This paper introduces a method for modeling the entire aggregated electric vehicle(EV)charging process and analyzing its dispatchable capabilities.The methodology involves developing a model for aggregated EV charging...This paper introduces a method for modeling the entire aggregated electric vehicle(EV)charging process and analyzing its dispatchable capabilities.The methodology involves developing a model for aggregated EV charging at the charging station level,estimating its physical dispatchable capability,determining its economic dispatchable capability under economic incentives,modeling its participation in the grid,and investigating the effects of different scenarios and EV penetration on the aggregated load dispatch and dispatchable capability.The results indicate that using economic dispatchable capability reduces charging prices by 9.7%compared to physical dispatchable capability and 9.3%compared to disorderly charging.Additionally,the peak-to-valley difference is reduced by 64.6%when applying economic dispatchable capability with 20%EV penetration and residential base load,compared to disorderly charging.展开更多
A chance-constrained energy dispatch model based on the distributed stochastic model predictive control(DSMPC)approach for an islanded multi-microgrid system is proposed.An ambiguity set considering the inherent uncer...A chance-constrained energy dispatch model based on the distributed stochastic model predictive control(DSMPC)approach for an islanded multi-microgrid system is proposed.An ambiguity set considering the inherent uncertainties of renewable energy sources(RESs)is constructed without requiring the full distribution knowledge of the uncertainties.The power balance chance constraint is reformulated within the framework of the distributionally robust optimization(DRO)approach.With the exchange of information and energy flow,each microgrid can achieve its local supply-demand balance.Furthermore,the closed-loop stability and recursive feasibility of the proposed algorithm are proved.The comparative results with other DSMPC methods show that a trade-off between robustness and economy can be achieved.展开更多
This paper presents a novel approach to economic dispatch in smart grids equipped with diverse energy devices.This method integrates features including photovoltaic(PV)systems,energy storage coupling,varied energy rol...This paper presents a novel approach to economic dispatch in smart grids equipped with diverse energy devices.This method integrates features including photovoltaic(PV)systems,energy storage coupling,varied energy roles,and energy supply and demand dynamics.The systemmodel is developed by considering energy devices as versatile units capable of fulfilling various functionalities and playing multiple roles simultaneously.To strike a balance between optimality and feasibility,renewable energy resources are modeled with considerations for forecasting errors,Gaussian distribution,and penalty factors.Furthermore,this study introduces a distributed event-triggered surplus algorithm designed to address the economic dispatch problem by minimizing production costs.Rooted in surplus theory and finite time projection,the algorithm effectively rectifies network imbalances caused by directed graphs and addresses local inequality constraints.The algorithm greatly reduces the communication burden through event triggering mechanism.Finally,both theoretical proofs and numerical simulations verify the convergence and event-triggered nature of the algorithm.展开更多
The convergence of Internet of Things(IoT),5G,and cloud collaboration offers tailored solutions to the rigorous demands of multi-flow integrated energy aggregation dispatch data processing.While generative adversarial...The convergence of Internet of Things(IoT),5G,and cloud collaboration offers tailored solutions to the rigorous demands of multi-flow integrated energy aggregation dispatch data processing.While generative adversarial networks(GANs)are instrumental in resource scheduling,their application in this domain is impeded by challenges such as convergence speed,inferior optimality searching capability,and the inability to learn from failed decision making feedbacks.Therefore,a cloud-edge collaborative federated GAN-based communication and computing resource scheduling algorithm with long-term constraint violation sensitiveness is proposed to address these challenges.The proposed algorithm facilitates real-time,energy-efficient data processing by optimizing transmission power control,data migration,and computing resource allocation.It employs federated learning for global parameter aggregation to enhance GAN parameter updating and dynamically adjusts GAN learning rates and global aggregation weights based on energy consumption constraint violations.Simulation results indicate that the proposed algorithm effectively reduces data processing latency,energy consumption,and convergence time.展开更多
