Precise measurements of the CO2 gas transfer across the air-sea interface provide a better under- standing of the global carbon cycle. The air-sea CO2 fluxes are obtained by the eddy covariance method and the bulk met...Precise measurements of the CO2 gas transfer across the air-sea interface provide a better under- standing of the global carbon cycle. The air-sea CO2 fluxes are obtained by the eddy covariance method and the bulk method from a buoy observation in the northern Huanghai sea. The effects of buoy motion on flux calculated by the eddy covariance method are demonstrated. The research shows that a motion correction can improve the correlation coefficient between the C02 fluxes esti- mated from two different levels. Without the CO2-H20 cross-correlation correction which is termed as PKT correction, the air-sea CO2 fluxes estimated by eddy covariance method using the motion corrected data are nearly an order of magnitude larger than those estimated by the bulk method. After the CO2-H20 cross-correlation correction, some eddy covariance CO2 fluxes indeed become closer to the bulk CO2 flux, whereas some are overcorrected which are in response to small water vapor flux.展开更多
Based on five years of eddy covariance measurements at multiple levels(47,140,and 280 m)of Beijing's 325-m meteorological tower,the exchange process of CO_(2) fluxes between the atmosphere and urban surface were i...Based on five years of eddy covariance measurements at multiple levels(47,140,and 280 m)of Beijing's 325-m meteorological tower,the exchange process of CO_(2) fluxes between the atmosphere and urban surface were investigated.As a result of the total vehicle control policy from 2011 in Beijing,the growth rate of annual total CO_(2) flux at 140 m is 7.8% from 2008-2010 but 2.3%from 2010-2012.With the minimum vegetation cover and largest population density,the 5-yr average annual total CO_(2) flux at 140 m is largest(6.41 kg C m^(−2) yr^(−1)),compared with that at 47 m(5.78 kg C m^(−2) yr^(−1))and 280 m(3.99 kg C m^(−2) yr^(−1)).With regards to annual total CO_(2) fluxes in Beijing,vehicle numbers and population are the main controlling factors.The measured CO_(2) fluxes were highly dependent on land cover/use in the prevailing wind direction.The CO_(2) fluxes at three layers all correlated positively with road fraction,with the R2 values being 0.69,0.57,and 0.54(P<0.05),respectively.The decreasing fraction of vegetation caused an increasing of the annual total CO_(2) flux,and there was an exponential relationship between them.The annual total CO_(2) fluxes were larger with higher population density.展开更多
Turbulence characteristics of an atmospheric surface layer over a coastal mountain area were investigated under different coordinate frames. Performances of three methods of coordinate rotation: double rotation (DR...Turbulence characteristics of an atmospheric surface layer over a coastal mountain area were investigated under different coordinate frames. Performances of three methods of coordinate rotation: double rotation (DR), triple rotation (TR), and classic planar-fit rotation (PF) were examined in terms of correction of eddy covariance flux. Using the commonly used DR and TR methods, unreasonable rotation angles are encountered at low wind speeds and cause significant run-to-run errors of some turbulence characteristics. The PF method rotates the coordinate system to an ensemble-averaged plane, and shows large tilt error due to an inaccurate fit plane over variable terrain slopes. In this paper, we propose another coordinate rotation scheme. The observational data were separated into two groups according to wind direction. The PF method was adapted to find an ensemble-averaged streamline plane for each group of hourly runs with wind speed exceeding 1.0 m s-1. Then, the coordinate systems were rotated to their respective best- fit planes for all available hourly observations. We call this the PF10 method. The implications of tilt corrections for the turbulence characteristics are discussed with a focus on integral turbulence characteristics, the spectra of wind-velocity components, and sensible heat and momentum fluxes under various atmospheric stabilities. Our results show that the adapted application of PF provides greatly improved estimates of integral turbulence characteristics in complex terrain and maintains data quality. The comparisons of the sensible heat fluxes for four coordinate rotation methods to fluxes before correction indicate that the PF10 scheme is the best to preserve consistency between fluxes.展开更多
Exploring the surface energy exchange between atmosphere and water bodies is essential to gain a quantitative understanding of regional climate change, especially for the lakes in the desert. In this study, measuremen...Exploring the surface energy exchange between atmosphere and water bodies is essential to gain a quantitative understanding of regional climate change, especially for the lakes in the desert. In this study, measurements of energy flux and water vapor were performed over a lake in the Badain Jaran Desert, China from March 2012 to March 2013. The studied lake had about a 2-month frozen period (December and January) and a 10-month open-water period (February-November). Latent heat flux (LE) and sensible heat flux (Hs) acquired using the eddy covariance technique were argued by measurements of long'wave and shortwave radiation. Both fluxes of longwave and shortwave radiation showed seasonal dynamics and daily fluctuations during the study period. The reflected solar radiation was much higher in winter than in other seasons. LE exhibited diurnal and seasonal variations. On a daily scale, LE was low in the morning and peaked in the afternoon. From spring (April) to winter (January), the diurnal amplitude of LE decreased slowly. LE was the dominant heat flux throughout the year and consumed most of the energy from the lake. Generally speaking, LE was mostly affected by changes in the ambient wind speed, while Hs was primarily affected by the product of water-air temperature difference and wind speed. The diurnal LE and Hs were negatively correlated in the open-water period. The variations in Hs and LE over the lake were differed from those on the nearby land surface. The mean evaporation rate on the lake was about 4.0 mm/d over the entire year, and the cumulative annual evaporation rate was 1445 mm/a. The cumulative annual evaporation was 10 times larger than the cumulative annual precipitation. Furthermore, the average evaporation rates over the frozen period and open-water period were approximately 0.6 and 5.0 mm/d, respectively. These results can be used to analyze the water balance and quantify the source of lake water in the Badain Jaran Desert.展开更多
