The electric field intensity (EFI) is important characteristic quantity for evaluating the internal insulation state of cable joints. Based on finite element method, this paper proposes two EFI research methods, field...The electric field intensity (EFI) is important characteristic quantity for evaluating the internal insulation state of cable joints. Based on finite element method, this paper proposes two EFI research methods, field-circuit coupling method and equivalent circuit method. The average EFI of the inner surface of the outer semi-conducting shield can be calculated from the current in the measuring circuit. The relative error between these two methods is about 15%, which roughly proves the consistency of the two methods. Further practical application research enables online monitoring of cable joints.展开更多
Polyvinylpyrrolidone (PVP) nanofibers were processed by magnetic-field-assisted electrospinning (MFAES) technique. Since electric field intensity was one of the most important parameters influencing fiber morpholo...Polyvinylpyrrolidone (PVP) nanofibers were processed by magnetic-field-assisted electrospinning (MFAES) technique. Since electric field intensity was one of the most important parameters influencing fiber morphology, the research aimed to study how electric field intensity affects fiber morphology in MFAES technique. The experimental results revealed that the distribution of diameter widened while the average diameter of PVP fibers decreased and the degree of the alignment reduced with the increase of electric field intensity. However, the fibers would be conglutinated together when the electric field intensity was too low. Also, the increase of working distance made the average diameter and the degree of the alignment increase slightly under the same electric field intensity, but the fibers could be partially curved instead of being fully straight if the working distance was too long. It was also indicated that maintaining the electric field intensity at 1 kV/cm With the voltage-distance combinations of 12 kV-12 cm (for 12wt% PVP) and 15 kV-15 cm (for 14wt% PVP) among all other combinations would result in the optimal alignment as well as a narrow size distribution of the fibers.展开更多
Although the internal electric field(IEF)of photocatalysts is acknowledged as a potent driving force for photocharge separation,modulating the IEF intensity to achieve enhanced photocatalytic performances remains a ch...Although the internal electric field(IEF)of photocatalysts is acknowledged as a potent driving force for photocharge separation,modulating the IEF intensity to achieve enhanced photocatalytic performances remains a challenge.Herein,cuprous sulfide nanosheets with different Cu vacancy concentration were employed to study IEF modulation and corresponding direct charge transfer.Among the samples,Cu_(1.8)S nanosheets possessed intensified IEF intensity compared with those of Cu_(2)S and Cu_(1.95)S nanosheets,suggesting that an enhanced IEF intensity could be achieved by introducing more Cu vacancies.This intensified IEF of Cu_(1.8)S nanosheets induced numerous photogenerated electrons to migrate to its surface,and the dissociative electrons were then captured by Cu vacancies,resulting in efficient charge separation spatially.In addition,the Cu vacancies on Cu_(1.8)S nanosheets accumulated electrons as active sites to lower the energy barrier of rate-determining step of CO_(2)photoreduction,leading to the selective conversion of CO_(2)to CO.Herein,the manipulation of IEF intensity through Cu vacancy concentration regulation of cuprous sulfide photocatalysts for efficient charge separation has been discussed,providing a scientific strategy to rationally improve photocata lytic performances for solar energy conversion.展开更多
Direct conversion of methane into C2 hydrocarbons through alternating current electric field enhanced plasma was studied under room temperature, atmospheric pressure and low power conditions. The distribution of elect...Direct conversion of methane into C2 hydrocarbons through alternating current electric field enhanced plasma was studied under room temperature, atmospheric pressure and low power conditions. The distribution of electrical field intensity and distribution of energy were calculated with software that was developed by us according to the charge simulation method. The results indicated that the energy of tip of electrode was 0.36 J/mm^3 and it was higher than the methane dissociation energy (0.0553 J/mm^3). The methane located at this area can be activated easily. The higher-energy particles produced by dissociation collided with molecules around them and initiated consecutive reactions between free radicals and molecules. The method was proved to be valided and could be taken as a basis for the electrical field study concerned.展开更多
