This paper, with a finite element method, studies the interaction of a coupled incompressible fluid-rigid structure system with a free surface subjected to external wave excitations. With this fully coupled model, the...This paper, with a finite element method, studies the interaction of a coupled incompressible fluid-rigid structure system with a free surface subjected to external wave excitations. With this fully coupled model, the rigid structure is taken as "fictitious" fluid with zero strain rate. Both fluid and structure are described by velocity and pressure. The whole domain, including fluid region and structure region, is modeled by the incompressible Navier-Stokes equations which are discretized with fixed Eulerian mesh. However, to keep the structure' s rigid body shape and behavior, a rigid body constraint is enforced on the "fictitious" fluid domain by use of the Distributed Lagrange Multipher/Fictitious Domain (DLM/ FD) method which is originally introduced to solve particulate flow problems by Glowinski et al. For the verification of the model presented herein, a 2D numerical wave tank is established to simulate small amplitude wave propagations, and then numerical results are compared with analytical solutions. Finally, a 2D example of fluid-structure interaction under wave dynamic forces provides convincing evidences for the method excellent solution quality and fidelity.展开更多
The distributed Lagrange multiplier/fictitious domain(DLM/FD)-mixed finite element method is developed and analyzed in this paper for a transient Stokes interface problem with jump coefficients.The semi-and fully disc...The distributed Lagrange multiplier/fictitious domain(DLM/FD)-mixed finite element method is developed and analyzed in this paper for a transient Stokes interface problem with jump coefficients.The semi-and fully discrete DLM/FD-mixed finite element scheme are developed for the first time for this problem with a moving interface,where the arbitrary Lagrangian-Eulerian(ALE)technique is employed to deal with the moving and immersed subdomain.Stability and optimal convergence properties are obtained for both schemes.Numerical experiments are carried out for different scenarios of jump coefficients,and all theoretical results are validated.展开更多
This paper discusses a fictitious domain method for the linear Dirichlet problem and its applications to the generalized Stokes problem. This method treats Dirichlet boundary condit ion via a Lagrange multiplier tec...This paper discusses a fictitious domain method for the linear Dirichlet problem and its applications to the generalized Stokes problem. This method treats Dirichlet boundary condit ion via a Lagrange multiplier technique and is well suited to the no-slip bound ary condition in viscous flow problems. In order to improve the accuracy of solu tions, meshes are refined according to the a posteriori error estimate. The mini -element discretization is applied to solve the generalized Stokes problem. Fin ally, some numerical results to validate this method are presented for partial d ifferential equations with Dirichlet boundary condition.展开更多
Abstract. In this paper which is motivated by computation on parallel machine, we showthat the superconvergence results of the finite element method(FEM) with Lagrange mul-tipliers based on domain decomposition method...Abstract. In this paper which is motivated by computation on parallel machine, we showthat the superconvergence results of the finite element method(FEM) with Lagrange mul-tipliers based on domain decomposition method (DDM) with nonmatching grids can becarried over to parabolic problems. The main idea of this paper is to achieve the combina-tion of parallel computational method with the higher accuracy technique by interpolationfinite element postprocessing.展开更多
The sedimentation of a single circular particle between two parallel walls was studied by means of direct numerical simulation (DNS) and experiment. The improved implementation of distributed Lagrange multiplier/ficti...The sedimentation of a single circular particle between two parallel walls was studied by means of direct numerical simulation (DNS) and experiment. The improved implementation of distributed Lagrange multiplier/fictitious domain method used in our DNS is a promising new way for simulation of particulate flows. The settling behaviors of the particle are presented ranging in Reynolds number from 0 to about 700, which showed that our results for low Reynolds numbers agreed well with that reported before. Nevertheless, for higher Reynolds numbers our results were different from theirs. The long-term mean equilibrium positions in our results were all on the centerline, but not at off-center position as reported before. In order to validate our simulation, experiments were also conducted. The results showed that the sedimenting behavior simulated in this paper agreed well with our experiment result.展开更多
An improved implementation of Distributed Lagrange multiplier/fictitious domain method was presented and used to simulate the interactions between two circular particles sedimenting in a two_dimensional channel. The s...An improved implementation of Distributed Lagrange multiplier/fictitious domain method was presented and used to simulate the interactions between two circular particles sedimenting in a two_dimensional channel. The simulation results were verified by comparison with experiments. The results show that the interactions between two particles with different sizes can be described as drafting, kissing, tumbling and separating. Only for small diameter ratio, the two particles will interact undergoing repeated DKT (Drafting, Kissing and Tumbling) process. Otherwise, the two particles will separate after their tumbling. The results also show that, during the interaction process, the motion of the small particle is strongly affected while the large particle is affected slightly.展开更多