A large eddy simulation (LES) of the flows around an underwater vehicle model at intermediate Reynolds numbers is performed. The underwater vehicle model is taken as the DARPA SUBOFF with full appendages, where the ...A large eddy simulation (LES) of the flows around an underwater vehicle model at intermediate Reynolds numbers is performed. The underwater vehicle model is taken as the DARPA SUBOFF with full appendages, where the Reynolds number based on the hull length is 1.0x 105, An immersed boundary method based on the moving-least-squares reconstruction is used to handle the complex geometric boundaries. The adaptive mesh refinement is utilized to resolve the flows near the hull, The parallel scalabilities of the flow solver are tested on meshes with the number of cells varying from 50 million to 3.2 billion, The parallel solver reaches nearly linear scalability for the flows around the underwater vehicle model, The present simulation captures the essential features of the vortex structures near the hull and in the wake, Both of the time-averaged pressure coefficients and srreamwise velocity profiles obtained from the LES are consistent with the characteristics of the flows pass an appended axisymmetric body. The code efficiency and its correct predictions on flow features allow us to perform the full-scale simulations on tens of thousands of cores with billions of grid points for higher-Reynolds-number flows around the underwater vehicles.展开更多
Corrections of density effects resulting from air-parcel expansion/compression are important in interpreting eddy covariance fluxes of water vapor and CO2 when open-path systems are used. To account for these effects,...Corrections of density effects resulting from air-parcel expansion/compression are important in interpreting eddy covariance fluxes of water vapor and CO2 when open-path systems are used. To account for these effects, mean vertical velocity and perturbation of the density of dry air are two critical parameters in treating those physical processes responsible for density variations. Based on various underlying assumptions, different studies have obtained different formulas for the mean vertical velocity and perturbation of the density of dry air, leading to a number of approaches to correct density effects. In this study, we re-examine physical processes related to different assumptions that are made to formulate the density effects. Specifically, we re-examine the assumptions of a zero dry air flux and a zero moist air flux in the surface layer, used for treating density variations, and their implications for correcting density effects. It is found that physical processes in relation to the assumption of a zero dry air flux account for the influence of dry air expansion/compression on density variations. Meanwhile, physical processes in relation to the assumption of a zero moist air flux account for the influence of moist air expansion/compression on density variations. In this study, we also re-examine mixing ratio issues. Our results indicate that the assumption of a zero dry air flux favors the use of the mixing ratio relative to dry air, while the assumption of a zero moist air flux favors the use of the mixing ratio relative to the total moist air. Additionally, we compare different formula for the mean vertical velocity, generated by air-parcel expansion/compression, and for density effect corrections using eddy covariance data measured over three boreal ecosystems.展开更多
A numerical model has been developed to study sloshing of turbulent flow in a tank with elastic baffles. The Moving-Particle Semi-implicit method(MPS) is a kind of meshless Lagrangian calculation method. The large edd...A numerical model has been developed to study sloshing of turbulent flow in a tank with elastic baffles. The Moving-Particle Semi-implicit method(MPS) is a kind of meshless Lagrangian calculation method. The large eddy simulation(LES) approach is employed to model the turbulence by using the Smagorinsky Sub-Particle Scale(SPS)closure model. This paper uses MPS-FSI method with LES to simulate the interaction between free surface flow and a thin elastic baffle in sloshing. Then, the numerical model is validated, and the numerical solution has good agreement with experimental data for sloshing in a tank with elastic baffles. Furthermore, under external excitations,the MPS is applied to viscous laminar flow and turbulent flow, with both the deformation of elastic baffles and the wave height of the free surface are compared with each other. Besides, the impact pressure with/without baffles and wave height of free surface are investigated and discussed in detail. Finally, preliminary simulations are carried out in the damage problem of elastic baffles, taking the advantage of the MPS-FSI method in computations of the fluid–structure interaction with large deformation.展开更多
The soil of subtropical vegetable fields is an important source of the atmospheric greenhouse gas nitrous oxide(N2O). In a field study in subtropical China, the authors used an eddy covariance(EC)system based on a...The soil of subtropical vegetable fields is an important source of the atmospheric greenhouse gas nitrous oxide(N2O). In a field study in subtropical China, the authors used an eddy covariance(EC)system based on a close-path quantum cascade laser(QCL) spectrometer to measure N2O fluxes from a vegetable field. During the experimental period from 9 October 2014 to 18 February 2015,the observed half-hourly N2O fluxes ranged from.10.7 to 1077.4 μg N m^-2h^-1, with a mean value of99.3 μg N m^-2h^-1. The detection limit(95% confidence level) of the EC system for half-hourly fluxes was estimated at 18.5 μg N m^-2h^-1, i.e. smaller than 97.5% of all measured fluxes, and within the range of the lower limit of reported N2O emissions from subtropical vegetable fields. The random uncertainties in the half-hourly fluxes were estimated at 60% on average, of which 62% was due to stochastic variations caused by turbulence and 38% by instrumental noise. The flux systematic uncertainties were estimated at.18% on average, mainly due to the spectral attenuation; however,this negative bias had already been corrected for by calculating half-hourly fluxes. In conclusion,the close-path QCL-based EC technique is capable of measuring the N2O fluxes from the subtropical vegetable fields of China with high reliability and accuracy.展开更多