We fabricated a microfluidic chip with simple structure and good sealing performance,and studied the influence of the electric field on THz absorption intensity of liquid samples treated at different times by using TH...We fabricated a microfluidic chip with simple structure and good sealing performance,and studied the influence of the electric field on THz absorption intensity of liquid samples treated at different times by using THz time domain spectroscopy system.The tested liquids were deionised water and CuSO_(4),CuC_(l2),NaHCO_(3),Na_(2)CO_(3) and NaCl solutions.The transmission intensity of the THz wave increases as the standing time of the electrolyte solution in the electric field increases.The applied electric field alters the dipole moment of water molecules in the electrolyte solution,which affects the vibration and rotation of the whole water molecules,breaks the hydrogen bonds in the water,increases the number of single water molecules and leads to the enhancement of the THz transmission spectrum.展开更多
In this paper,we theoretically investigate the total optical coefficient(TOAC)considering 1S-2P and 2S-2P conduction subband transitions in a single parabolic quantum well(SPQW)with an on-center hydrogen-like impurity...In this paper,we theoretically investigate the total optical coefficient(TOAC)considering 1S-2P and 2S-2P conduction subband transitions in a single parabolic quantum well(SPQW)with an on-center hydrogen-like impurity.Within the framework of the effective-mass approximation,the Schrödinger equation is solved numerically to obtain the eigenvalues and their corresponding eigenvectors using the finite difference method.The calculations are performed for finite confinement potential height,taking into account the dielectric and effective mass mismatches between GaN and InGaN materials under the considered electric field and temperature effects.The temperature dependence of the effective mass,dielectric constant and band gap energy are obtained accordingly.On the one hand,the results show that a significant shift is produced with the variation of both the temperature and the intensity of the electric field.On the other hand,the absorption spectrum is shifted to lower energies with increasing both electric field strength and temperature.Moreover,its amplitude is enhanced with an increase in the intensity of the electric field,and show a slight drop with increasing temperature for the two optical transitions considered.The results show that such parameters can be used to adjust the optical properties of single parabolic Quantum Well for solar cell applications.展开更多
A kinetic model of dielectric ageing is presented. The central finding of this investigation is that there is a power-law relationship between the local electric field concentration and the rate of defect-tip initiate...A kinetic model of dielectric ageing is presented. The central finding of this investigation is that there is a power-law relationship between the local electric field concentration and the rate of defect-tip initiated conducting crack growth. By applying such a power-law conducting crack growth rate expression to the evaluation of the life of solid dielectrics, the empirical classical ageing law of insulation materials can be derived theoretically as a lobical result. All the results are universal and agree with the experimental data of oxide films.展开更多
To describe the shielding ability of materials accurately and comprehensively,the frequency-domain and time-domain shielding effectiveness(SE) of material is investigated.The relevance between them was analyzed based ...To describe the shielding ability of materials accurately and comprehensively,the frequency-domain and time-domain shielding effectiveness(SE) of material is investigated.The relevance between them was analyzed based on the minimum phase method,and the time-domain SE can be derived from frequency-domain SE.The SE of an energy selective surface(ESS) made of a novel material is investigated,and the relationship between SE and radiation field intensity are analyzed.The results show that not only material,but also the intensity of radiation electric field shows influence on SE in its frequency; for some materials,the dependence of SE on radiation electric field intensity needs to be considered.Therefore,it is necessary to research on the SE of shielding material in high-intensity electromagnetic environment.展开更多
环境中的杂散磁场以及电路部分产生的磁场会导致相干布居囚禁(Coherent Population Trapping,CPT)原子钟跃迁谱线的频移,从而影响其长期频率稳定度。为减小传统电加热温控设备引入的干扰磁场,研究采用了一种z型双层加热结构。通过有限...环境中的杂散磁场以及电路部分产生的磁场会导致相干布居囚禁(Coherent Population Trapping,CPT)原子钟跃迁谱线的频移,从而影响其长期频率稳定度。为减小传统电加热温控设备引入的干扰磁场,研究采用了一种z型双层加热结构。通过有限元分析软件进行仿真,对比传统与新型加热片在原子气室中心产生的轴向磁场分布。结果显示,双层z型加热结构的干扰磁场强度约降低至传统加热片的0.05%,磁场均匀度提高了1700倍以上。进一步调节双层加热片的各层电流,干扰磁场可减小到不足15 nT,且温度调节引起的磁场波动范围仅为0.33 nT。磁屏蔽环境下的测试结果与仿真相符,显著提升了CPT原子钟的长期频率稳定度。展开更多
