual function in Rho^(-/-)mice.Combined rectangular and ramp waveform stimulation can promote photoreceptor survival in a minimally invasive fashion.
基金supported in part by the National Natural Science Foundation of China (Grant No. 22273029)the Natural Science Foundation of Zhejiang Province, China (Grant No. 20230021).
文摘We investigate coupled electron and phonon transport in NbX_(2) with X=Ge,Si,where experimental evidence of strong electron-phonon coupling and hydrodynamic transport has been reported.Based on first-principles density functional theory calculations,we measured the thermal and electrical transport properties of the compounds.We found that phonon-electron scattering strongly affects phonon thermal conductivity(κph)and leads to a weak temperature dependence ofκph instead of a normal inverse temperature dependence when anharmonic three-phonon scattering dominates.In addition,κph contributes to a quarter of the total thermal conductivity,which differs from typical metals in which the total thermal conductivity is predominantly derived from electrons.In contrast to previous numerical research,our electrical resistivity results agree well with the experimental measurements.The anisotropic properties of the transport coefficients are attributed to the electron-phonon dispersion relation.In addition,we found a negligible effect of electron-phonon drag on the transport properties,contrary to the expectation from a strongly coupled electron-phonon fluid.
文摘Atrial fibrillation (AF) is the most common arrhythmia in the world, and its management relies on restoring sinus rhythm through external electrical shock and controlling the heart rate. This procedure should be performed under sedation with strict monitoring of blood pressure and saturation after the elimination of thrombus in the left atrium. Objective: The aim of this article is to provide an overview of the impact of anticoagulation and imaging in the periprocedural period, the modalities, and the complications associated with electrical cardioversion (ECV). Research Method: A review of recent literature was conducted using medical databases such as PubMed and Scopus. Searches were performed on articles published between 2003 and 2024, focusing on the new ESC guidelines for 2024. The keywords used included “electrical cardioversion”, “atrial fibrillation”, “orthogonal cardioversion” and “anticoagulation”. Inclusion criteria encompassed clinical trials, meta-analyses, and literature reviews, while studies addressing other treatment forms for AF or lacking information on ECV were excluded. Relevant data were extracted and synthesized to provide an overview of the modalities and complications related to ECV in the context of AF. Results and Conclusion: The use of high-energy biphasic shocks significantly improves rhythm control success and also reduces the incidence of ventricular fibrillation. Furthermore, orthogonal electrical cardioversion (OECV) has proven effective for cases of AF refractory to standard protocols, allowing for a lower defibrillation threshold and promoting better current distribution. However, complications must be considered, particularly thromboembolic events in non-anticoagulated patients. Other complications, such as bradycardia and recurrence of AF, may arise post-procedure. It is therefore crucial to ensure adequate anticoagulation before and after ECV, as well as continuous monitoring, to minimize these risks and optimize clinical outcomes.
基金granted by the Geological Survey Project of the China Geological Survey for Regional Geophysical Survey in Beishan and Adjacent Areas(Grant No.DD20230254)。
文摘The Central Asian Orogenic Belt(CAOB)is a giant orogenic belt located between the Siberian Plate,the Tarim Plate,and the North China Plate,which records the longterm and complex geologic evolution of the Paleo-Asian Ocean from the Early Neoproterozoic(ca.1000 Ma)to the Late Paleoproterozoic(ca.250 Ma)process.The Beishan Block is located in the middle and southern edge of the Central Asian orogenic belt,at the intersection of the Tarim plate,the Siberian Plate and the Kazakhstan Plate.
基金supported by the National Natural Science Foundation of China(Grant Nos.12075191,12388101,and 12241201)the Fundamental Research Funds for the Central Universities(Grant No.D5000230120)the Natural Science Basic Research Program of Shaanxi Province(Grant No.2023-JC-YB-541).