As an important product of Moderate Resolution Imaging Spectroradiometer(MODIS), MOD17A2 provides dramatic improvements in our ability to accurately and continuously monitor global terrestrial primary production, whic...As an important product of Moderate Resolution Imaging Spectroradiometer(MODIS), MOD17A2 provides dramatic improvements in our ability to accurately and continuously monitor global terrestrial primary production, which is also significant in effort to advance scientific research and eco-environmental management. Over the past decades, forests have moderated climate change by sequestrating about one-quarter of the carbon emitted by human activities through fossil fuels burning and land use/land cover change. Thus, the carbon uptake by forests reduces the rate at which carbon accumulates in the atmosphere. However, the sensitivity of near real-time MODIS gross primary productivity(GPP) product is directly constrained by uncertainties in the modeling process, especially in complicated forest ecosystems. Although there have been plenty of studies to verify MODIS GPP with ground-based measurements using the eddy covariance(EC) technique, few have comprehensively validated the performance of MODIS estimates(Collection 5) across diverse forest types. Therefore, the present study examined the degree of correspondence between MODIS-derived GPP and EC-measured GPP at seasonal and interannual time scales for the main forest ecosystems, including evergreen broadleaf forest(EBF), evergreen needleleaf forest(ENF), deciduous broadleaf forest(DBF), and mixed forest(MF) relying on 16 flux towers with a total of 68 site-year datasets. Overall, site-specific evaluation of multi-year mean annual GPP estimates indicates that the current MOD17A2 product works highly effectively for MF and DBF, moderately effectively for ENF, and ineffectively for EBF. Except for tropical forest, MODIS estimates could capture the broad trends of GPP at 8-day time scale for all other sites surveyed. On the annual time scale, the best performance was observed in MF, followed by ENF, DBF, and EBF. Trend analyses also revealed the poor performance of MODIS GPP product in EBF and DBF. Thus, improvements in the sensitivity of MOD17A2 to forest productivity require continued efforts.展开更多
SST fronts at the mesoscale eddy edge(ME fronts)were investigated from 2007–2017 in the northern South China Sea(NSCS)based on an automatic method using satellite sea level anomaly(SLA)and SST data.The relative proba...SST fronts at the mesoscale eddy edge(ME fronts)were investigated from 2007–2017 in the northern South China Sea(NSCS)based on an automatic method using satellite sea level anomaly(SLA)and SST data.The relative probabilities between the number of anticyclonic/cyclonic ME fronts(AEF/CEF)and the number of anticyclones/cyclones reached 20%.The northeastern and southwestern parts of these anticyclones had more fronts than the northwestern and southeastern parts,although CEFs were nearly equally distributed in all directions.The number of ME fronts had remarkable seasonal variations,while the eddy kinetic energy(EKE)showed no seasonal variations.The total EKE at the ME fronts was three times of that within the MEs,and it was much stronger in AEFs than in CEFs.The interannual variability in the number of ME fronts and EKE had no significant correlation with the El Ni?o-Southern Oscillation(ENSO)index.Possible mechanisms of ME fronts were discussed,but the contributions of mesoscale eddies to SST fronts need to be quantified in future studies.展开更多
A novel method is proposed to combine the wall-modeled large-eddy simulation(LES) with the diffuse-interface direct-forcing immersed boundary(IB) method.The new developments in this method include:(i) the momentum equ...A novel method is proposed to combine the wall-modeled large-eddy simulation(LES) with the diffuse-interface direct-forcing immersed boundary(IB) method.The new developments in this method include:(i) the momentum equation is integrated along the wall-normal direction to link the tangential component of the effective body force for the IB method to the wall shear stress predicted by the wall model;(ii) a set of Lagrangian points near the wall are introduced to compute the normal component of the effective body force for the IB method by reconstructing the normal component of the velocity. This novel method will be a classical direct-forcing IB method if the grid is fine enough to resolve the flow near the wall. The method is used to simulate the flows around the DARPA SUBOFF model. The results obtained are well comparable to the measured experimental data and wall-resolved LES results.展开更多
A new method of 3D transient eddy current field calculation is proposed. The Maxwell equations with time component elimination (METCE) are derived under the assumption of magnetic quasi static approximation, especia...A new method of 3D transient eddy current field calculation is proposed. The Maxwell equations with time component elimination (METCE) are derived under the assumption of magnetic quasi static approximation, especially for the sample of low conductivity. Based on METCE, we deduce a more efficient reconstruction algorithm of a 3D transient eddy current field. The computational burden is greatly reduced through the new algorithm, and the computational efficiency is improved. This new algorithm decompounds the space-time variables into two individual variables. The idea is to solve the spatial vector component firstly, and then multiply it by the corresponded time component. The iterative methods based on METCE are introduced to recover the distribution of conductivity in magneto-acoustic tomography. The reconstructed images of conductivity are consistent with the original distribution, which validate the new method.展开更多
Turbulent eddies play a critical role in oceanic flows. Direct measurements of turbulent eddy fluxes beneath the sea surface were taken to study the direction of flux-carrying eddies as a means of supplementing our un...Turbulent eddies play a critical role in oceanic flows. Direct measurements of turbulent eddy fluxes beneath the sea surface were taken to study the direction of flux-carrying eddies as a means of supplementing our understanding of vertical fluxes exchange processes and their relationship to tides. The observations were made at 32 Hz at a water depth of ~1.5 m near the coast of Sanya, China, using an eddy covariance system, which mainly consists of an acoustic doppler velocimeter(ADV) and a fast temperature sensor. The cospectra-fit method-an established semi-empirical model of boundary layer turbulence to the measured turbulent cospectra at frequencies below those of surface gravity waves-was used in the presence of surface gravity waves to quantify the turbulent eddy fluxes(including turbulent heat flux and Reynolds stress). As much as 87% of the total turbulent stress and 88% of the total turbulent heat flux were determined as being at band frequencies below those of surface gravity waves. Both the turbulent heat flux and Reynolds stress showed a daily successive variation;the former peaked during the low tide period and the later peaked during the ebb tide period.Estimation of roll-off wavenumbers, k0, and roll-off wavelengths, λ0(where λ0=2π/k0), which were estimated as the horizontal length scales of the dominant flux-carrying turbulent eddies, indicated that the λ0 of the turbulent heat flux was approximately double that of the Reynolds stress. Wavelet analysis showed that both the turbulent heat flux and the Reynolds stress have a close relationship to the semi-diurnal and diurnal tides, and therefore indicate the energy that is transported from tides to turbulence.展开更多