Battery energy storage systems(BESSs)are widely used in smart grids.However,power consumed by inner impedance and the capacity degradation of each battery unit become particularly severe,which has resulted in an incre...Battery energy storage systems(BESSs)are widely used in smart grids.However,power consumed by inner impedance and the capacity degradation of each battery unit become particularly severe,which has resulted in an increase in operating costs.The general economic dispatch(ED)algorithm based on marginal cost(MC)consensus is usually a proportional(P)controller,which encounters the defects of slow convergence speed and low control accuracy.In order to solve the distributed ED problem of the isolated BESS network with excellent dynamic and steady-state performance,we attempt to design a proportional integral(PI)controller with a reset mechanism(PI+R)to asymptotically promote MC consensus and total power mismatch towards 0 in this paper.To be frank,the integral term in the PI controller is reset to 0 at an appropriate time when the proportional term undergoes a zero crossing,which accelerates convergence,improves control accuracy,and avoids overshoot.The eigenvalues of the system under a PI+R controller is well analyzed,ensuring the regularity of the system and enabling the reset mechanism.To ensure supply and demand balance within the isolated BESSs,a centralized reset mechanism is introduced,so that the controller is distributed in a flow set and centralized in a jump set.To cope with Zeno behavior and input delay,a dwell time that the system resides in a flow set is given.Based on this,the system with input delays can be reduced to a time-delay free system.Considering the capacity limitation of the battery,a modified MC scheme with PI+R controller is designed.The correctness of the designed scheme is verified through relevant simulations.展开更多
In renewable energy systems,energy storage systems can reduce the power fluctuation of renewable energy sources and compensate for the prediction deviation.However,if the renewable energy prediction deviation is small...In renewable energy systems,energy storage systems can reduce the power fluctuation of renewable energy sources and compensate for the prediction deviation.However,if the renewable energy prediction deviation is small,the energy storage system may work in an underutilized state.To efficiently utilize a renewable-energy-sided energy storage system(RES),this study proposed an optimization dispatching strategy for an energy storage system considering its unused capacity sharing.First,this study proposed an unused capacity-sharing strategy for the RES to fully utilize the storage’s unused capacity and elevate the storage’s service efficiency.Second,RES was divided into“deviation-compensating energy storage(DES)”and“sharing energy storage(SES)”to clarify the function of RES in the operation process.Third,this study established an optimized dispatching model to achieve the lowest system operating cost wherein the unused capacity-sharing strategy could be integrated.Finally,a case study was investigated,and the results indicated that the proposed model and algorithm effectively improved the utilization of renewable-energy-side energy storage systems,thereby reducing the total operation cost and pressure on peak shaving.展开更多
The launch of the carbon-allowance trading market has changed the cost structure of the power industry.There is an asynchronous coupling mechanism between the carbon-allowance-trading market and the day-ahead power-sy...The launch of the carbon-allowance trading market has changed the cost structure of the power industry.There is an asynchronous coupling mechanism between the carbon-allowance-trading market and the day-ahead power-system dispatch.In this study,a data-driven model of the uncertainty in the annual carbon price was created.Subsequently,a collaborative,robust dispatch model was constructed considering the annual uncertainty of the carbon price and the daily uncertainty of renewable-energy generation.The model is solved using the column-and-constraint generation algorithm.An operation and cost model of a carbon-capture power plant(CCPP)that couples the carbon market and the economic operation of the power system is also established.The critical,profitable conditions for the economic operation of the CCPP were derived.Case studies demonstrated that the proposed low-carbon,robust dispatch model reduced carbon emissions by 2.67%compared with the traditional,economic,dispatch method.The total fuel cost of generation decreases with decreasing,conservative,carbon-price-uncertainty levels,while total carbon emissions continue to increase.When the carbon-quota coefficient decreases,the system dispatch tends to increase low-carbon unit output.This study can provide important guidance for carbon-market design and the low-carbon-dispatch selection strategies.展开更多
In the increasingly decentralized energy environment,economical power dispatching from distributed generations(DGs)is crucial to minimizing operating costs,optimizing resource utilization,and guaranteeing a consistent...In the increasingly decentralized energy environment,economical power dispatching from distributed generations(DGs)is crucial to minimizing operating costs,optimizing resource utilization,and guaranteeing a consistent and sustainable supply of electricity.A comprehensive review of optimization techniques for economic power dispatching from distributed generations is imperative to identify the most effective strategies for minimizing operational costs while maintaining grid stability and sustainability.The choice of optimization technique for economic power dispatching from DGs