Aiming at the gas discharge problem in electric aircraft,this work studies the gas discharge characteristics at low-temperature sub-atmospheric pressure.A gas discharge shooting platform was built,and the discharge pr...Aiming at the gas discharge problem in electric aircraft,this work studies the gas discharge characteristics at low-temperature sub-atmospheric pressure.A gas discharge shooting platform was built,and the discharge process was photographed by intensified charge-coupled device(ICCD).A two-dimensional axisymmetric model of needle-plate electrode gas discharge was established,and three sets of Helmholtz equations were used to solve the photoionization.The results show that under the same voltage,the electric field intensity in the discharge process increases first,then decreases and finally increases again.The discharge speed increases with the increase of altitude,and the electron density in the streamer decreases with the increase of altitude.The development speed of the streamer in the middle stage is higher than that in the early stage,and the speed increases more obviously with the increase of altitude.The development speed of the streamer in the later stage is lower than that in the middle stage,but with the increase of altitude,the development speed of the streamer in the later stage is higher than that in the middle stage.展开更多
为了更好地设计高压直流(high voltage direct current,HVDC)交联聚乙烯(crosslinked polyethyline,XLPE)绝缘海底电缆,加快高压直流海底电缆绝缘国产化进程,结合电缆绝缘电导率试验方法测定某高压直流海底电缆XLPE绝缘材料在不同温度...为了更好地设计高压直流(high voltage direct current,HVDC)交联聚乙烯(crosslinked polyethyline,XLPE)绝缘海底电缆,加快高压直流海底电缆绝缘国产化进程,结合电缆绝缘电导率试验方法测定某高压直流海底电缆XLPE绝缘材料在不同温度及不同电场强度下的电导率;利用COMSOL多物理场仿真软件,采用分步式耦合分析方法,在相同敷设条件、不同负载电流下,对高压直流海底电缆绝缘内部的温度场、电场强度及空间电荷分布情况进行表征。仿真结果表明:采用分步式耦合分析方法可大幅减少模型求解时间,提升计算效率;在正常工作条件下,直流海底电缆绝缘内部会产生温度梯度和电场强度梯度,导致电导率发生变化,并进一步影响绝缘内部电场强度的分布;在电缆线芯的负载电流增大至一定程度时,出现场强反转现象;在绝缘内、外表面均会产生空间电荷积聚现象。文中仿真结果可为高压直流海底电缆的结构设计和国产绝缘材料开发提供理论依据和参考。展开更多
Non-thermal plasma at atmosphere was generated through glidarc discharge driven by magnetic field and observed by using a high speed charge coupled device (CCD) and photo multiplier tube (PMT). The arc diameter pr...Non-thermal plasma at atmosphere was generated through glidarc discharge driven by magnetic field and observed by using a high speed charge coupled device (CCD) and photo multiplier tube (PMT). The arc diameter projecting in the direction of arc motion (front-viewed diameter) and the diameter projecting in the perpendicular direction of arc motion (side-viewed diameter) were measured. The effect of both the arc current and the magnetic field was analysed. The front-viewed diameter was compared with the side-viewed one. Simultaneously the electricfield intensity was measured directly and analysed by considering the effect of the external magnetic field and arc current.展开更多
To simulate the electro-hydrodynamics of wire-plate corona discharge at different voltages accurately,a simulation method,which relates the definite radius and initial velocity of a jet source to the amplitude of disc...To simulate the electro-hydrodynamics of wire-plate corona discharge at different voltages accurately,a simulation method,which relates the definite radius and initial velocity of a jet source to the amplitude of discharge voltage,is developed.Firstly,a model of the electro-hydrodynamics is established by the Matlab software using the governing equations discretized with the finite difference method.Secondly,the electric field strength and current density are simulated and the radius and initial velocity of a jet source at different voltages are determined.Finally,the discharge electro-hydrodynamics is simulated using the determined boundary conditions.Compared with using a conventional method,using the proposed method can obtain a wind velocity with smaller errors from the experimental and theoretical wind velocities: the errors between simulated wind velocity and its theoretical counter part at 45 kV and 50 kV decrease from 9% and 6.25% to 1.7% and 1.56%,respectively.Thus,the proposed method is feasible for the existing discharge models.展开更多
In this work, we present the study of electromagnetic wave propagation through a medium with a variable dielectric function using the concept of Gaussian Beam. First of all, we start with wave equation with which we o...In this work, we present the study of electromagnetic wave propagation through a medium with a variable dielectric function using the concept of Gaussian Beam. First of all, we start with wave equation with which we obtain the solution in terms of the electric field and intensity distributions approximate to Gaussian Function, . With this, we analyze the dependency of r on Gaussian beam distribution spread, the distant from the axis at which the intensity of the beam distribution begins to fall at a given estimate of its peak value. The influence of the optimum beam waist wo and the beam spread on the intensity distribution will also be analyzed.展开更多