The paper proposes an experimental method of material inspection,which is based on digital processing of multi-frequency eddy current measurement data.The influences of various factors(conductivity,the gap between the...The paper proposes an experimental method of material inspection,which is based on digital processing of multi-frequency eddy current measurement data.The influences of various factors(conductivity,the gap between the sample surface and the sensor,the thickness of the sample) on the obtained hodographs are examined by taking the aluminum alloys for example,and the possibility of separation of various factors is analyzed.The results obtained are indicative of how much promise the proposed method offers for the inspection and testing of products made of aluminum alloys.展开更多
After the field equations and the snonumuoo conditions between the interfaces for 3D eddy current problems Under various gauges were discussed, it was pointed cut in this paper that using the magnetic vector potentia...After the field equations and the snonumuoo conditions between the interfaces for 3D eddy current problems Under various gauges were discussed, it was pointed cut in this paper that using the magnetic vector potential A. the electric scalar potential and Coulomb gauge △ .A = 0 in eddy current regions and using the magntetic scalar potential Ω in the non-conducting regions are more suitable. All field equations, the boundary conditions, the interface continuity conditions and the corresponding variational principle of this method are also given展开更多
A matrix equation solved in an eddy current analysis,??-??method based on a domain decomposition method becomes a complex symmetric system.In general,iterative method is used as the solver.Convergence of iterative met...A matrix equation solved in an eddy current analysis,??-??method based on a domain decomposition method becomes a complex symmetric system.In general,iterative method is used as the solver.Convergence of iterative method in an interface problem is improved by increasing an accuracy of a solution of an iterative method of a subdomain problem.However,it is difficult to improve the convergence by using a small convergence criterion in the subdomain problem.Therefore,authors propose a method to introduce double-double precision into the interface problem and the subdomain problem.This proposed method improves the convergence of the interface problem.In this paper,first,we describe proposed method.Second,we confirm validity of the method by using Team Workshop Problem 7,standard model for eddy current analysis.Finally,we show effectiveness of the method from two numerical results.展开更多
In this paper, the finite element method using vector potential in applications to 2D nonlinear eddy current field is discussed. The authors use the equivalent magnetic energy method to deal with magnetization curve o...In this paper, the finite element method using vector potential in applications to 2D nonlinear eddy current field is discussed. The authors use the equivalent magnetic energy method to deal with magnetization curve of ferromagnetic material,and present the formulation of 2D nonlinear eddy current field.With this method the authors analyze the eddy current field in an induction ladle furnace and the force distribution in the charge (molten metal),and plot the corresponding curves.展开更多
This paper uses scenery complementary heating method to discuss a new type of scenery complementary water heater design. This product can be divided into two parts. The first part is the eddy current method wind power...This paper uses scenery complementary heating method to discuss a new type of scenery complementary water heater design. This product can be divided into two parts. The first part is the eddy current method wind power heating part, which is driven by wind power and vertical axis wind turbines and the design of magnet array rotor disc rotation, namely, magnetic field rotating, induced eddy current in the stator, so as to generate heat. The second part is the solar heating part. This works has broad market prospect, which provides a new idea for large-scaled heating method.展开更多
The present study proposes a sub-grid scale model for the one-dimensional Burgers turbulence based on the neuralnetwork and deep learning method.The filtered data of the direct numerical simulation is used to establis...The present study proposes a sub-grid scale model for the one-dimensional Burgers turbulence based on the neuralnetwork and deep learning method.The filtered data of the direct numerical simulation is used to establish thetraining data set,the validation data set,and the test data set.The artificial neural network(ANN)methodand Back Propagation method are employed to train parameters in the ANN.The developed ANN is applied toconstruct the sub-grid scale model for the large eddy simulation of the Burgers turbulence in the one-dimensionalspace.The proposed model well predicts the time correlation and the space correlation of the Burgers turbulence.展开更多
基金The National Basic Research Program of China under contract No. 2011CB403501the Public Science and Technology Research Funds Projects of Ocean of the State oceanic Administration of China under contract No. 200905012-9+1 种基金the Fund for Creative Research Groups by the National Natural Science Foundation of China under contract No. 41121064the Open Research Foundation for the key Laboratory of Ocean Circulation and Waves.Institute of Oceanology,Chinese Academy of Sciences of China under contract No.KLOCAW1207
文摘Precise measurements of the CO2 gas transfer across the air-sea interface provide a better under- standing of the global carbon cycle. The air-sea CO2 fluxes are obtained by the eddy covariance method and the bulk method from a buoy observation in the northern Huanghai sea. The effects of buoy motion on flux calculated by the eddy covariance method are demonstrated. The research shows that a motion correction can improve the correlation coefficient between the C02 fluxes esti- mated from two different levels. Without the CO2-H20 cross-correlation correction which is termed as PKT correction, the air-sea CO2 fluxes estimated by eddy covariance method using the motion corrected data are nearly an order of magnitude larger than those estimated by the bulk method. After the CO2-H20 cross-correlation correction, some eddy covariance CO2 fluxes indeed become closer to the bulk CO2 flux, whereas some are overcorrected which are in response to small water vapor flux.