基金This study is supported by the National Natural Science Foundation of China (Grant No50579046) the Science Foundation of Tianjin Municipal Commission of Science and Technology (Grant No043114711)
文摘This paper, with a finite element method, studies the interaction of a coupled incompressible fluid-rigid structure system with a free surface subjected to external wave excitations. With this fully coupled model, the rigid structure is taken as "fictitious" fluid with zero strain rate. Both fluid and structure are described by velocity and pressure. The whole domain, including fluid region and structure region, is modeled by the incompressible Navier-Stokes equations which are discretized with fixed Eulerian mesh. However, to keep the structure' s rigid body shape and behavior, a rigid body constraint is enforced on the "fictitious" fluid domain by use of the Distributed Lagrange Multipher/Fictitious Domain (DLM/ FD) method which is originally introduced to solve particulate flow problems by Glowinski et al. For the verification of the model presented herein, a 2D numerical wave tank is established to simulate small amplitude wave propagations, and then numerical results are compared with analytical solutions. Finally, a 2D example of fluid-structure interaction under wave dynamic forces provides convincing evidences for the method excellent solution quality and fidelity.
基金P.Sun was supported by NSF Grant DMS-1418806C.S.Zhang was partially supported by the National Key Research and Development Program of China(Grant No.2016YFB0201304)+1 种基金the Major Research Plan of National Natural Science Foundation of China(Grant Nos.91430215,91530323)the Key Research Program of Frontier Sciences of CAS.
文摘The distributed Lagrange multiplier/fictitious domain(DLM/FD)-mixed finite element method is developed and analyzed in this paper for a transient Stokes interface problem with jump coefficients.The semi-and fully discrete DLM/FD-mixed finite element scheme are developed for the first time for this problem with a moving interface,where the arbitrary Lagrangian-Eulerian(ALE)technique is employed to deal with the moving and immersed subdomain.Stability and optimal convergence properties are obtained for both schemes.Numerical experiments are carried out for different scenarios of jump coefficients,and all theoretical results are validated.
文摘This paper discusses a fictitious domain method for the linear Dirichlet problem and its applications to the generalized Stokes problem. This method treats Dirichlet boundary condit ion via a Lagrange multiplier technique and is well suited to the no-slip bound ary condition in viscous flow problems. In order to improve the accuracy of solu tions, meshes are refined according to the a posteriori error estimate. The mini -element discretization is applied to solve the generalized Stokes problem. Fin ally, some numerical results to validate this method are presented for partial d ifferential equations with Dirichlet boundary condition.
文摘Abstract. In this paper which is motivated by computation on parallel machine, we showthat the superconvergence results of the finite element method(FEM) with Lagrange mul-tipliers based on domain decomposition method (DDM) with nonmatching grids can becarried over to parabolic problems. The main idea of this paper is to achieve the combina-tion of parallel computational method with the higher accuracy technique by interpolationfinite element postprocessing.
文摘The sedimentation of a single circular particle between two parallel walls was studied by means of direct numerical simulation (DNS) and experiment. The improved implementation of distributed Lagrange multiplier/fictitious domain method used in our DNS is a promising new way for simulation of particulate flows. The settling behaviors of the particle are presented ranging in Reynolds number from 0 to about 700, which showed that our results for low Reynolds numbers agreed well with that reported before. Nevertheless, for higher Reynolds numbers our results were different from theirs. The long-term mean equilibrium positions in our results were all on the centerline, but not at off-center position as reported before. In order to validate our simulation, experiments were also conducted. The results showed that the sedimenting behavior simulated in this paper agreed well with our experiment result.
文摘An improved implementation of Distributed Lagrange multiplier/fictitious domain method was presented and used to simulate the interactions between two circular particles sedimenting in a two_dimensional channel. The simulation results were verified by comparison with experiments. The results show that the interactions between two particles with different sizes can be described as drafting, kissing, tumbling and separating. Only for small diameter ratio, the two particles will interact undergoing repeated DKT (Drafting, Kissing and Tumbling) process. Otherwise, the two particles will separate after their tumbling. The results also show that, during the interaction process, the motion of the small particle is strongly affected while the large particle is affected slightly.