文摘The development of nanoelectronics and nanotechnologies has been boosted significantly by the emergence of 2D materials because of their atomic thickness and peculiar properties,and developing a universal,precise patterning technology for single-layer 2D materials is critical for assembling nanodevices.Demonstrated here is a nanomachining technique using electrical breakdown by an AFM tip to fabricate nanopores,nanostrips,and other nanostructures on demand.This can be achieved by voltage scanning or applying a constant voltage while moving the tip.By measuring the electrical current,the formation process on single-layer materials was shown quantitatively.The present results provide evidence of successful pattern fabrication on single-layer MoS2,boron nitride,and graphene,although further confirmation is still needed.The proposed method holds promise as a general nanomachining technology for the future.
文摘Introduction: Located in the central-western part of Côte d’Ivoire, the subsoil of the Gagnoa region is made up of sedimentary volcano formations and granitoids with developed fracturing. This complex Precambrian basement contains most of the region’s water resources. This is at the origin of the high failure rate during the various hydrogeological prospecting campaigns. Methodology: The database consists of resistivities from 42 holes and 51 trails drilled as part of the implementation of high-throughput drilling in the study area. The objective of this study is to deepen the knowledge of the fissured basement by interpreting profile curves and electrical soundings. It will be a question of classifying the different types of anomalies obtained on the profiles and their shapes. The orientation of the lineaments observed on the profiles was determined. Results: The interpretation of the geophysical data revealed various anomalies, the main ones being of the CC (Conductor Compartment) and CEDP (Contact between two bearings) types. These types of anomalies are mainly expressed in various forms: the “V”, “W” and “U” shapes. From these anomalies and the appearance of the electrical profiles, lineaments and their orientations were identified with N90-100, N130-140, N170-180 as major orientations. Conclusion: These results could contribute to a better understanding of the fractured environment of the Gagnoa region.
基金Funded by the Natural Science Foundation of Fujian Province(No.2016J01241)the National Natural Science Foundation of China(No.52178484)the Education Department of Fujian Province(No.JA14024)。
文摘Cement and resin were designed as mixed cementitious materials to study the smart aggregate(SA)of smart concrete.Carbon fiber(CF)and surfactant were taken into consideration to adjust the mechanical and electrical properties of smart aggregate(SA)in this issue.The experimental results indicate that the flexibility and mechanical properties of SA can be improved by using such mixed cementitious materials.It is shows that,although the compressive strength and flexural strength can be enhanced effectively by using resin and CF,the electrical conductivity decreases significantly,which is because the water molecules are difficult to penetrate through the mixture materials so the hydration reaction of cement can not fully carry out.However,the electrical conductivity can be improved by adding the surfactant,and the strength and mechanical electrical properties can be adjusted effectively by the surfactant.
基金supported by the National Natural Science Foundation of China(No.52274252)the Key Science and Technology Project of Changsha City,China(No.kq2102005)+1 种基金the Special Fund for the Construction of Innovative Province in Hunan Province,China(Nos.2020RC3038 and 2022WK4004)the Changsha City Fund for Distinguished and Innovative Young Scholars,China(No.kq1802007).
文摘The combination of electrospinning and hot pressing,namely the electrospinning-hot pressing technique(EHPT),is an efficient and convenient method for preparing nanofibrous composite materials with good energy storage performance.The emerging composite membrane prepared by EHPT,which exhibits the advantages of large surface area,controllable morphology,and compact structure,has attracted immense attention.In this paper,the conduction mechanism of composite membranes in thermal and electrical energy storage and the performance enhancement method based on the fabrication process of EHPT are systematically discussed.Moreover,the state-of-the-art applications of composite membranes in these two fields are introduced.In particular,in the field of thermal energy storage,EHPT-prepared membranes have longitudinal and transverse nanofibers,which generate unique thermal conductivity pathways;also,these nanofibers offer enough space for the filling of functional materials.Moreover,EHPT-prepared membranes are beneficial in thermal management systems,building energy conservation,and electrical energy storage,e.g.,improving the electrochemical properties of the separators as well as their mechanical and thermal stability.The application of electrospinning-hot pressing membranes on capacitors,lithium-ion batteries(LIBs),fuel cells,sodium-ion batteries(SIBs),and hydrogen bromine flow batteries(HBFBs)still requires examination.In the future,EHPT is expected to make the field more exciting through its own technological breakthroughs or be combined with other technologies to produce intelligent materials.