基金funded by the National Key Research and Develop-ment Program of China[grant number 2017YFC1502101]the National Natural Science Foundation of China[grant numbers 41905010 and 41675013].
文摘Based on five years of eddy covariance measurements at multiple levels(47,140,and 280 m)of Beijing's 325-m meteorological tower,the exchange process of CO_(2) fluxes between the atmosphere and urban surface were investigated.As a result of the total vehicle control policy from 2011 in Beijing,the growth rate of annual total CO_(2) flux at 140 m is 7.8% from 2008-2010 but 2.3%from 2010-2012.With the minimum vegetation cover and largest population density,the 5-yr average annual total CO_(2) flux at 140 m is largest(6.41 kg C m^(−2) yr^(−1)),compared with that at 47 m(5.78 kg C m^(−2) yr^(−1))and 280 m(3.99 kg C m^(−2) yr^(−1)).With regards to annual total CO_(2) fluxes in Beijing,vehicle numbers and population are the main controlling factors.The measured CO_(2) fluxes were highly dependent on land cover/use in the prevailing wind direction.The CO_(2) fluxes at three layers all correlated positively with road fraction,with the R2 values being 0.69,0.57,and 0.54(P<0.05),respectively.The decreasing fraction of vegetation caused an increasing of the annual total CO_(2) flux,and there was an exponential relationship between them.The annual total CO_(2) fluxes were larger with higher population density.
基金supported by the National High Technology Research and Development Program of China(Grant No.2007AA022201)the National Special Fund for Water(Grant No.2008ZX07103007)+1 种基金the National Basic Research Program of China (Grant Nos.2010CB428503 and 2011CB403406)the National Natural Science Foundation of China(Grant Nos. 40805006 and 41075012)
文摘Turbulence characteristics of an atmospheric surface layer over a coastal mountain area were investigated under different coordinate frames. Performances of three methods of coordinate rotation: double rotation (DR), triple rotation (TR), and classic planar-fit rotation (PF) were examined in terms of correction of eddy covariance flux. Using the commonly used DR and TR methods, unreasonable rotation angles are encountered at low wind speeds and cause significant run-to-run errors of some turbulence characteristics. The PF method rotates the coordinate system to an ensemble-averaged plane, and shows large tilt error due to an inaccurate fit plane over variable terrain slopes. In this paper, we propose another coordinate rotation scheme. The observational data were separated into two groups according to wind direction. The PF method was adapted to find an ensemble-averaged streamline plane for each group of hourly runs with wind speed exceeding 1.0 m s-1. Then, the coordinate systems were rotated to their respective best- fit planes for all available hourly observations. We call this the PF10 method. The implications of tilt corrections for the turbulence characteristics are discussed with a focus on integral turbulence characteristics, the spectra of wind-velocity components, and sensible heat and momentum fluxes under various atmospheric stabilities. Our results show that the adapted application of PF provides greatly improved estimates of integral turbulence characteristics in complex terrain and maintains data quality. The comparisons of the sensible heat fluxes for four coordinate rotation methods to fluxes before correction indicate that the PF10 scheme is the best to preserve consistency between fluxes.