The efficiency of a silicon solar cell is directly linked to the quantity of carrier photogenerated in its base. It increases with the increase of the quantity of carrier in the base of the solar cell. The carrier den...The efficiency of a silicon solar cell is directly linked to the quantity of carrier photogenerated in its base. It increases with the increase of the quantity of carrier in the base of the solar cell. The carrier density in the base of the solar cell increases with the increase of the flux of photons that crosses the solar cell. One of the methods used to increase the flux of photon on the illuminated side of the solar cell is the intensification of the illumination light. However, the intensification of the light come with the increase of the energy released by thermalization, the collision between carriers, their braking due to the carriers concentration gradient electric field which lead to increase the temperature in the base of the solar cell. This work presents a 3-D study, of the effect of the temperature on the electronic parameters of a polycrystalline silicon solar under intense light illumination. The electronic parameters on which we analyze the temperature effect are:?the mobility of solar cell carriers?(electrons and holes),?their diffusion coefficient, their diffusion length and their distribution in the bulk of the base. To study the effect of the temperature on electronic parameters, we take into account, the dependence of carriers (electrons and holes) mobility with the temperature (μn,(T)?μp(T)). Then, the resolution of the continuity equation,which is a function of the carriers gradient electric field and the carriers mobility,?leads to the expressions of?the diffusion coefficient, the diffusion length, and the density of carriers which are function of the temperature. Then, we studied the effects of the temperature on the diffusion parameters in order to explain their effect on the behavior the carriers distribution in intermediate, short circuit and open circuit operating modes at several positions in the base depth. It appears through this study that the diffusion coefficient and the diffusion length decrease with the increase of the temperature. We observe also that with the increase of the temperature, the density of carriers in the base of the solar cell in short circuit and open voltage operating modes increases. In intermediate operating mode, the density of carriers increases also with the temperature but it is function of the base depth.展开更多
文摘The electric field intensity (EFI) is important characteristic quantity for evaluating the internal insulation state of cable joints. Based on finite element method, this paper proposes two EFI research methods, field-circuit coupling method and equivalent circuit method. The average EFI of the inner surface of the outer semi-conducting shield can be calculated from the current in the measuring circuit. The relative error between these two methods is about 15%, which roughly proves the consistency of the two methods. Further practical application research enables online monitoring of cable joints.
基金Fund by the Youth Foundation of the North University of China(2012)the Project of Graduate Innovation of Shanxi Province(20133102)
文摘Polyvinylpyrrolidone (PVP) nanofibers were processed by magnetic-field-assisted electrospinning (MFAES) technique. Since electric field intensity was one of the most important parameters influencing fiber morphology, the research aimed to study how electric field intensity affects fiber morphology in MFAES technique. The experimental results revealed that the distribution of diameter widened while the average diameter of PVP fibers decreased and the degree of the alignment reduced with the increase of electric field intensity. However, the fibers would be conglutinated together when the electric field intensity was too low. Also, the increase of working distance made the average diameter and the degree of the alignment increase slightly under the same electric field intensity, but the fibers could be partially curved instead of being fully straight if the working distance was too long. It was also indicated that maintaining the electric field intensity at 1 kV/cm With the voltage-distance combinations of 12 kV-12 cm (for 12wt% PVP) and 15 kV-15 cm (for 14wt% PVP) among all other combinations would result in the optimal alignment as well as a narrow size distribution of the fibers.