基金supported by the National Natural Science Foundation of China(12371211,12126359)the postgraduate Scientific Research Innovation Project of Hunan Province(XDCX2022Y054,CX20220541).
文摘We study the global unique solutions to the 2-D inhomogeneous incompressible MHD equations,with the initial data(u0,B0)being located in the critical Besov space■and the initial densityρ0 being close to a positive constant.By using weighted global estimates,maximal regularity estimates in the Lorentz space for the Stokes system,and the Lagrangian approach,we show that the 2-D MHD equations have a unique global solution.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.12174077 and 12174051)the Science Foundation of GuangDong Province (Grant No.2021A1515012363)GuangDong Basic and Applied Basic Research Foundation (Grant No.2022A1515110011)。
文摘We investigated the electric controllable spin-filtering effect in a zigzag phosphorene nanoribbon(ZPNR) based normal–antiferromagnet–normal junction. Two ferromagnets are closely coupled to the edges of the nanoribbon and form the edge-to-edge antiferromagnetism. Under an in-plane electric field, the two degenerate edge bands of the edge-to-edge antiferromagnet split into four spin-polarized sub-bands and a 100% spin-polarized current can be easily induced with the maximal conductance 2e~2/h. The spin polarization changes with the strength of the electric field and the exchange field,and changes sign at opposite electric fields. The spin-polarized current switches from one edge to the other by reversing the direction of the electric field. The edge current can also be controlled spatially by changing the electric potential of the scattering region. The manipulation of edge current is useful in spin-transfer-torque magnetic random-access memory and provides a practical way to develop controllable spintronic devices.
文摘Objective:To analyze the effect of combining transcutaneous electrical acupoint stimulation(TEAS)with rehabilitation training in patients with upper limb dysfunction after stroke(ULDAS).Methods:A total of 130 ULDAS patients who were hospitalized and rehabilitated in Wuxi Xinwu District Rehabilitation Hospital from May 2021 to May 2023 were selected and randomly divided into Group A(65 cases,rehabilitation training)and Group B(65 cases,rehabilitation training+TEAS).The effects of the two groups were compared.Results:After treatment,the upper limb functional indexes of Group B were better than those of Group A(P<0.05).The rate of muscle tone grades 0-4 in Group B was higher than those of Group A(P<0.05).Conclusion:The function of upper limbs and muscle strength of ULDAS patients improved by combining TEAS with rehabilitation training.
基金Funded by the National Natural Science Foundation of China(Nos.U1934206,52208299,and 52108260)the 2021 Tencent XPLORER PRIZE。
文摘In order to clarify the fatigue damage evolution of concrete exposed to flexural fatigue loads,ultrasonic pulse velocity(UPV),impact-echo technology and surface electrical resistance(SR) method were used.Damage variable based on the change of velocity of ultrasonic pulse(Du) and impact elastic wave(Di)were defined according to the classical damage theory.The influences of stress level,loading frequency and concrete strength on damage variable were measured.The experimental results show that Du and Di both present a three-stages trend for concrete exposed to fatigue loads.Since impact elastic wave is more sensitive to the microstructure damage in stage Ⅲ,the critical damage variable,i e,the damage variable before the final fracture of concrete of Di is slightly higher than that of Du.Meanwhile,the evolution of SR of concrete exposed to fatigue loads were analyzed and the relationship between SR and Du,SR and Di of concrete exposed to fatigue loads were established.It is found that the SR of concrete was decreased with the increasing fatigue cycles,indicating that surface electrical resistance method can also be applied to describe the damage of ballastless track concrete exposed to fatigue loads.