depends on a number of factors,such as the size and complexity of the power system,the availability of computational resources,and the specific requirements of the application.Optimization techniques for economic power dispatching from distributed generations(DGs)can be classified into two main categories:(i)Classical optimization techniques,(ii)Heuristic optimization techniques.In classical optimization techniques,the linear programming(LP)model is one of the most popular optimization methods.Utilizing the LP model,power demand and network constraints are met while minimizing the overall cost of generating electricity from DGs.This approach is efficient in determining the best DGs dispatch and is capable of handling challenging optimization issues in the large-scale system including renewables.The quadratic programming(QP)model,a classical optimization technique,is a further popular optimization method,to consider non-linearity.The QP model can take into account the quadratic cost of energy production,with consideration constraints like network capacity,voltage,and frequency.The metaheuristic optimization techniques are also used for economic power dispatching from DGs,which include genetic algorithms(GA),particle swarm optimization(PSO),and ant colony optimization(ACO).Also,Some researchers are developing hybrid optimization techniques that combine elements of classical and heuristic optimization techniques with the incorporation of droop control,predictive control,and fuzzy-based methods.These methods can deal with large-scale systems with many objectives and non-linear,non-convex optimization issues.The most popular approaches are the LP and QP models,while more difficult problems are handled using metaheuristic optimization techniques.In summary,in order to increase efficiency,reduce costs,and ensure a consistent supply of electricity,optimization techniques are essential tools used in economic power dispatching from DGs.展开更多
In order to solve the problems of potential incident rescue on expressway networks, the opportunity cost-based method is used to establish a resource dispatch decision model. The model aims to dispatch the rescue reso...In order to solve the problems of potential incident rescue on expressway networks, the opportunity cost-based method is used to establish a resource dispatch decision model. The model aims to dispatch the rescue resources from the regional road networks and to obtain the location of the rescue depots and the numbers of service vehicles assigned for the potential incidents. Due to the computational complexity of the decision model, a scene decomposition algorithm is proposed. The algorithm decomposes the dispatch problem from various kinds of resources to a single resource, and determines the original scene of rescue resources based on the rescue requirements and the resource matrix. Finally, a convenient optimal dispatch scheme is obtained by decomposing each original scene and simplifying the objective function. To illustrate the application of the decision model and the algorithm, a case of the expressway network is studied on areas around Nanjing city in China and the results show that the model used and the algorithm proposed are appropriate.展开更多
An optimal resource dispatching method is proposed to solve the multiple-response problem under the conditions of potential incidents on freeway networks.Travel time of the response vehicle is selected instead of rout...An optimal resource dispatching method is proposed to solve the multiple-response problem under the conditions of potential incidents on freeway networks.Travel time of the response vehicle is selected instead of route distance as the weight to reflect the impact of traffic conditions on the decisions of rescue resources.According to the characteristics of different types of rescue vehicles the dispatching decision-making time is revised to show the heterogeneity among different rescue vehicle dispatching modes. The genetic algorithm is used to obtain the solutions to the rescue resources dispatching model. A case study shows that the proposed method can accurately reveal the impact of potential incidents on the costs of rescues according to the variations in the types and quantities of rescue resources and the optimal dispatching plan with respect to potential incidents can be obtained.The proposed method is applicable in real world scenarios.展开更多
There are two kinds of dispatching policies in content-aware web server cluster; segregation dispatching policy and mixture dispatching policy. Traditional scheduling algorithms all adopt mixture dispatching policy. T...There are two kinds of dispatching policies in content-aware web server cluster; segregation dispatching policy and mixture dispatching policy. Traditional scheduling algorithms all adopt mixture dispatching policy. They do not consider that dynamic requests' serving has the tendency to slow down static requests' serving, and that different requests have different resource demands, so they can not use duster's resource reasonably and effectively. This paper uses stochastic reward net (SRN) to model and analyze the two dispatching policies, and uses stochastic Petri net package (SPNP) to simulate the models. The simulation results and practical tests both show that segregation dispatching policy is better than mixture dispatching policy. The principle of segregation dispatching policy can guide us to design efficient scheduling algorithm.展开更多