基金supported by the National Natural Science Foundation of China(41530745)the Central Asia Atmospheric Science Research Fund(CAAS201703)the Fundamental Research Funds for the Central Universities(lzujbky-2016-267)
文摘Exploring the surface energy exchange between atmosphere and water bodies is essential to gain a quantitative understanding of regional climate change, especially for the lakes in the desert. In this study, measurements of energy flux and water vapor were performed over a lake in the Badain Jaran Desert, China from March 2012 to March 2013. The studied lake had about a 2-month frozen period (December and January) and a 10-month open-water period (February-November). Latent heat flux (LE) and sensible heat flux (Hs) acquired using the eddy covariance technique were argued by measurements of long'wave and shortwave radiation. Both fluxes of longwave and shortwave radiation showed seasonal dynamics and daily fluctuations during the study period. The reflected solar radiation was much higher in winter than in other seasons. LE exhibited diurnal and seasonal variations. On a daily scale, LE was low in the morning and peaked in the afternoon. From spring (April) to winter (January), the diurnal amplitude of LE decreased slowly. LE was the dominant heat flux throughout the year and consumed most of the energy from the lake. Generally speaking, LE was mostly affected by changes in the ambient wind speed, while Hs was primarily affected by the product of water-air temperature difference and wind speed. The diurnal LE and Hs were negatively correlated in the open-water period. The variations in Hs and LE over the lake were differed from those on the nearby land surface. The mean evaporation rate on the lake was about 4.0 mm/d over the entire year, and the cumulative annual evaporation rate was 1445 mm/a. The cumulative annual evaporation was 10 times larger than the cumulative annual precipitation. Furthermore, the average evaporation rates over the frozen period and open-water period were approximately 0.6 and 5.0 mm/d, respectively. These results can be used to analyze the water balance and quantify the source of lake water in the Badain Jaran Desert.
基金supported by the National Natural Science Foundation of China (11302238, 11232011. and 11572331)support from the Strategic Priority Research Program (XDB22040104)+1 种基金the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences (QYZDJ-SSW-SYS002)the National Basic Research Program of China (973 Program 2013CB834100: Nonlinear science)
文摘A large eddy simulation (LES) of the flows around an underwater vehicle model at intermediate Reynolds numbers is performed. The underwater vehicle model is taken as the DARPA SUBOFF with full appendages, where the Reynolds number based on the hull length is 1.0x 105, An immersed boundary method based on the moving-least-squares reconstruction is used to handle the complex geometric boundaries. The adaptive mesh refinement is utilized to resolve the flows near the hull, The parallel scalabilities of the flow solver are tested on meshes with the number of cells varying from 50 million to 3.2 billion, The parallel solver reaches nearly linear scalability for the flows around the underwater vehicle model, The present simulation captures the essential features of the vortex structures near the hull and in the wake, Both of the time-averaged pressure coefficients and srreamwise velocity profiles obtained from the LES are consistent with the characteristics of the flows pass an appended axisymmetric body. The code efficiency and its correct predictions on flow features allow us to perform the full-scale simulations on tens of thousands of cores with billions of grid points for higher-Reynolds-number flows around the underwater vehicles.
文摘Corrections of density effects resulting from air-parcel expansion/compression are important in interpreting eddy covariance fluxes of water vapor and CO2 when open-path systems are used. To account for these effects, mean vertical velocity and perturbation of the density of dry air are two critical parameters in treating those physical processes responsible for density variations. Based on various underlying assumptions, different studies have obtained different formulas for the mean vertical velocity and perturbation of the density of dry air, leading to a number of approaches to correct density effects. In this study, we re-examine physical processes related to different assumptions that are made to formulate the density effects. Specifically, we re-examine the assumptions of a zero dry air flux and a zero moist air flux in the surface layer, used for treating density variations, and their implications for correcting density effects. It is found that physical processes in relation to the assumption of a zero dry air flux account for the influence of dry air expansion/compression on density variations. Meanwhile, physical processes in relation to the assumption of a zero moist air flux account for the influence of moist air expansion/compression on density variations. In this study, we also re-examine mixing ratio issues. Our results indicate that the assumption of a zero dry air flux favors the use of the mixing ratio relative to dry air, while the assumption of a zero moist air flux favors the use of the mixing ratio relative to the total moist air. Additionally, we compare different formula for the mean vertical velocity, generated by air-parcel expansion/compression, and for density effect corrections using eddy covariance data measured over three boreal ecosystems.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51479116 and 11272213)
文摘A numerical model has been developed to study sloshing of turbulent flow in a tank with elastic baffles. The Moving-Particle Semi-implicit method(MPS) is a kind of meshless Lagrangian calculation method. The large eddy simulation(LES) approach is employed to model the turbulence by using the Smagorinsky Sub-Particle Scale(SPS)closure model. This paper uses MPS-FSI method with LES to simulate the interaction between free surface flow and a thin elastic baffle in sloshing. Then, the numerical model is validated, and the numerical solution has good agreement with experimental data for sloshing in a tank with elastic baffles. Furthermore, under external excitations,the MPS is applied to viscous laminar flow and turbulent flow, with both the deformation of elastic baffles and the wave height of the free surface are compared with each other. Besides, the impact pressure with/without baffles and wave height of free surface are investigated and discussed in detail. Finally, preliminary simulations are carried out in the damage problem of elastic baffles, taking the advantage of the MPS-FSI method in computations of the fluid–structure interaction with large deformation.