基金supported by the National Natural Science Foundation of China(52200123)the Open Project of Key Laboratory of Green Chemical Engineering Process of Ministry of Education(GCP2022007)the Scientific Research and Innovation Team Program of Sichuan University of Science and Engineering(SUSE652A014)。
文摘Although the internal electric field(IEF)of photocatalysts is acknowledged as a potent driving force for photocharge separation,modulating the IEF intensity to achieve enhanced photocatalytic performances remains a challenge.Herein,cuprous sulfide nanosheets with different Cu vacancy concentration were employed to study IEF modulation and corresponding direct charge transfer.Among the samples,Cu_(1.8)S nanosheets possessed intensified IEF intensity compared with those of Cu_(2)S and Cu_(1.95)S nanosheets,suggesting that an enhanced IEF intensity could be achieved by introducing more Cu vacancies.This intensified IEF of Cu_(1.8)S nanosheets induced numerous photogenerated electrons to migrate to its surface,and the dissociative electrons were then captured by Cu vacancies,resulting in efficient charge separation spatially.In addition,the Cu vacancies on Cu_(1.8)S nanosheets accumulated electrons as active sites to lower the energy barrier of rate-determining step of CO_(2)photoreduction,leading to the selective conversion of CO_(2)to CO.Herein,the manipulation of IEF intensity through Cu vacancy concentration regulation of cuprous sulfide photocatalysts for efficient charge separation has been discussed,providing a scientific strategy to rationally improve photocata lytic performances for solar energy conversion.
文摘Direct conversion of methane into C2 hydrocarbons through alternating current electric field enhanced plasma was studied under room temperature, atmospheric pressure and low power conditions. The distribution of electrical field intensity and distribution of energy were calculated with software that was developed by us according to the charge simulation method. The results indicated that the energy of tip of electrode was 0.36 J/mm^3 and it was higher than the methane dissociation energy (0.0553 J/mm^3). The methane located at this area can be activated easily. The higher-energy particles produced by dissociation collided with molecules around them and initiated consecutive reactions between free radicals and molecules. The method was proved to be valided and could be taken as a basis for the electrical field study concerned.
基金Project supported by the National Natural Science Foundation of China(Grant No.61575131).
文摘We fabricated a microfluidic chip with simple structure and good sealing performance,and studied the influence of the electric field on THz absorption intensity of liquid samples treated at different times by using THz time domain spectroscopy system.The tested liquids were deionised water and CuSO_(4),CuC_(l2),NaHCO_(3),Na_(2)CO_(3) and NaCl solutions.The transmission intensity of the THz wave increases as the standing time of the electrolyte solution in the electric field increases.The applied electric field alters the dipole moment of water molecules in the electrolyte solution,which affects the vibration and rotation of the whole water molecules,breaks the hydrogen bonds in the water,increases the number of single water molecules and leads to the enhancement of the THz transmission spectrum.
基金This research received no specific grant from any funding agency in the public,commercial,or not-for-profit sectors.
文摘In this paper,we theoretically investigate the total optical coefficient(TOAC)considering 1S-2P and 2S-2P conduction subband transitions in a single parabolic quantum well(SPQW)with an on-center hydrogen-like impurity.Within the framework of the effective-mass approximation,the Schrödinger equation is solved numerically to obtain the eigenvalues and their corresponding eigenvectors using the finite difference method.The calculations are performed for finite confinement potential height,taking into account the dielectric and effective mass mismatches between GaN and InGaN materials under the considered electric field and temperature effects.The temperature dependence of the effective mass,dielectric constant and band gap energy are obtained accordingly.On the one hand,the results show that a significant shift is produced with the variation of both the temperature and the intensity of the electric field.On the other hand,the absorption spectrum is shifted to lower energies with increasing both electric field strength and temperature.Moreover,its amplitude is enhanced with an increase in the intensity of the electric field,and show a slight drop with increasing temperature for the two optical transitions considered.The results show that such parameters can be used to adjust the optical properties of single parabolic Quantum Well for solar cell applications.