This paper presents the solution to the combined heat and power economic dispatch problem using a direct solution algorithm for constrained optimization problems. With the potential of Combined Heat and Power (CHP) pr...This paper presents the solution to the combined heat and power economic dispatch problem using a direct solution algorithm for constrained optimization problems. With the potential of Combined Heat and Power (CHP) production to increase the efficiency of power and heat generation simultaneously having been researched and established, the increasing penetration of CHP systems, and determination of economic dispatch of power and heat assumes higher relevance. The Combined Heat and Power Economic Dispatch (CHPED) problem is a demanding optimization problem as both constraints and objective functions can be non-linear and non-convex. This paper presents an explicit formula developed for computing the system-wide incremental costs corresponding with optimal dispatch. The circumvention of the use of iterative search schemes for this crucial step is the innovation inherent in the proposed dispatch procedure. The feasible operating region of the CHP unit three is taken into account in the proposed CHPED problem model, whereas the optimal dispatch of power/heat outputs of CHP unit is determined using the direct Lagrange multiplier solution algorithm. The proposed algorithm is applied to a test system with four units and results are provided.展开更多
Along with the development of automatical truck dispatching in open pits, it is important to es-tablish general-gurpose criteria for truck dispatching optimization. The existing dispatching criteria are briefly introd...Along with the development of automatical truck dispatching in open pits, it is important to es-tablish general-gurpose criteria for truck dispatching optimization. The existing dispatching criteria are briefly introduced and optimal dispatching criteria for different haulage systems are recommended. Obvious economic results have been obtained from case studies applying the recommended dispatching criteria.展开更多
In the power market environment, due to the uncertainty of the reservoir inflow and the pool purchase price, it is very important to research power generation risk dispatch of hydropower plants, taking into considerat...In the power market environment, due to the uncertainty of the reservoir inflow and the pool purchase price, it is very important to research power generation risk dispatch of hydropower plants, taking into consideration the benefits and risk control of both sides. This paper investigates power generation risk dispatch of hydropower plants in the market environment, and proposes a mathematical model which considers maximization of benefits and risk control, reflects control willingness of risk and benefits, resolves it with the PSO algorithm, finding more economic and reasonable results. The feasibility and validity of the model and resolving methods are verified by an example.展开更多
基金State Grid Henan Power Company Science and Technology Project‘Key Technology and Demonstration Application of Multi-Domain Electric Vehicle Aggregated Charging Load Dispatch’(5217L0240003).
文摘This paper introduces a method for modeling the entire aggregated electric vehicle(EV)charging process and analyzing its dispatchable capabilities.The methodology involves developing a model for aggregated EV charging at the charging station level,estimating its physical dispatchable capability,determining its economic dispatchable capability under economic incentives,modeling its participation in the grid,and investigating the effects of different scenarios and EV penetration on the aggregated load dispatch and dispatchable capability.The results indicate that using economic dispatchable capability reduces charging prices by 9.7%compared to physical dispatchable capability and 9.3%compared to disorderly charging.Additionally,the peak-to-valley difference is reduced by 64.6%when applying economic dispatchable capability with 20%EV penetration and residential base load,compared to disorderly charging.
基金Supported by the National Natural Science Foundation of China(No.U24B20156)the National Defense Basic Scientific Research Program of China(No.JCKY2021204B051)the National Laboratory of Space Intelligent Control of China(Nos.HTKJ2023KL502005 and HTKJ2024KL502007)。
文摘A chance-constrained energy dispatch model based on the distributed stochastic model predictive control(DSMPC)approach for an islanded multi-microgrid system is proposed.An ambiguity set considering the inherent uncertainties of renewable energy sources(RESs)is constructed without requiring the full distribution knowledge of the uncertainties.The power balance chance constraint is reformulated within the framework of the distributionally robust optimization(DRO)approach.With the exchange of information and energy flow,each microgrid can achieve its local supply-demand balance.Furthermore,the closed-loop stability and recursive feasibility of the proposed algorithm are proved.The comparative results with other DSMPC methods show that a trade-off between robustness and economy can be achieved.