基金supported from the Ministry of Science and Technology of China[grant number 2012CB417106]the Chinese Academy of Sciences[grant number XDA05020100]+1 种基金the German Science Foundation[contract number BU1173/12-1]the National Natural Science Foundation of China[grant numbers41405137 and 41321064]
文摘The soil of subtropical vegetable fields is an important source of the atmospheric greenhouse gas nitrous oxide(N2O). In a field study in subtropical China, the authors used an eddy covariance(EC)system based on a close-path quantum cascade laser(QCL) spectrometer to measure N2O fluxes from a vegetable field. During the experimental period from 9 October 2014 to 18 February 2015,the observed half-hourly N2O fluxes ranged from.10.7 to 1077.4 μg N m^-2h^-1, with a mean value of99.3 μg N m^-2h^-1. The detection limit(95% confidence level) of the EC system for half-hourly fluxes was estimated at 18.5 μg N m^-2h^-1, i.e. smaller than 97.5% of all measured fluxes, and within the range of the lower limit of reported N2O emissions from subtropical vegetable fields. The random uncertainties in the half-hourly fluxes were estimated at 60% on average, of which 62% was due to stochastic variations caused by turbulence and 38% by instrumental noise. The flux systematic uncertainties were estimated at.18% on average, mainly due to the spectral attenuation; however,this negative bias had already been corrected for by calculating half-hourly fluxes. In conclusion,the close-path QCL-based EC technique is capable of measuring the N2O fluxes from the subtropical vegetable fields of China with high reliability and accuracy.
基金Under the auspices of National Natural Science Foundation of China(No.41401221,41271500,41201496)Opening Fund of Key Laboratory of Poyang Lake Wetland and Watershed Research(Jiangxi Normal University),Ministry of Education,China(No.PK2014002)
文摘As an important product of Moderate Resolution Imaging Spectroradiometer(MODIS), MOD17A2 provides dramatic improvements in our ability to accurately and continuously monitor global terrestrial primary production, which is also significant in effort to advance scientific research and eco-environmental management. Over the past decades, forests have moderated climate change by sequestrating about one-quarter of the carbon emitted by human activities through fossil fuels burning and land use/land cover change. Thus, the carbon uptake by forests reduces the rate at which carbon accumulates in the atmosphere. However, the sensitivity of near real-time MODIS gross primary productivity(GPP) product is directly constrained by uncertainties in the modeling process, especially in complicated forest ecosystems. Although there have been plenty of studies to verify MODIS GPP with ground-based measurements using the eddy covariance(EC) technique, few have comprehensively validated the performance of MODIS estimates(Collection 5) across diverse forest types. Therefore, the present study examined the degree of correspondence between MODIS-derived GPP and EC-measured GPP at seasonal and interannual time scales for the main forest ecosystems, including evergreen broadleaf forest(EBF), evergreen needleleaf forest(ENF), deciduous broadleaf forest(DBF), and mixed forest(MF) relying on 16 flux towers with a total of 68 site-year datasets. Overall, site-specific evaluation of multi-year mean annual GPP estimates indicates that the current MOD17A2 product works highly effectively for MF and DBF, moderately effectively for ENF, and ineffectively for EBF. Except for tropical forest, MODIS estimates could capture the broad trends of GPP at 8-day time scale for all other sites surveyed. On the annual time scale, the best performance was observed in MF, followed by ENF, DBF, and EBF. Trend analyses also revealed the poor performance of MODIS GPP product in EBF and DBF. Thus, improvements in the sensitivity of MOD17A2 to forest productivity require continued efforts.
基金The National Natural Science Foundation of China under contract No.41976002。
文摘SST fronts at the mesoscale eddy edge(ME fronts)were investigated from 2007–2017 in the northern South China Sea(NSCS)based on an automatic method using satellite sea level anomaly(SLA)and SST data.The relative probabilities between the number of anticyclonic/cyclonic ME fronts(AEF/CEF)and the number of anticyclones/cyclones reached 20%.The northeastern and southwestern parts of these anticyclones had more fronts than the northwestern and southeastern parts,although CEFs were nearly equally distributed in all directions.The number of ME fronts had remarkable seasonal variations,while the eddy kinetic energy(EKE)showed no seasonal variations.The total EKE at the ME fronts was three times of that within the MEs,and it was much stronger in AEFs than in CEFs.The interannual variability in the number of ME fronts and EKE had no significant correlation with the El Ni?o-Southern Oscillation(ENSO)index.Possible mechanisms of ME fronts were discussed,but the contributions of mesoscale eddies to SST fronts need to be quantified in future studies.
基金Project supported by the National Natural Science Foundation of China(Nos.91752118,11672305,11232011,and 11572331)the Strategic Priority Research Program(No.XDB22040104)the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences(No.QYZDJ-SSWSYS002)
文摘A novel method is proposed to combine the wall-modeled large-eddy simulation(LES) with the diffuse-interface direct-forcing immersed boundary(IB) method.The new developments in this method include:(i) the momentum equation is integrated along the wall-normal direction to link the tangential component of the effective body force for the IB method to the wall shear stress predicted by the wall model;(ii) a set of Lagrangian points near the wall are introduced to compute the normal component of the effective body force for the IB method by reconstructing the normal component of the velocity. This novel method will be a classical direct-forcing IB method if the grid is fine enough to resolve the flow near the wall. The method is used to simulate the flows around the DARPA SUBOFF model. The results obtained are well comparable to the measured experimental data and wall-resolved LES results.
基金Supported by the National Natural Science Foundation of China under Grant Nos 51137004,61427806 and 51577184the Equipment Development Project of Chinese Academy of Sciences under Grant No YZ201507
文摘A new method of 3D transient eddy current field calculation is proposed. The Maxwell equations with time component elimination (METCE) are derived under the assumption of magnetic quasi static approximation, especially for the sample of low conductivity. Based on METCE, we deduce a more efficient reconstruction algorithm of a 3D transient eddy current field. The computational burden is greatly reduced through the new algorithm, and the computational efficiency is improved. This new algorithm decompounds the space-time variables into two individual variables. The idea is to solve the spatial vector component firstly, and then multiply it by the corresponded time component. The iterative methods based on METCE are introduced to recover the distribution of conductivity in magneto-acoustic tomography. The reconstructed images of conductivity are consistent with the original distribution, which validate the new method.