文摘A kinetic model of dielectric ageing is presented. The central finding of this investigation is that there is a power-law relationship between the local electric field concentration and the rate of defect-tip initiated conducting crack growth. By applying such a power-law conducting crack growth rate expression to the evaluation of the life of solid dielectrics, the empirical classical ageing law of insulation materials can be derived theoretically as a lobical result. All the results are universal and agree with the experimental data of oxide films.
基金Project supported by National Basic Research Program of China(973 Program) (6131380301) National Natural Science Foundation of China (61001050).
文摘To describe the shielding ability of materials accurately and comprehensively,the frequency-domain and time-domain shielding effectiveness(SE) of material is investigated.The relevance between them was analyzed based on the minimum phase method,and the time-domain SE can be derived from frequency-domain SE.The SE of an energy selective surface(ESS) made of a novel material is investigated,and the relationship between SE and radiation field intensity are analyzed.The results show that not only material,but also the intensity of radiation electric field shows influence on SE in its frequency; for some materials,the dependence of SE on radiation electric field intensity needs to be considered.Therefore,it is necessary to research on the SE of shielding material in high-intensity electromagnetic environment.
文摘环境中的杂散磁场以及电路部分产生的磁场会导致相干布居囚禁(Coherent Population Trapping,CPT)原子钟跃迁谱线的频移,从而影响其长期频率稳定度。为减小传统电加热温控设备引入的干扰磁场,研究采用了一种z型双层加热结构。通过有限元分析软件进行仿真,对比传统与新型加热片在原子气室中心产生的轴向磁场分布。结果显示,双层z型加热结构的干扰磁场强度约降低至传统加热片的0.05%,磁场均匀度提高了1700倍以上。进一步调节双层加热片的各层电流,干扰磁场可减小到不足15 nT,且温度调节引起的磁场波动范围仅为0.33 nT。磁屏蔽环境下的测试结果与仿真相符,显著提升了CPT原子钟的长期频率稳定度。
文摘Aiming at the gas discharge problem in electric aircraft,this work studies the gas discharge characteristics at low-temperature sub-atmospheric pressure.A gas discharge shooting platform was built,and the discharge process was photographed by intensified charge-coupled device(ICCD).A two-dimensional axisymmetric model of needle-plate electrode gas discharge was established,and three sets of Helmholtz equations were used to solve the photoionization.The results show that under the same voltage,the electric field intensity in the discharge process increases first,then decreases and finally increases again.The discharge speed increases with the increase of altitude,and the electron density in the streamer decreases with the increase of altitude.The development speed of the streamer in the middle stage is higher than that in the early stage,and the speed increases more obviously with the increase of altitude.The development speed of the streamer in the later stage is lower than that in the middle stage,but with the increase of altitude,the development speed of the streamer in the later stage is higher than that in the middle stage.
文摘为了更好地设计高压直流(high voltage direct current,HVDC)交联聚乙烯(crosslinked polyethyline,XLPE)绝缘海底电缆,加快高压直流海底电缆绝缘国产化进程,结合电缆绝缘电导率试验方法测定某高压直流海底电缆XLPE绝缘材料在不同温度及不同电场强度下的电导率;利用COMSOL多物理场仿真软件,采用分步式耦合分析方法,在相同敷设条件、不同负载电流下,对高压直流海底电缆绝缘内部的温度场、电场强度及空间电荷分布情况进行表征。仿真结果表明:采用分步式耦合分析方法可大幅减少模型求解时间,提升计算效率;在正常工作条件下,直流海底电缆绝缘内部会产生温度梯度和电场强度梯度,导致电导率发生变化,并进一步影响绝缘内部电场强度的分布;在电缆线芯的负载电流增大至一定程度时,出现场强反转现象;在绝缘内、外表面均会产生空间电荷积聚现象。文中仿真结果可为高压直流海底电缆的结构设计和国产绝缘材料开发提供理论依据和参考。
基金National Natural Science Foundation of China(No.10375065)Natural Science Foundation of Anhui Province(No.03045102)
文摘Non-thermal plasma at atmosphere was generated through glidarc discharge driven by magnetic field and observed by using a high speed charge coupled device (CCD) and photo multiplier tube (PMT). The arc diameter projecting in the direction of arc motion (front-viewed diameter) and the diameter projecting in the perpendicular direction of arc motion (side-viewed diameter) were measured. The effect of both the arc current and the magnetic field was analysed. The front-viewed diameter was compared with the side-viewed one. Simultaneously the electricfield intensity was measured directly and analysed by considering the effect of the external magnetic field and arc current.