基金The Science and Technology Project of the State Grid Corporation of China(Research and Demonstration of Loss Reduction Technology Based on Reactive Power Potential Exploration and Excitation of Distributed Photovoltaic-Energy Storage Converters:5400-202333241A-1-1-ZN).
文摘This paper presents a novel approach to economic dispatch in smart grids equipped with diverse energy devices.This method integrates features including photovoltaic(PV)systems,energy storage coupling,varied energy roles,and energy supply and demand dynamics.The systemmodel is developed by considering energy devices as versatile units capable of fulfilling various functionalities and playing multiple roles simultaneously.To strike a balance between optimality and feasibility,renewable energy resources are modeled with considerations for forecasting errors,Gaussian distribution,and penalty factors.Furthermore,this study introduces a distributed event-triggered surplus algorithm designed to address the economic dispatch problem by minimizing production costs.Rooted in surplus theory and finite time projection,the algorithm effectively rectifies network imbalances caused by directed graphs and addresses local inequality constraints.The algorithm greatly reduces the communication burden through event triggering mechanism.Finally,both theoretical proofs and numerical simulations verify the convergence and event-triggered nature of the algorithm.
基金supported by China Southern Power Grid Technology Project under Grant 03600KK52220019(GDKJXM20220253).
文摘The convergence of Internet of Things(IoT),5G,and cloud collaboration offers tailored solutions to the rigorous demands of multi-flow integrated energy aggregation dispatch data processing.While generative adversarial networks(GANs)are instrumental in resource scheduling,their application in this domain is impeded by challenges such as convergence speed,inferior optimality searching capability,and the inability to learn from failed decision making feedbacks.Therefore,a cloud-edge collaborative federated GAN-based communication and computing resource scheduling algorithm with long-term constraint violation sensitiveness is proposed to address these challenges.The proposed algorithm facilitates real-time,energy-efficient data processing by optimizing transmission power control,data migration,and computing resource allocation.It employs federated learning for global parameter aggregation to enhance GAN parameter updating and dynamically adjusts GAN learning rates and global aggregation weights based on energy consumption constraint violations.Simulation results indicate that the proposed algorithm effectively reduces data processing latency,energy consumption,and convergence time.
基金supported by the National Natural Science Foundation of China(62103203)the General Terminal IC Interdisciplinary Science Center of Nankai University.
文摘Battery energy storage systems(BESSs)are widely used in smart grids.However,power consumed by inner impedance and the capacity degradation of each battery unit become particularly severe,which has resulted in an increase in operating costs.The general economic dispatch(ED)algorithm based on marginal cost(MC)consensus is usually a proportional(P)controller,which encounters the defects of slow convergence speed and low control accuracy.In order to solve the distributed ED problem of the isolated BESS network with excellent dynamic and steady-state performance,we attempt to design a proportional integral(PI)controller with a reset mechanism(PI+R)to asymptotically promote MC consensus and total power mismatch towards 0 in this paper.To be frank,the integral term in the PI controller is reset to 0 at an appropriate time when the proportional term undergoes a zero crossing,which accelerates convergence,improves control accuracy,and avoids overshoot.The eigenvalues of the system under a PI+R controller is well analyzed,ensuring the regularity of the system and enabling the reset mechanism.To ensure supply and demand balance within the isolated BESSs,a centralized reset mechanism is introduced,so that the controller is distributed in a flow set and centralized in a jump set.To cope with Zeno behavior and input delay,a dwell time that the system resides in a flow set is given.Based on this,the system with input delays can be reduced to a time-delay free system.Considering the capacity limitation of the battery,a modified MC scheme with PI+R controller is designed.The correctness of the designed scheme is verified through relevant simulations.