基金The National Natural Science Foundation of China under contract Nos 41876023, 41630970 and 41876022the Instrument Developing Project of the Chinese Academy of Sciences under contract No. YZ201432+1 种基金the Guangzhou Science and Technology Project under contract No. 201707020037the National Key R&D Plan of China under contract Nos 2017YFC0305804 and 2017YFC0305904.
文摘Turbulent eddies play a critical role in oceanic flows. Direct measurements of turbulent eddy fluxes beneath the sea surface were taken to study the direction of flux-carrying eddies as a means of supplementing our understanding of vertical fluxes exchange processes and their relationship to tides. The observations were made at 32 Hz at a water depth of ~1.5 m near the coast of Sanya, China, using an eddy covariance system, which mainly consists of an acoustic doppler velocimeter(ADV) and a fast temperature sensor. The cospectra-fit method-an established semi-empirical model of boundary layer turbulence to the measured turbulent cospectra at frequencies below those of surface gravity waves-was used in the presence of surface gravity waves to quantify the turbulent eddy fluxes(including turbulent heat flux and Reynolds stress). As much as 87% of the total turbulent stress and 88% of the total turbulent heat flux were determined as being at band frequencies below those of surface gravity waves. Both the turbulent heat flux and Reynolds stress showed a daily successive variation;the former peaked during the low tide period and the later peaked during the ebb tide period.Estimation of roll-off wavenumbers, k0, and roll-off wavelengths, λ0(where λ0=2π/k0), which were estimated as the horizontal length scales of the dominant flux-carrying turbulent eddies, indicated that the λ0 of the turbulent heat flux was approximately double that of the Reynolds stress. Wavelet analysis showed that both the turbulent heat flux and the Reynolds stress have a close relationship to the semi-diurnal and diurnal tides, and therefore indicate the energy that is transported from tides to turbulence.
基金supported by Program for Basic Scientific Research of the State Academies of Sciences for 2013e2020the RF Ministry of Education and Science (Contract No. 02.G25.31.0063)
文摘The paper proposes an experimental method of material inspection,which is based on digital processing of multi-frequency eddy current measurement data.The influences of various factors(conductivity,the gap between the sample surface and the sensor,the thickness of the sample) on the obtained hodographs are examined by taking the aluminum alloys for example,and the possibility of separation of various factors is analyzed.The results obtained are indicative of how much promise the proposed method offers for the inspection and testing of products made of aluminum alloys.
文摘After the field equations and the snonumuoo conditions between the interfaces for 3D eddy current problems Under various gauges were discussed, it was pointed cut in this paper that using the magnetic vector potential A. the electric scalar potential and Coulomb gauge △ .A = 0 in eddy current regions and using the magntetic scalar potential Ω in the non-conducting regions are more suitable. All field equations, the boundary conditions, the interface continuity conditions and the corresponding variational principle of this method are also given
文摘A matrix equation solved in an eddy current analysis,??-??method based on a domain decomposition method becomes a complex symmetric system.In general,iterative method is used as the solver.Convergence of iterative method in an interface problem is improved by increasing an accuracy of a solution of an iterative method of a subdomain problem.However,it is difficult to improve the convergence by using a small convergence criterion in the subdomain problem.Therefore,authors propose a method to introduce double-double precision into the interface problem and the subdomain problem.This proposed method improves the convergence of the interface problem.In this paper,first,we describe proposed method.Second,we confirm validity of the method by using Team Workshop Problem 7,standard model for eddy current analysis.Finally,we show effectiveness of the method from two numerical results.
文摘In this paper, the finite element method using vector potential in applications to 2D nonlinear eddy current field is discussed. The authors use the equivalent magnetic energy method to deal with magnetization curve of ferromagnetic material,and present the formulation of 2D nonlinear eddy current field.With this method the authors analyze the eddy current field in an induction ladle furnace and the force distribution in the charge (molten metal),and plot the corresponding curves.
文摘This paper uses scenery complementary heating method to discuss a new type of scenery complementary water heater design. This product can be divided into two parts. The first part is the eddy current method wind power heating part, which is driven by wind power and vertical axis wind turbines and the design of magnet array rotor disc rotation, namely, magnetic field rotating, induced eddy current in the stator, so as to generate heat. The second part is the solar heating part. This works has broad market prospect, which provides a new idea for large-scaled heating method.
基金Financial support from the Aeronautical and Automotive Department of Engineering of Loughborough University in the form of a research studentship for K Wang is gratefully acknowledge&
基金supported by the National Key R&D Program of China(Grant No.2022YFB3303500).
文摘The present study proposes a sub-grid scale model for the one-dimensional Burgers turbulence based on the neuralnetwork and deep learning method.The filtered data of the direct numerical simulation is used to establish thetraining data set,the validation data set,and the test data set.The artificial neural network(ANN)methodand Back Propagation method are employed to train parameters in the ANN.The developed ANN is applied toconstruct the sub-grid scale model for the large eddy simulation of the Burgers turbulence in the one-dimensionalspace.The proposed model well predicts the time correlation and the space correlation of the Burgers turbulence.