基金Project supported by National Natural Science Foundation of China (10875036), Hebei Provincial Natural Science Foundation of China (A2010000182), Hebei Provincial Science and Technology Supporting Program of China (09276712D).
文摘To simulate the electro-hydrodynamics of wire-plate corona discharge at different voltages accurately,a simulation method,which relates the definite radius and initial velocity of a jet source to the amplitude of discharge voltage,is developed.Firstly,a model of the electro-hydrodynamics is established by the Matlab software using the governing equations discretized with the finite difference method.Secondly,the electric field strength and current density are simulated and the radius and initial velocity of a jet source at different voltages are determined.Finally,the discharge electro-hydrodynamics is simulated using the determined boundary conditions.Compared with using a conventional method,using the proposed method can obtain a wind velocity with smaller errors from the experimental and theoretical wind velocities: the errors between simulated wind velocity and its theoretical counter part at 45 kV and 50 kV decrease from 9% and 6.25% to 1.7% and 1.56%,respectively.Thus,the proposed method is feasible for the existing discharge models.
文摘In this work, we present the study of electromagnetic wave propagation through a medium with a variable dielectric function using the concept of Gaussian Beam. First of all, we start with wave equation with which we obtain the solution in terms of the electric field and intensity distributions approximate to Gaussian Function, . With this, we analyze the dependency of r on Gaussian beam distribution spread, the distant from the axis at which the intensity of the beam distribution begins to fall at a given estimate of its peak value. The influence of the optimum beam waist wo and the beam spread on the intensity distribution will also be analyzed.
文摘The efficiency of a silicon solar cell is directly linked to the quantity of carrier photogenerated in its base. It increases with the increase of the quantity of carrier in the base of the solar cell. The carrier density in the base of the solar cell increases with the increase of the flux of photons that crosses the solar cell. One of the methods used to increase the flux of photon on the illuminated side of the solar cell is the intensification of the illumination light. However, the intensification of the light come with the increase of the energy released by thermalization, the collision between carriers, their braking due to the carriers concentration gradient electric field which lead to increase the temperature in the base of the solar cell. This work presents a 3-D study, of the effect of the temperature on the electronic parameters of a polycrystalline silicon solar under intense light illumination. The electronic parameters on which we analyze the temperature effect are:?the mobility of solar cell carriers?(electrons and holes),?their diffusion coefficient, their diffusion length and their distribution in the bulk of the base. To study the effect of the temperature on electronic parameters, we take into account, the dependence of carriers (electrons and holes) mobility with the temperature (μn,(T)?μp(T)). Then, the resolution of the continuity equation,which is a function of the carriers gradient electric field and the carriers mobility,?leads to the expressions of?the diffusion coefficient, the diffusion length, and the density of carriers which are function of the temperature. Then, we studied the effects of the temperature on the diffusion parameters in order to explain their effect on the behavior the carriers distribution in intermediate, short circuit and open circuit operating modes at several positions in the base depth. It appears through this study that the diffusion coefficient and the diffusion length decrease with the increase of the temperature. We observe also that with the increase of the temperature, the density of carriers in the base of the solar cell in short circuit and open voltage operating modes increases. In intermediate operating mode, the density of carriers increases also with the temperature but it is function of the base depth.