文摘In renewable energy systems,energy storage systems can reduce the power fluctuation of renewable energy sources and compensate for the prediction deviation.However,if the renewable energy prediction deviation is small,the energy storage system may work in an underutilized state.To efficiently utilize a renewable-energy-sided energy storage system(RES),this study proposed an optimization dispatching strategy for an energy storage system considering its unused capacity sharing.First,this study proposed an unused capacity-sharing strategy for the RES to fully utilize the storage’s unused capacity and elevate the storage’s service efficiency.Second,RES was divided into“deviation-compensating energy storage(DES)”and“sharing energy storage(SES)”to clarify the function of RES in the operation process.Third,this study established an optimized dispatching model to achieve the lowest system operating cost wherein the unused capacity-sharing strategy could be integrated.Finally,a case study was investigated,and the results indicated that the proposed model and algorithm effectively improved the utilization of renewable-energy-side energy storage systems,thereby reducing the total operation cost and pressure on peak shaving.
基金supported by the Science and Technology Project of State Grid Liaoning Electric Power Co.,Ltd.(No.2023YF-82).
文摘The launch of the carbon-allowance trading market has changed the cost structure of the power industry.There is an asynchronous coupling mechanism between the carbon-allowance-trading market and the day-ahead power-system dispatch.In this study,a data-driven model of the uncertainty in the annual carbon price was created.Subsequently,a collaborative,robust dispatch model was constructed considering the annual uncertainty of the carbon price and the daily uncertainty of renewable-energy generation.The model is solved using the column-and-constraint generation algorithm.An operation and cost model of a carbon-capture power plant(CCPP)that couples the carbon market and the economic operation of the power system is also established.The critical,profitable conditions for the economic operation of the CCPP were derived.Case studies demonstrated that the proposed low-carbon,robust dispatch model reduced carbon emissions by 2.67%compared with the traditional,economic,dispatch method.The total fuel cost of generation decreases with decreasing,conservative,carbon-price-uncertainty levels,while total carbon emissions continue to increase.When the carbon-quota coefficient decreases,the system dispatch tends to increase low-carbon unit output.This study can provide important guidance for carbon-market design and the low-carbon-dispatch selection strategies.
文摘In the increasingly decentralized energy environment,economical power dispatching from distributed generations(DGs)is crucial to minimizing operating costs,optimizing resource utilization,and guaranteeing a consistent and sustainable supply of electricity.A comprehensive review of optimization techniques for economic power dispatching from distributed generations is imperative to identify the most effective strategies for minimizing operational costs while maintaining grid stability and sustainability.The choice of optimization technique for economic power dispatching from DGs depends on a number of factors,such as the size and complexity of the power system,the availability of computational resources,and the specific requirements of the application.Optimization techniques for economic power dispatching from distributed generations(DGs)can be classified into two main categories:(i)Classical optimization techniques,(ii)Heuristic optimization techniques.In classical optimization techniques,the linear programming(LP)model is one of the most popular optimization methods.Utilizing the LP model,power demand and network constraints are met while minimizing the overall cost of generating electricity from DGs.This approach is efficient in determining the best DGs dispatch and is capable of handling challenging optimization issues in the large-scale system including renewables.The quadratic programming(QP)model,a classical optimization technique,is a further popular optimization method,to consider non-linearity.The QP model can take into account the quadratic cost of energy production,with consideration constraints like network capacity,voltage,and frequency.The metaheuristic optimization techniques are also used for economic power dispatching from DGs,which include genetic algorithms(GA),particle swarm optimization(PSO),and ant colony optimization(ACO).Also,Some researchers are developing hybrid optimization techniques that combine elements of classical and heuristic optimization techniques with the incorporation of droop control,predictive control,and fuzzy-based methods.These methods can deal with large-scale systems with many objectives and non-linear,non-convex optimization issues.The most popular approaches are the LP and QP models,while more difficult problems are handled using metaheuristic optimization techniques.In summary,in order to increase efficiency,reduce costs,and ensure a consistent supply of electricity,optimization techniques are essential tools used in economic power dispatching from DGs.
基金The National Natural Science Foundation of China (No.50422283)the Science and Technology Key Plan Project of Henan Province (No.072102360060)
文摘In order to solve the problems of potential incident rescue on expressway networks, the opportunity cost-based method is used to establish a resource dispatch decision model. The model aims to dispatch the rescue resources from the regional road networks and to obtain the location of the rescue depots and the numbers of service vehicles assigned for the potential incidents. Due to the computational complexity of the decision model, a scene decomposition algorithm is proposed. The algorithm decomposes the dispatch problem from various kinds of resources to a single resource, and determines the original scene of rescue resources based on the rescue requirements and the resource matrix. Finally, a convenient optimal dispatch scheme is obtained by decomposing each original scene and simplifying the objective function. To illustrate the application of the decision model and the algorithm, a case of the expressway network is studied on areas around Nanjing city in China and the results show that the model used and the algorithm proposed are appropriate.
基金The National Natural Science Foundation of China(No.71101025)the Science and Technology Key Plan Project of Changzhou(No.CE20125001)
文摘An optimal resource dispatching method is proposed to solve the multiple-response problem under the conditions of potential incidents on freeway networks.Travel time of the response vehicle is selected instead of route distance as the weight to reflect the impact of traffic conditions on the decisions of rescue resources.According to the characteristics of different types of rescue vehicles the dispatching decision-making time is revised to show the heterogeneity among different rescue vehicle dispatching modes. The genetic algorithm is used to obtain the solutions to the rescue resources dispatching model. A case study shows that the proposed method can accurately reveal the impact of potential incidents on the costs of rescues according to the variations in the types and quantities of rescue resources and the optimal dispatching plan with respect to potential incidents can be obtained.The proposed method is applicable in real world scenarios.
基金Supported by the National Natural Science Foun-dation of China (90204008) the Science Council of Wuhan(20001001004)
文摘There are two kinds of dispatching policies in content-aware web server cluster; segregation dispatching policy and mixture dispatching policy. Traditional scheduling algorithms all adopt mixture dispatching policy. They do not consider that dynamic requests' serving has the tendency to slow down static requests' serving, and that different requests have different resource demands, so they can not use duster's resource reasonably and effectively. This paper uses stochastic reward net (SRN) to model and analyze the two dispatching policies, and uses stochastic Petri net package (SPNP) to simulate the models. The simulation results and practical tests both show that segregation dispatching policy is better than mixture dispatching policy. The principle of segregation dispatching policy can guide us to design efficient scheduling algorithm.
文摘This paper presents the solution to the combined heat and power economic dispatch problem using a direct solution algorithm for constrained optimization problems. With the potential of Combined Heat and Power (CHP) production to increase the efficiency of power and heat generation simultaneously having been researched and established, the increasing penetration of CHP systems, and determination of economic dispatch of power and heat assumes higher relevance. The Combined Heat and Power Economic Dispatch (CHPED) problem is a demanding optimization problem as both constraints and objective functions can be non-linear and non-convex. This paper presents an explicit formula developed for computing the system-wide incremental costs corresponding with optimal dispatch. The circumvention of the use of iterative search schemes for this crucial step is the innovation inherent in the proposed dispatch procedure. The feasible operating region of the CHP unit three is taken into account in the proposed CHPED problem model, whereas the optimal dispatch of power/heat outputs of CHP unit is determined using the direct Lagrange multiplier solution algorithm. The proposed algorithm is applied to a test system with four units and results are provided.
文摘Along with the development of automatical truck dispatching in open pits, it is important to es-tablish general-gurpose criteria for truck dispatching optimization. The existing dispatching criteria are briefly introduced and optimal dispatching criteria for different haulage systems are recommended. Obvious economic results have been obtained from case studies applying the recommended dispatching criteria.
文摘In the power market environment, due to the uncertainty of the reservoir inflow and the pool purchase price, it is very important to research power generation risk dispatch of hydropower plants, taking into consideration the benefits and risk control of both sides. This paper investigates power generation risk dispatch of hydropower plants in the market environment, and proposes a mathematical model which considers maximization of benefits and risk control, reflects control willingness of risk and benefits, resolves it with the PSO algorithm, finding more economic and reasonable results. The feasibility and validity of the model and resolving methods are verified by an example.